This splits the manifest file loading logic from makemanifest.py and
updates makemanifest.py to use it.
This will allow non-freezing uses of manifests, such as defining packages
and dependencies in micropython-lib.
Also adds additional methods to the manifest "API":
- require() - to get a package from micropython-lib.
- module() - to define a single-file module
- package() - to define a multi-file package
module() and package() should replace most uses of freeze() and can also
be also used in non-freezing scenarios.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Binaries built using the Make build system now no longer appear in the
working directory of the build, but rather in the build directory. Thus
some paths had to be adjusted.
This changes makemanifest.py & mpy-tool.py to merge string and mpy names
into the same list (now mp_frozen_names).
The various paths for loading a frozen module (mp_find_frozen_module) and
checking existence of a frozen module (mp_frozen_stat) use a common
function that searches this list.
In addition, the frozen lookup will now only take place if the path starts
with ".frozen", which needs to be added to sys.path.
This fixes issues #1804, #2322, #3509, #6419.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Takes the functionality from tools/make-frozen.py, adds support for
multiple frozen directories, and moves it to tools/makemanifest.py.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
This allows customising which features can be enabled in a frozen library.
e.g. `include("path.py", extra_features=True)`
in path.py:
options.defaults(standard_features=True)
if options.standard_features:
# freeze standard modules.
if options.extra_features:
# freeze extra modules.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The msvc compiler doesn't accept zero-sized arrays so let the freezing
process generate compatible C code in case no modules are found and the
involved arrays are all empty. This doesn't affect the functionality in
any way because those arrays only get accessed when mp_frozen_mpy_names
contains names, i.e. when modules are actually found.
The existing implementation of mkdir() in this file is not sophisticated
enough to work correctly on all operating systems (eg Mac can raise
EISDIR). Using the standard os.makedirs() function handles all cases
correctly.
Signed-off-by: Damien George <damien@micropython.org>
If mpy-cross exits with an error be sure to print that error in a way that
is readable, instead of a long bytes object.
Signed-off-by: Damien George <damien@micropython.org>
This adds support for freezing an entire directory while keeping the
directory as part of the import path. For example
freeze("path/to/library", "module")
will recursively freeze all scripts in "path/to/library/module" and have
them importable as "from module import ...".
Signed-off-by: Damien George <damien@micropython.org>
When using a manifest on Windows the reference to mpy-cross compiler was
missing the .exe file extension, so add it when appropriate.
Also allow the default path to mpy-cross to be overridden by the (optional)
MICROPY_MPYCROSS environment variable, to allow full flexibility on any OS.
While the new manifest.py style got introduced for freezing python code
into the resulting binary, the old way - where files and modules within
ports/*/modules where baked into the resulting binary - was still
supported via `freeze('$(PORT_DIR)/modules')` within manifest.py.
However behaviour changed for symlinked directories (=modules), as those
links weren't followed anymore.
This commit restores the original behaviour by explicitly following
symlinks within a modules/ directory
When loading a manifest file, e.g. by include(), it will chdir first to the
directory of that manifest. This means that all file operations within a
manifest are relative to that manifest's location.
As a consequence of this, additional environment variables are needed to
find absolute paths, so the following are added: $(MPY_LIB_DIR),
$(PORT_DIR), $(BOARD_DIR). And rename $(MPY) to $(MPY_DIR) to be
consistent.
Existing manifests are updated to match.
This introduces a new build variable FROZEN_MANIFEST which can be set to a
manifest listing (written in Python) that describes the set of files to be
frozen in to the firmware.