RTC is enabled on all boards. Therefore the conditional compile is not
needed. Removing it simplifies the source code a little bit.
Signed-off-by: robert-hh <robert@hammelrath.com>
The ports esp32, mimxrt, rp2 and samd all shared exactly the same
implementation of machine.disable_irq() and machine.enable_irq(),
implemented in terms of MICROPY_{BEGIN,END}_ATOMIC_SECTION. This commit
factors these implementations into extmod/modmachine.c.
The cc3200, esp8266, nrf, renesas-ra and stm32 ports do not yet use this
common implementation.
Signed-off-by: Damien George <damien@micropython.org>
Minor changes for consistency are:
- nrf gains: unique_id(), freq() [they do nothing]
- samd: deepsleep() now resets after calling lightsleep()
- esp32: lightsleep()/deepsleep() no longer take kw arg "sleep", instead
it's positional to match others. also, passing 0 here will now do a 0ms
sleep instead of acting like nothing was passed.
reset_cause() no longer takes any args (before it would just ignore them)
- mimxrt: freq() with an argument and lightsleep() both raise
NotImplementedError
Signed-off-by: Damien George <damien@micropython.org>
And use it in all ports. The ports are unchanged, except esp8266 which now
just returns None from this function instead of the time elapsed (to match
other ports), and qemu-arm which gains this function.
Signed-off-by: Damien George <damien@micropython.org>
This is a code factoring to have the dict for the machine module in one
location, and all the ports use that same dict. The machine.soft_reset()
function implementation is also factored because it's the same for all
ports that did already implement it. Eventually more functions/bindings
can be factored.
All ports remain functionally the same, except:
- cc3200 port: gains soft_reset, mem8, mem16, mem32, Signal; loses POWER_ON
(which was a legacy constant, replaced long ago by PWRON_RESET)
- nrf port: gains Signal
- qemu-arm port: gains soft_reset
- unix port: gains soft_reset
- zephyr port: gains soft_reset, mem8, mem16, mem32
Signed-off-by: Damien George <damien@micropython.org>
Replaces the previous all-zeroes "TODO" serial number.
Requires refactoring the low-level unique_id routine out from modmachine.c.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
The contents of machine_mem.h, machine_i2c.h and machine_spi.h have been
moved into extmod/modmachine.h.
Signed-off-by: Damien George <damien@micropython.org>
The contents of machine_bitstream.h, machine_pinbase.h, machine_pulse.h and
machine_signal.h have been moved into extmod/modmachine.h.
Signed-off-by: Damien George <damien@micropython.org>
There are currently 7 ports that implement machine.WDT and a lot of code is
duplicated across these implementations. This commit factors the common
parts of all these implementations to a single location in
extmod/machine_wdt.c. This common code provides the top-level Python
bindings (class and method wrappers), and then each port implements the
back end specific to that port.
With this refactor the ports remain functionally the same except for:
- The esp8266 WDT constructor now takes keyword arguments, and accepts the
"timeout" argument but raises an exception if it's not the default value
(this port doesn't support changing the timeout).
- The mimxrt and samd ports now interpret the argument to WDT.timeout_ms()
as signed and if it's negative truncate it to the minimum timeout (rather
than it being unsigned and a negative value truncating to the maximum
timeout).
Signed-off-by: Damien George <damien@micropython.org>
This renames the builtin-modules, such that help('modules') and printing
the module object will show "module" rather than "umodule".
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
These include ADC, DAC, I2C, SoftI2C, SPI, SoftI2C, PWM, UART, pulse. This
is useful for devices like the Adafruit Trinket series which have almost no
accessible GPIO pins.
Signed-off-by: robert-hh <robert@hammelrath.com>
Methods implemented are:
- rtc.init(date)
- rtc.datetime([new_date])
- rtc.calibration(value)
The presence of this class can be controlled by MICROPY_PY_MACHINE_RTC. If
the RTC module is used, the time module uses the RTC as well.
For boards without a 32kHz crystal, using RTC makes no sense, since it will
then use the ULP32K oscillator, which is not precise at all. Therefore, it
will by default only be enabled for boards using a crystal, but can be
enabled in the respective mpconfigboard.h.
Instead of being hard-coded, and then it works for all MCUs.
That fits except for a Sparkfun SAMD51 Thing Plus (known) bug, which uses
192k - 4 as magic address. Therefore, that address is set as well to avoid
a problem when this bug is fixed by Sparkfun.
Which just sets the CPU clock to 200kHz and switches the peripheral clock
off. There are two modes:
machine.lightsleep(duration_ms)
and
machine.lightsleep()
In any mode any configured pin.irq() event will terminate the sleep.
Current consumption in lightsleep for some boards:
- 1.5 - 2.5 mA when supplied trough an active USB
(Seeed XIAO w/o power LED, Adafruit ItsyBitsy)
- 0.8 - 2 mA when supplied through Gnd/+5V (Vusb)
(Seeed XIAO w/o power LED, Adafruit ItsyBitsy)
- < 1 mA for SAMD51 when supplied trough a battery connector
(Sparkfun Thing SAMD51 plus)
Related change: move the calls to SysTick_Config() into set_cpu_freq(). It
is required after each CPU freq change to have ticks_ms run at the proper
rate.
The range is 1MHz - 48 MHz. Note that below 8 MHz there is no USB support.
The frequency will be set to an integer fraction of 48 MHz. And after
changing the frequency, the peripherals like PWM, UART, I2C, SPI have to be
reconfigured.
Current consumption e.g. of the Seeed Xiao board at 1 MHz is about 1.5 mA,
mostly caused by the on-board LED (green LED with 1k resistor at 3.3V).
The value given for machine.freq(f) is extend to the range of 1_000_000 to
200_000_000. Frequencies below 48 MHz will be forced to an integer
fraction of 48 MHz. At frequencies below 8 MHz USB is switched off. The
power consumption e.g. of ADAFRUIT_ITSYBITSY_M4_EXPRESS drops to about
1.5 mA at 1 MHz.
Since the peripheral frequency is dropped as well, timing e.g. of PWM,
UART, I2C and SPI is affected and frequency/baud rate has to set again
after a frequency change below 48 MHz.
The SAMD21 implementation is an adaption of @jimmo's code for STM32Lxx.
The only changes are the addresses and names of the port registers and the
timing parameters.
SAMD21: The precision is about +/-25ns at 48MHz clock frequency. The first
two cycles are about 40-60 ns longer than set. But still good enough to
drive a neopixel device.
SAMD51: The precision is about +/-30ns at 120MHz clock frequency. Good
enough to drive a neopixel device.
It suuports 1 channel @ 10 bit for SAMD21, 2 channels @ 12 bit for SAMD51.
Instantiation by:
dac = machine.DAC(ch) # 0 or 1
Method write:
dac.write(value)
The output voltage range is 0..Vdd.
All board pins that have UART's assigned can be used. Baud rate range is
75 Baud to ~2 MBaud.
No flow control yet, and only RX is buffered. TX buffer and flow control
may be added later for SAMD51 with its larger RAM and Flash.
Features are:
- 3 to 5 different frequency groups.
- Freq range of 1Hz - 24 MHz.
- Duty rate stays stable on freq change.
Keyword options to the PWM constructor:
- device=n Select a specific PWM device. If no device is specified, a free
device is chosen, if available at that pin.
- freq=nnnn
- duty_u16=nnnn
- duty_ns=nnnn
- invert=True/False Allowing two outputs on the same device/channel to have
complementary signals.
If both freq and duty are provided, PWM output will start immediately.
Pins at the same device have the same frequency. If the PWM output number
exceeds the number of channels at the PWM device, the effctive channel_no
is output_no % channel_count. So with a channel count of 4, output 7 is
assigned to channel 3. Pins at a certain channel have the same frequency
and duty rate, but may be seperately inverted.
With the method read_u16(). Keyword arguments of the constructor are:
- bits=n The resolution; default is 12.
- average=n The average of samples, which are taken and cumulated. The
default value is 16. Averaging by hw is faster than averaging
in code.
The ADC runs at a clock freq 1.5 MHz. A single 12 bit conversion takes
8 microseconds.
It's no longer needed because this macro is now processed after
preprocessing the source code via cpp (in the qstr extraction stage), which
means unused MP_REGISTER_MODULE's are filtered out by the preprocessor.
Signed-off-by: Damien George <damien@micropython.org>