Previously, setting MICROPY_HW_ENABLE_USBDEV to 0 caused build errors. The
change affects the nrf and samd ports as well, so MICROPY_HW_ENABLE_USBDEV
had to be explicitly enabled there.
The configuration options MICROPY_HW_ENABLE_USBDEV and
MICROPY_HW_ENABLE_UART_REPL are independent, and can be enabled or disabled
by a board.
Signed-off-by: Damien George <damien@micropython.org>
Using extmod/machine_pwm.c for the Python bindings and the existing
softpwm.c driver, by just adding the interface.
Properties:
- Frequency range 1-3906 Hz.
- All PWM outputs run at the same frequency but can have different duty
cycles.
- Limited to the P0.x pins.
Since it uses the existing softpwm.c mechanism, it will be affected by
playing music with the music class.
This is a breaking change, making the hardware PWM on the nrf port
compatible with the other ports providing machine.PWM.
Frequency range 4Hz - ~5.4 MHz. The base clock range is 125kHz to 16 MHz,
and the divider range is 3 - 32767.
The hardware supports up to four outputs per PWM device with different duty
cycles, but only one output is (and was) supported.
So that it doesn't clash with the extmod version.
Also make the default for this enabled, so that most boards do not need to
configure it.
Signed-off-by: Damien George <damien@micropython.org>
Since commit e65d1e69e8 there is no longer an
io.FileIO class, so this option is no longer needed.
This option also controlled whether or not files supported being opened in
binary mode (eg 'rb'), and could, if disabled, lead to confusion as to why
opening a file in binary mode silently did the wrong thing (it would just
open in text mode if MICROPY_PY_IO_FILEIO was disabled).
The various VFS implementations (POSIX, FAT, LFS) were the only places
where enabling this option made a difference, and in almost all cases where
one of these filesystems were enabled, MICROPY_PY_IO_FILEIO was also
enabled. So it makes sense to just unconditionally enable this feature
(ability to open a file in binary mode) in all cases, and so just remove
this config option altogether. That makes configuration simpler and means
binary file support always exists (and opening a file in binary mode is
arguably more fundamental than opening in text mode, so if anything should
be configurable then it should be the ability to open in text mode).
Signed-off-by: Damien George <damien@micropython.org>
rp2: change tud_task() to tud_task_ext().
mimxrt: use lib/tinyusb/src/portable/chipidea/ci_hs/dcd_ci_hs.c instead of
lib/tinyusb/src/portable/nxp/transdimension/dcd_transdimension.c.
nrf: add a definition for the changed tud_task(). tud_task() is changed
to tud_task_ext(), and the #define for backward compatibility is in
src/device/usbd.h.
The items I know which are fixed with this version:
- Fix for the SAMD USB lock-up.
- Support the MIMXRT11XX series of MCUs.
- Fix a wrong pin definition for MIMXRT1050_EVKB.
Tested with the MIMXRT boards, rp2 Pico, SAMD boards, nrf board.
This uses MP_REGISTER_ROOT_POINTER() to register the readline_history root
pointer array used by shared/readline.c and removes the registration from
all mpconfigport.h files.
This also required adding a new MICROPY_READLINE_HISTORY_SIZE config option
since not all ports used the same sized array.
Signed-off-by: David Lechner <david@pybricks.com>
For ports with MICROPY_VFS and MICROPY_PY_IO enabled their configuration
can now be simplified to use the defaults for mp_import_stat and
mp_builtin_open.
This commit makes no functional change, except for the following minor
points:
- the built-in "open" is removed from the minimal port (it previously did
nothing)
- the duplicate built-in "input" is removed from the esp32 port
- qemu-arm now delegates to VFS import/open
Signed-off-by: Damien George <damien@micropython.org>
The inclusion of `umachine` in the list of built-in modules is now done
centrally in py/objmodule.c. Enabling MICROPY_PY_MACHINE will include this
module.
As part of this, all ports now have `umachine` as the core module name
(previously some had only `machine` as the name).
Signed-off-by: Damien George <damien@micropython.org>
This commit removes all parts of code associated with the existing
MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE optimisation option, including the
-mcache-lookup-bc option to mpy-cross.
This feature originally provided a significant performance boost for Unix,
but wasn't able to be enabled for MCU targets (due to frozen bytecode), and
added significant extra complexity to generating and distributing .mpy
files.
The equivalent performance gain is now provided by the combination of
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE (which has
been enabled on the unix port in the previous commit).
It's hard to provide precise performance numbers, but tests have been run
on a wide variety of architectures (x86-64, ARM Cortex, Aarch64, RISC-V,
xtensa) and they all generally agree on the qualitative improvements seen
by the combination of MICROPY_OPT_LOAD_ATTR_FAST_PATH and
MICROPY_OPT_MAP_LOOKUP_CACHE.
For example, on a "quiet" Linux x64 environment (i3-5010U @ 2.10GHz) the
change from CACHE_MAP_LOOKUP_IN_BYTECODE, to LOAD_ATTR_FAST_PATH combined
with MAP_LOOKUP_CACHE is:
diff of scores (higher is better)
N=2000 M=2000 bccache -> attrmapcache diff diff% (error%)
bm_chaos.py 13742.56 -> 13905.67 : +163.11 = +1.187% (+/-3.75%)
bm_fannkuch.py 60.13 -> 61.34 : +1.21 = +2.012% (+/-2.11%)
bm_fft.py 113083.20 -> 114793.68 : +1710.48 = +1.513% (+/-1.57%)
bm_float.py 256552.80 -> 243908.29 : -12644.51 = -4.929% (+/-1.90%)
bm_hexiom.py 521.93 -> 625.41 : +103.48 = +19.826% (+/-0.40%)
bm_nqueens.py 197544.25 -> 217713.12 : +20168.87 = +10.210% (+/-3.01%)
bm_pidigits.py 8072.98 -> 8198.75 : +125.77 = +1.558% (+/-3.22%)
misc_aes.py 17283.45 -> 16480.52 : -802.93 = -4.646% (+/-0.82%)
misc_mandel.py 99083.99 -> 128939.84 : +29855.85 = +30.132% (+/-5.88%)
misc_pystone.py 83860.10 -> 82592.56 : -1267.54 = -1.511% (+/-2.27%)
misc_raytrace.py 21490.40 -> 22227.23 : +736.83 = +3.429% (+/-1.88%)
This shows that the new optimisations are at least as good as the existing
inline-bytecode-caching, and are sometimes much better (because the new
ones apply caching to a wider variety of map lookups).
The new optimisations can also benefit code generated by the native
emitter, because they apply to the runtime rather than the generated code.
The improvement for the native emitter when LOAD_ATTR_FAST_PATH and
MAP_LOOKUP_CACHE are enabled is (same Linux environment as above):
diff of scores (higher is better)
N=2000 M=2000 native -> nat-attrmapcache diff diff% (error%)
bm_chaos.py 14130.62 -> 15464.68 : +1334.06 = +9.441% (+/-7.11%)
bm_fannkuch.py 74.96 -> 76.16 : +1.20 = +1.601% (+/-1.80%)
bm_fft.py 166682.99 -> 168221.86 : +1538.87 = +0.923% (+/-4.20%)
bm_float.py 233415.23 -> 265524.90 : +32109.67 = +13.756% (+/-2.57%)
bm_hexiom.py 628.59 -> 734.17 : +105.58 = +16.796% (+/-1.39%)
bm_nqueens.py 225418.44 -> 232926.45 : +7508.01 = +3.331% (+/-3.10%)
bm_pidigits.py 6322.00 -> 6379.52 : +57.52 = +0.910% (+/-5.62%)
misc_aes.py 20670.10 -> 27223.18 : +6553.08 = +31.703% (+/-1.56%)
misc_mandel.py 138221.11 -> 152014.01 : +13792.90 = +9.979% (+/-2.46%)
misc_pystone.py 85032.14 -> 105681.44 : +20649.30 = +24.284% (+/-2.25%)
misc_raytrace.py 19800.01 -> 23350.73 : +3550.72 = +17.933% (+/-2.79%)
In summary, compared to MICROPY_OPT_CACHE_MAP_LOOKUP_IN_BYTECODE, the new
MICROPY_OPT_LOAD_ATTR_FAST_PATH and MICROPY_OPT_MAP_LOOKUP_CACHE options:
- are simpler;
- take less code size;
- are faster (generally);
- work with code generated by the native emitter;
- can be used on embedded targets with a small and constant RAM overhead;
- allow the same .mpy bytecode to run on all targets.
See #7680 for further discussion. And see also #7653 for a discussion
about simplifying mpy-cross options.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
The zephyr port doesn't support SoftI2C so it's not enabled, and the legacy
I2C constructor check can be removed.
Signed-off-by: Damien George <damien@micropython.org>
Disable MICROPY_FATFS_MULTI_PARTITION configuration because there is no
partition table in the flash for FATFS to read.
Also, set MICROPY_FATFS_MAX_SS to the size of a flash page. For nrf51 the
value 1024 is set. For nrf52/nrf91 the value 4096 is set.
This commit adds a few math functions to the source list in the Makefile,
and implements the log2f function, so that ulab can be compiled on the nrf
boards. It also addresses part of #5162.
The "word" referred to by BYTES_PER_WORD is actually the size of mp_obj_t
which is not always the same as the size of a pointer on the target
architecture. So rename this config value to better reflect what it
measures, and also prefix it with MP_.
For uses of BYTES_PER_WORD in setting the stack limit this has been
changed to sizeof(void *), because the stack usually grows with
machine-word sized values (eg an nlr_buf_t has many machine words in it).
Signed-off-by: Damien George <damien@micropython.org>
To simplify config, there's no need to specify MP_PLAT_PRINT_STRN if it's
the same as the default definition in py/mpconfig.h.
Signed-off-by: Damien George <damien@micropython.org>
The SoftI2C constructor is now used soley to create SoftI2C instances, it
can no longer delegate to create a hardware-based I2C instance.
Signed-off-by: Damien George <damien@micropython.org>
The mpconfigport.h file is an internal header and should only ever be
included once by mpconfig.h.
Signed-off-by: Damien George <damien@micropython.org>
Enabling the following features for all targets, except for nrf51
targets compiled to be used with SoftDevice:
- MICROPY_PY_ARRAY_SLICE_ASSIGN
- MICROPY_PY_SYS_STDFILES
- MICROPY_PY_UBINASCII
Splitting mpconfigport.h into multiple device specific
files in order to facilitate variations between devices.
Due to the fact that the devices might have variations in
features and also variations in flash size it makes sense
that some devices offers more functionality than others
without being limited by restricted devices.
For example more micropython features can be activated for
nrf52840 with 1MB flash, compared to nrf51 with 256KB.
This commit adds time.ticks_ms/us support using RTC1 as the timebase. It
also adds the time.ticks_add/diff helper functions. This feature can be
enabled using MICROPY_PY_TIME_TICKS. If disabled the system uses the
legacy sleep methods and does not have any ticks functions.
In addition support for MICROPY_EVENT_POLL_HOOK was added to the
time.sleep_ms(x) function, making this function more power efficient and
allows support for select.poll/asyncio. To support this, the RTC's CCR0
was used to schedule a ~1msec event to wakeup the CPU.
Some important notes about the RTC timebase:
- Since the granularity of RTC1's ticks are approx 30usec, time.ticks_us is
not perfect, does not have 1us resolution, but is otherwise quite usable.
For tighter measurments the ticker's 1MHz counter should be used.
- time.ticks_ms(x) should *not* be called in an IRQ with higher prio than
the RTC overflow irq (3). If so it introduces a race condition and
possibly leads to wrong tick calculations.
See #6171 and #6202.
The "random" module no longer uses the hardware RNG (the extmod version of
this module has a pseudo-random number generator), so the config option
MICROPY_PY_RANDOM_HW_RNG is no longer meaningful. This commit replaces it
with MICROPY_HW_ENABLE_RNG, which controls whether the hardware RNG is
included in the build.
For the 3 ports that already make use of this feature (stm32, nrf and
teensy) this doesn't make any difference, it just allows to disable it from
now on.
For other ports that use pyexec, this decreases code size because the debug
printing code is dead (it can't be enabled) but the compiler can't deduce
that, so code is still emitted.
This commit removes the Makefile-level MICROPY_FATFS config and moves the
MICROPY_VFS_FAT config to the Makefile level to replace it. It also moves
the include of the oofatfs source files in the build from each port to a
central place in extmod/extmod.mk.
For a port to enabled VFS FAT support it should now set MICROPY_VFS_FAT=1
at the level of the Makefile. This will include the relevant oofatfs files
in the build and set MICROPY_VFS_FAT=1 at the C (preprocessor) level.
This commit implements automatic module weak links for all built-in
modules, by searching for "ufoo" in the built-in module list if "foo"
cannot be found. This means that all modules named "ufoo" are always
available as "foo". Also, a port can no longer add any other weak links,
which makes strict the definition of a weak link.
It saves some code size (about 100-200 bytes) on ports that previously had
lots of weak links.
Some changes from the previous behaviour:
- It doesn't intern the non-u module names (eg "foo" is not interned),
which saves code size, but will mean that "import foo" creates a new qstr
(namely "foo") in RAM (unless the importing module is frozen).
- help('modules') no longer lists non-u module names, only the u-variants;
this reduces duplication in the help listing.
Weak links are effectively the same as having a set of symbolic links on
the filesystem that is searched last. So an "import foo" will search
built-in modules first, then all paths in sys.path, then weak links last,
importing "ufoo" if it exists. Thus a file called "foo.py" somewhere in
sys.path will still have precedence over the weak link of "foo" to "ufoo".
See issues: #1740, #4449, #5229, #5241.
Cleaning up use of "pyb" module.
Moving the file to a new folder and updating the
makefile accordingly. New module created called
"board" to take over the functionality of the legacy
"pyb" module.
Updating outdated documentation referring to pyb.Pin,
to now point to machine.Pin.
Update configuration define from
MICROPY_HW_HAS_BUILTIN_FLASH to MICROPY_MBFS.
MICROPY_MBFS will enable the builtin flash as
part of enabling the micro:bit FS.
Renaming config for enabling random module with hw
random number generator from MICROPY_PY_HW_RNG to
MICROPY_PY_RANDOM_HW_RNG to indicate which module it
is configuring.
Also, disabling the config by default in mpconfigport.h.
Adding the enable of RNG in all board configs.
Moving ifdef in modrandom, which test for the config being
set, earlier in the code. This is to prevent un-necessary
includes if not needed.
This patch ads irq method to the pin object. Handlers
registered in the irq method will be kept as part of the
ROOT_POINTERS.
In order to resolve which pin object is the root of the
IRQ, the pin_find has been extended to also be able to
search up Pin objects based on mp_int_t pin number.
This also implies that the Pin.new API is now also supporting
creation of Pin objects based on the integer value of the
pin instead of old style mandating string name of the Pin.
All boards have been updated to use real pin number from
0-48 instead of pin_Pxx for UART/SPI and music module pins.
UART/SPI/modmusic has also been updated to use pin number
provided directly or look up the Pin object based on the
integer value of the pin (modmusic).
Pin generation has been updated to create a list of pins, where
the board/cpu dicts are now refering to an index in this list
instead of having one const declaration for each pin. This new
const table makes it possible to iterate through all pins generated
in order to locate the correct Pin object.