Default to just calling python since that is most commonly available: the
official installer or zipfiles from python.org, anaconda, nupkg all result
in python being available but not python3. In other words: the default
used so far is wrong. Note that os.name is 'posix' when running the python
version which comes with Cygwin or MSys2 so they are not affected by this.
However of all possible ways to get Python on Windows, only Cygwin provides
no python command so update the default way for running tests in the
README.
This commit switches the roles of the helper task from a cancellation task
to a runner task, to get the correct semantics for cancellation of
wait_for.
Some uasyncio tests are now disabled for the native emitter due to issues
with native code generation of generators and yield-from.
Fixes#5797.
Signed-off-by: Damien George <damien@micropython.org>
The use of -S ensures that only the CPython standard library is accessible,
which makes tests run the same regardless of any site-packages that are
installed. It also improves start-up time of CPython, reducing the overall
time spent running the test suite.
tests/basics/containment.py is updated to work around issue with old Python
versions not being able to str-format a dict-keys object, which becomes
apparent when -S is used.
Signed-off-by: Damien George <damien@micropython.org>
So they can be skipped if __rOP__'s are not supported on the target. Also
fix the typo in the complex_special_methods.py filename.
Signed-off-by: Damien George <damien@micropython.org>
A configurable result directory is advantageous because it enables
using a dedicated location, eventually outside of the source tree,
instead of forcing the output files into a fixed directory which might
also contain other files already. For that reason the default output
directory also has been changed to tests/results/.
Replace some usages of paths relative to the current working directory
with absolute paths relative to the tests directory.
Fixes and resulting changes:
- default values of MICROPYTHON and MPYCROSS are absolute paths and
always correct
- likewise, the correct full paths for tools and extmod directories
are appended to sys.path
- printing/cleaning failures works properly since it expects the .exp
and .out files in the tests directory which is also where they
are written to now, plus no more need for changing directories
This fixes#5872 and allows running custom tests which use run-tests
without having to cd to the tests directory first, and the test output
still is in the tests/ directory instead of the current working directory.
Discovery of tests and all skip test logic based on paths relative to
the current working directory remains unchanged which essentially means
that for running most of MicroPython's own tests, run-tests must still
be ran from within it's directory, so document that.
This allows complex binary operations to fail gracefully with unsupported
operation rather than raising an exception, so that special methods work
correctly.
Signed-off-by: Damien George <damien@micropython.org>
This commit adds several small items to improve the support for OTA
updates on an esp32:
- a partition table for 4MB flash modules that has two OTA partitions ready
to go to do updates
- a GENERIC_OTA board that uses that partition table and that enables
automatic roll-back in the bootloader
- a new esp32.Partition.mark_app_valid_cancel_rollback() class-method to
signal that the boot is successful and should not be rolled back at the
next reset
- an automated test for doing an OTA update
- documentation updates
This adds a couple of commands to the run-tests script to print the diffs
of failed tests and also to clean up the .exp and .out files after failed
tests. (And a spelling error is fixed while we are touching nearby code.)
Travis is also updated to use these new commands, including using it for
more builds.
This commit adds backward-word, backward-kill-word, forward-word,
forward-kill-word sequences for the REPL, with bindings to Alt+F, Alt+B,
Alt+D and Alt+Backspace respectively. It is disabled by default and can be
enabled via MICROPY_REPL_EMACS_WORDS_MOVE.
Further enabling MICROPY_REPL_EMACS_EXTRA_WORDS_MOVE adds extra bindings
for these new sequences: Ctrl+Right, Ctrl+Left and Ctrl+W.
The features are enabled on unix micropython-coverage and micropython-dev.
It is possile for `run_feature_check(pyb, args, base_path, 'float.py')` to
return `b'CRASH'`. This causes an unhandled exception in `int()`.
This commit fixes the problem by first testing for `b'CRASH'` before trying
to convert the return value to an integer.
- Split 'qemu-arm' from 'unix' for generating tests.
- Add frozen module to the qemu-arm test build.
- Add test that reproduces the requirement to half-word align native
function data.
When running Linux on WSL, Popen.kill() can raise a ProcessLookupError if
the process does not exist anymore, which can happen here since the
previous statement already tries to close the process by sending Ctrl-D to
the running repl. This doesn't seem to be a problem on other OSes, so just
swallow the exception silently since it indicates the process has been
closed already, which after all is what we want.
This ensures that implicit variables are only converted to implicit
closed-over variables (nonlocals) at the very end of the function scope.
If variables are closed-over when first used (read from, as was done prior
to this commit) then this can be incorrect because the variable may be
assigned to later on in the function which means they are just a plain
local, not closed over.
Fixes issue #4272.
This commit implements PEP479 which disallows raising StopIteration inside
a generator to signal that it should be finished. Instead, the generator
should simply return when it is complete.
See https://www.python.org/dev/peps/pep-0479/ for details.
Prior to this commit a function compiled with the native decorator
@micropython.native would not work correctly when accessing global
variables, because the globals dict was not being set upon function entry.
This commit fixes this problem by, upon function entry, setting as the
current globals dict the globals dict context the function was defined
within, as per normal Python semantics, and as bytecode does. Upon
function exit the original globals dict is restored.
In order to restore the globals dict when an exception is raised the native
function must guard its internals with an nlr_push/nlr_pop pair. Because
this push/pop is relatively expensive, in both C stack usage for the
nlr_buf_t and CPU execution time, the implementation here optimises things
as much as possible. First, the compiler keeps track of whether a function
even needs to access global variables. Using this information the native
emitter then generates three different kinds of code:
1. no globals used, no exception handlers: no nlr handling code and no
setting of the globals dict.
2. globals used, no exception handlers: an nlr_buf_t is allocated on the
C stack but it is not used if the globals dict is unchanged, saving
execution time because nlr_push/nlr_pop don't need to run.
3. function has exception handlers, may use globals: an nlr_buf_t is
allocated and nlr_push/nlr_pop are always called.
In the end, native functions that don't access globals and don't have
exception handlers will run more efficiently than those that do.
Fixes issue #1573.
Back in 8047340d75 basic support was added in
the VM to handle return statements within a finally block. But it didn't
cover all cases, in particular when some finally's were active and others
inactive when the "return" was executed.
This patch adds further support for return-within-finally by correctly
managing the currently_in_except_block flag, and should fix all cases. The
main point is that finally handlers remain on the exception stack even if
they are active (currently being executed), and the unwind return code
should only execute those finally's which are inactive.
New tests are added for the cases which now pass.
Input files like basics/string_format.py and float/string_format.py have
the same basename so using that name for writing the output (.exp and .out
files) when both tests fail, results in the output of the first one being
overwritten.
Avoid this by using unique names for the output, replacing path characters
with underscores.
With the recent change b488a4a848, a
generating function now has the same layout in memory as a normal bytecode
function, and so can reuse the latter's attribute accessor code to
implement __name__.
Before this patch the context manager's __aexit__() method would not be
executed if a return/break/continue statement was used to exit an async
with block. async with now has the same semantics as normal with.
The fix here applies purely to the compiler, and does not modify the
runtime at all. It might (eventually) be better to define new bytecode(s)
to handle async with (and maybe other async constructs) in a cleaner, more
efficient way.
One minor drawback with addressing this issue purely in the compiler is
that it wasn't possible to get 100% CPython semantics. The thing that is
different here to CPython is that the __aexit__ method is not looked up in
the context manager until it is needed, which is after the body of the
async with statement has executed. So if a context manager doesn't have
__aexit__ then CPython raises an exception before the async with is
executed, whereas uPy will raise it after it is executed. Note that
__aenter__ is looked up at the beginning in uPy because it needs to be
called straightaway, so if the context manager isn't a context manager then
it'll still raise an exception at the same location as CPython. The only
difference is if the context manager has the __aenter__ method but not the
__aexit__ method, then in that case uPy has different behaviour. But this
is a very minor, and acceptable, difference.
Printing of uPy floats can differ by the floating-point precision on
different architectures (eg 64-bit vs 32-bit x86), so it's not possible to
using printing of floats in some parts of this test. Instead we can just
check for equivalence with what is known to be the correct answer.
Keeping all the stress related tests in one place makes it easier to
stress-test a given port, and to also not run such tests on ports that
can't handle them.