Commit Graph

4 Commits

Author SHA1 Message Date
Damien George 6a3a742a6c py/nlr: Factor out common NLR code to generic functions.
Each NLR implementation (Thumb, x86, x64, xtensa, setjmp) duplicates a lot
of the NLR code, specifically that dealing with pushing and popping the NLR
pointer to maintain the linked-list of NLR buffers.  This patch factors all
of that code out of the specific implementations into generic functions in
nlr.c.  This eliminates duplicated code.

The factoring also allows to make the machine-specific NLR code pure
assembler code, thus allowing nlrthumb.c to use naked function attributes
in the correct way (naked functions can only have basic inline assembler
code in them).

There is a small overhead introduced (typically 1 machine instruction)
because now the generic nlr_jump() must call nlr_jump_tail() rather than
them being one combined function.
2017-12-20 15:42:06 +11:00
Damien George 02d830c035 py: Introduce a Python stack for scoped allocation.
This patch introduces the MICROPY_ENABLE_PYSTACK option (disabled by
default) which enables a "Python stack" that allows to allocate and free
memory in a scoped, or Last-In-First-Out (LIFO) way, similar to alloca().

A new memory allocation API is introduced along with this Py-stack.  It
includes both "local" and "nonlocal" LIFO allocation.  Local allocation is
intended to be equivalent to using alloca(), whereby the same function must
free the memory.  Nonlocal allocation is where another function may free
the memory, so long as it's still LIFO.

Follow-up patches will convert all uses of alloca() and VLA to the new
scoped allocation API.  The old behaviour (using alloca()) will still be
available, but when MICROPY_ENABLE_PYSTACK is enabled then alloca() is no
longer required or used.

The benefits of enabling this option are (or will be once subsequent
patches are made to convert alloca()/VLA):
- Toolchains without alloca() can use this feature to obtain correct and
  efficient scoped memory allocation (compared to using the heap instead
  of alloca(), which is slower).
- Even if alloca() is available, enabling the Py-stack gives slightly more
  efficient use of stack space when calling nested Python functions, due to
  the way that compilers implement alloca().
- Enabling the Py-stack with the stackless mode allows for even more
  efficient stack usage, as well as retaining high performance (because the
  heap is no longer used to build and destroy stackless code states).
- With Py-stack and stackless enabled, Python-calling-Python is no longer
  recursive in the C mp_execute_bytecode function.

The micropython.pystack_use() function is included to measure usage of the
Python stack.
2017-12-11 13:49:09 +11:00
Damien George a3dc1b1957 all: Remove inclusion of internal py header files.
Header files that are considered internal to the py core and should not
normally be included directly are:
    py/nlr.h - internal nlr configuration and declarations
    py/bc0.h - contains bytecode macro definitions
    py/runtime0.h - contains basic runtime enums

Instead, the top-level header files to include are one of:
    py/obj.h - includes runtime0.h and defines everything to use the
        mp_obj_t type
    py/runtime.h - includes mpstate.h and hence nlr.h, obj.h, runtime0.h,
        and defines everything to use the general runtime support functions

Additional, specific headers (eg py/objlist.h) can be included if needed.
2017-10-04 12:37:50 +11:00
Damien George a85755aa22 py/nlrxtensa: Convert from assembler to C file with inline asm.
nlr_jump is a little bit inefficient because it now saves a register to
the stack.
2017-03-06 17:13:16 +11:00