ADC: The argument of vref=num is an integer. Values for num are:
SAMD21:
0 INT1V 1.0V voltage reference
1 INTVCC0 1/1.48 Analog voltage supply
2 INTVCC1 1/2 Analog voltage supply (only for VDDANA > 2.0V)
3 VREFA External reference
4 VREFB External reference
SAMD51:
0 INTREF internal bandgap reference
1 INTVCC1 Analog voltage supply
2 INTVCC0 1/2 Analog voltage supply (only for VDDANA > 2.0v)
3 AREFA External reference A
4 AREFB External reference B
5 AREFC External reference C (ADC1 only)
DAC: The argument of vref=num is an integer. Suitable values:
SAMD21:
0 INT1V Internal voltage reference
1 VDDANA Analog voltage supply
2 VREFA External reference
SAMD51:
0 INTREF Internal bandgap reference
1 VDDANA Analog voltage supply
2 VREFAU Unbuffered external voltage reference (not buffered in DAC)
4 VREFAB Buffered external voltage reference (buffered in DAC).
Changes in this commit:
- Do not deinit IRQ when uart.deinit() is called with an inactive object.
- Remove using it for the finaliser. There is another machanism for soft
reset, and it is not needed otherwise.
- Do not tag the UART buffers with MP_STATE_PORT, it is not required.
Clearing the DRE flag for the transmit interrupt at the end of a
uart.write() also cleared the RXC flag disabling the receive interrupt.
This commit also changes the flag set/clear mechanism in the driver for SPI
as well, even if it did not cause a problem there. But at least it saves a
few bytes of code.
Applies to both SPI and I2C. The underflow caused high baudrate settings
resulting in the lowest possible baudrate. The overflow resulted in
erratic baudrates, not just the lowest possible.
The datasheet on page 55 shows PF0 (SDA) and PF1 (SCL) are the pins for
I2C2, but these pins do not work. Checking the MBED pinout for the
NUCLEO-F429ZI shows:
I2C1: PB8 (SCL) and PB9 (SDA).
I2C2: PB10 (SCL) and PB11 (SDA).
Both of these work and can be scanned and find devices connected to them.
Signed-off-by: Dale Weber <hybotics.sd@gmail.com>.
This changes the signatures of QSPI write_cmd_data, write_cmd_addr_data and
read_cmd_qaddr_qdata so they return an error code. The softqspi and stm32
hardware qspi driver are updated to follow this new signature. Also the
spiflash driver is updated to use these new return values.
Signed-off-by: Damien George <damien@micropython.org>
The assertion that is added here (to gc.c) fails when running this new test
if ALLOC_TABLE_GAP_BYTE is set to 0.
Signed-off-by: Jeff Epler <jepler@gmail.com>
Signed-off-by: Damien George <damien@micropython.org>
The STM32H7xx HAL LPUART AF macros are missing the number, this HAL is the
only one that's inconsistent in the way it defines LPUART AF macros, so we
only need to define them for H7.
Prior to this commit, only sector 0 was erase/write protected, which may
not be enough to protect all of mboot (especially if mboot lives at a
higher address than the start of flash).
This commit makes sure all internal flash sectors that mboot lives in are
protected from erasing and writing. The linker script must define
_mboot_writable_flash_start for this to work.
Signed-off-by: Damien George <damien@micropython.org>
The original ESP32 only supports timer source clock APB so it doesn't need
and doesn't have a clk_src field.
The ESP32C3 supports timer source clock APB and XTAL so it does have a
clk_src field, and this needs to be configured to get the correct period.
Fixes#8084.
Follow up to 8a91c719 to no longer explicitly disable BLE in
mpconfigport.h.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
For STM32L4, hardware I2C can be implemented by using TIMINGR.
This commit enables:
- Use of hardware I2C in machine.I2C.
- Specifying a frequency greater than or equal to 400KHz with pyb.I2C.
For STM32L4 series, the internal sensors are connected to:
- ADC1_IN0: Internal voltage reference
- ADC1_IN17: Temperature sensor
- ADC1_IN18: VBAT battery voltage monitoring
but ADC_CHANNEL_VREFINT, ADC_CHANNEL_VBAT, ADC_CHANNEL_TEMPSENSOR are not
defined as 0, 17, 18.
This commit converts channel 0, 17, 18 to ADC_CHANNEL_x in
adc_get_internal_channel().
Prior to this commit, the actual I2C frequency can be faster than specified
one and it may exceed the I2C's specification for Fast Mode. The frequency
of SCL should be less than or equal to 400KHz in Fast Mode.
This commit fixes this issue for F4 MCUs by rounding up the division in the
frequency calculation.
Excuting the code:
i2c = I2C(1, I2C.CONTROLLER, dma=True)
tmp = i2c.recv(1, i2c_addr)
recv_data = bytearray(56)
i2c.recv(recv_data, i2c_addr)
The second i2c.recv() fails with OSError: [Errno 110] ETIMEDOUT. When
receiving greater than or equal to 2 bytes at first i2c.recv(), the second
i2c.recv() succeeds. This issue does not occur without DMA.
Details of change: when executing I2C with DMA:
- Bit 11 of I2Cx_CR2 (DMA Request Enable) should be 1 to indicate that DMA
transfer is enabled. This bit is set after I2C event interrupt is
enabled in HAL_I2C_Master_Transmit_DMA()/HAL_I2C_Master_Receive_DMA(), so
DMA Request Enable bit might be 0 in IRQHandler.
- In case of data receive:
- When only 1 byte receiption, clear I2Cx_CR1's bit 10 (ACK).
- When only 2 byte receiption, clear I2Cx_CR1's bit 10 (ACK) and set
bit 11 (POS).
- When greater than or equal to 2 byte receiption, bit 12 of I2Cx_CR2
(DMA Last Transfer) should set to generate NACK when DMA transfer
completed.
Otherwise, the I2C bus may be busy after received data from peripheral.
Instead of defining `MICROPY_PY_BTREE` in `mpconfigport.h` we can define
it via CMake similar to how other ports that use Makefiles define it in
`mpconfigport.mk`.
Signed-off-by: David Lechner <david@pybricks.com>
The RT1176 has two cores, but the actual firmware supports only the CM7.
There are currently no good plans on how to use the CM4.
The actual MIMXRT1170_EVK board is on par with the existing MIMXRT boards,
with the following extensions:
- Use 64 MB RAM for the heap.
- Support both LAN interfaces as LAN(0) and LAN(1), with LAN(1)
being the 1GB interface.
The dual LAN port interface can eventually be adapted as well for the
RT1062 MCU.
This work was done in collaboration with @alphaFred.
Avoids the 'warning: Wildcards in project items are not supported'
message from the C++ project system in Visual Studio, while otherwise
remaining completely functional.
A board can now name the CDC ports, eg:
#define MICROPY_HW_USB_CDC_NUM (3)
#define MICROPY_HW_USB_INTERFACE_CDC0_STRING "REPL"
#define MICROPY_HW_USB_INTERFACE_CDC1_STRING "GDB Server"
#define MICROPY_HW_USB_INTERFACE_CDC2_STRING "UART Port"
Signed-off-by: Damien George <damien@micropython.org>
The PWM module now detects if the pin is open drain and if so switches it
to hardware open drain before starting the PWM.
The code that was explicitly turning off the open drain output during PWM
is also removed.
Together these changes allow driving external transistor high-current
switches with PWM.
Signed-off-by: Trammell hudson <hudson@trmm.net>
Changes in this commit:
- Change file system size from 128KB to 64KB in ra6m1_ek.ld.
- Change EK-RA6M1's file system size in renesas-ra port document.
Signed-off-by: Takeo Takahashi <takeo.takahashi.xv@renesas.com>
Changes in this commit:
- Add FLASH_FS region to linker script.
- Add flash storage start & end symbols to linker script.
- Use flash storage start & end symbols in flashbdev.c
Signed-off-by: Takeo Takahashi <takeo.takahashi.xv@renesas.com>
App the mp_ prefix to usbd_ symbols and files which are defined here and
not in TinyUSB.
rp2 only for now. This includes some groundwork for dynamic USB devices
(defined in Python).
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
Seems unused outside of spi.c, spi_obj[] array is the expected way to
iterate these.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>