Seems unused outside of spi.c, spi_obj[] array is the expected way to
iterate these.
This work was funded through GitHub Sponsors.
Signed-off-by: Angus Gratton <angus@redyak.com.au>
This changes the CustomEvent for stdout to use the existing `detail`
property of CustomEvent instead of adding a `data` property.
Signed-off-by: David Lechner <david@pybricks.com>
mip-cmdline adds command-line support to mip, useful for the unix port, via
micropython -m mip ...
Signed-off-by: Damien George <damien@micropython.org>
This brings in mip-cmdline, espflash, use of machine.dht_readinto, and
other improvements to existing libraries.
Signed-off-by: Damien George <damien@micropython.org>
This commit executes __WFI() on core 0 only to avoid core1 locking up since
it doesn't enable any interrupts by default (except for `SIO_IRQ_PROC1`).
This fixes a lockup when calling `cyw43_do_ioctl` from core1.
Fixes issue #9597.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
If USB CDC is connected and the board sends data, but the host does not
receive the data, the device locks up. This is fixed in this commit by
having a timeout of 500ms, after which time the transmission is skipped.
Fixes issue #9634.
The actual underlying error number raised from the lwIP subsystem when
attempting to listen on a socket is swallowed and replaced with an
out-of-memory error which is confusing.
This commit passes the underlying error message from the lwIP subsystem to
the appropriate OSError exception.
Most of the content of README.md became obsolete and was replaced by the
documentation of MicroPython. Instead, README.md now shows build
instructions like the other ports.
Including the uasyncio scripts and the drivers for DHT, DS18x20 and
onewire. The uasyncio scripts need about 8k of flash and are not included
for the SAMD21 boards by default.
This prevents a very subtle bug caused by writing e.g. `bytearray('\xfd')`
which gives you `(0xc3, 0xbd)`.
This work was funded through GitHub Sponsors.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
There are two calls to mp_builtin___import__():
1. ports/unix/main.c:main_() which provides a str in args[0]
2. py/runtime.c:mp_import_name() which provides a qstr in args[0]
The default implementation of mp_builtin___import__() is
mp_builtin___import___default() which has a different implementation based
on MICROPY_ENABLE_EXTERNAL_IMPORT.
If MICROPY_ENABLE_EXTERNAL_IMPORT is disabled then the handling of weak
links assumes that args[0] is a `const char *`, when it is either a str or
qstr object.
Use the existing qstr of the module name instead, and also use a vstr
instead of strcpy() to ensure no overflow occurs.
Emscripten strongly advises the use of optimisation when compiling with
ASYNCIFY enabled. Testing the difference betwen O3 and Os for various
configurations gives:
flags firmware.wasm micropython.js perf
-O3 -s ASYNCIFY 1342003 212845 0 (baseline)
-O3 -s ASYNCIFY -s WASM=0 - 7064750 -30%
-O3 367131 196569 +140%
-O3 -s WASM=0 - 2818260 +30%
-Os -s ASYNCIFY 1135450 213064 +40%
-Os -s ASYNCIFY -s WASM=0 - 6239768 -30%
-Os 295028 196569 +180%
-Os -s WASM=0 - 2271358 +30%
The first row is prior to this commit. The second and third columns show
firmware size (add them to get the total size). The fourth column shows
the approximate change in performance compared to the baseline. The
performance was measured using run-perfbench.py and the error was large, up
to 20%, although general trends in the change in performance could still be
seen.
In summary, using using Os instead of O3 makes it a little bit faster in
all cases, and smaller output (wasm/js) in all cases.
Signed-off-by: Damien George <damien@micropython.org>
This simplifies the config file. This is not a no-op, it does enable a few
new features to bring the port in line with this config level.
Signed-off-by: Damien George <damien@micropython.org>
So that filesystems mounted with "mpremote mount" can have their files
iterated over, making them consistent with other files.
Signed-off-by: Damien George <damien@micropython.org>
The except handler for OSError didn't include the line that actually calls
os.listdir, so an invalid path wasn't handled correctly.
Signed-off-by: Jim Mussared <jim.mussared@gmail.com>
Checks are added for pwm.freq(), pwm_duty(), pwm_duty_u10() and
pwm.duty_u16(). This avoids a core dump on ESP32C3, and misleading error
messages on Xtensa ESP32 devices.
Set the size of machine_pin_irq_handler array to GPIO_NUM_MAX:
- Min GPIO_NUM_MAX is 22 for IDF_TARGET_ESP32C3.
- Max GPIO_NUM_MAX is 49 for IDF_TARGET_ESP32S3.
The MP_REGISTER_ROOT_POINTER entry must be hard-coded, because the location
that it's evaluated by the compiler does not include the relevant IDF
header to get a definition of GPIO_NUM_MAX.
Each SoC family has its own clocks and timings/timeouts. For I2C, the
default source clock is either APB (ESP32, ESP32-S2) or XTAL (ESP32-S3,
ESP32-C3) as shown in the datasheets. Since
machine_i2c.c/machine_hw_i2c_init() uses the default clk_flags (0), the
alternate low-power clock source is never selected in ESP-IDF
i2c.c/i2c_param_config(). There is not an API in i2c.c to get the source
clock frequency, so a compile-time value is used based on SoC family.
Also, the maximum timeout is different across the SoC families, so use the
I2C_LL_MAX_TIMEOUT constant to eliminate the warning from
i2c_set_timeout().
With these changes, the following results were obtained. The I2C SCL
frequencies were measured with a Saleae logic analyzer.
ESP32 (TTGO T Dislay)
I2C(0, scl=22, sda=21, freq=101781) Measured: 100KHz
I2C(0, scl=22, sda=21, freq=430107) Measured: 400KHz
I2C(0, scl=22, sda=21, freq=1212121) Measured: 941KHz
ESP32-S3 (TTGO T-QT)
I2C(0, scl=34, sda=33, freq=111111) Measured: 107KHz
I2C(0, scl=34, sda=33, freq=444444) Measured: 400KHz
I2C(0, scl=34, sda=33, freq=1111111) Measured: 842KHz
ESP32-C3 (XIAO ESP32C3)
I2C(0, scl=7, sda=6, freq=107816) Measured: 103KHz
I2C(0, scl=7, sda=6, freq=444444) Measured: 380KHz
I2C(0, scl=7, sda=6, freq=1176470) Measured: 800KHz
(ESP32-S2 board was not available for testing.)