This simple patch gives a very significant speed up for memory allocation
with the GC.
Eg, on PYBv1.0:
tests/basics/dict_del.py: 3.55 seconds -> 1.19 seconds
tests/misc/rge_sm.py: 15.3 seconds -> 2.48 seconds
This was a nasty bug to track down. It only had consequences when the
heap size was just the right size to expose the rounding error in the
calculation of the finaliser table size. And, a script had to allocate
a small (1 or 2 cell) object at the very end of the heap. And, this
object must not have a finaliser. And, the initial state of the heap
must have been all bits set to 1. All these conspire on the pyboard,
but only if your run the script fresh (so unused memory is all 1's),
and if your script allocates a lot of small objects (eg 2-char strings
that are not interned).
Blanket wide to all .c and .h files. Some files originating from ST are
difficult to deal with (license wise) so it was left out of those.
Also merged modpyb.h, modos.h, modstm.h and modtime.h in stmhal/.
Also add some more debugging output to gc_dump_alloc_table().
Now that newly allocated heap is always zero'd, maybe we just make this
a policy for the uPy API to keep it simple (ie any new implementation of
memory allocation must zero all allocations). This follows the D
language philosophy.
Before this patch, a previously used memory block which had pointers in
it may still retain those pointers if the new user of that block does
not actually use the entire block. Eg, if I want 5 blocks worth of
heap, I actually get 8 (round up to nearest 4). Then I never use the
last 3, so they keep their old values, which may be pointers pointing to
the heap, hence preventing GC.
In rare (or maybe not that rare) cases, this leads to long, unintentional
"linked lists" within the GC'd heap, filling it up completely. It's
pretty rare, because you have to reuse exactly that memory which is part
of this "linked list", and reuse it in just the right way.
This should fix issue #522, and might have something to do with
issue #510.
There were typos, various rounding errors trying to do concurrent counting
in bytes vs blocks, complex conditional paths, superfluous variables, etc.,
etc., all leading to obscure segfaults.
A big change. Micro Python objects are allocated as individual structs
with the first element being a pointer to the type information (which
is itself an object). This scheme follows CPython. Much more flexible,
not necessarily slower, uses same heap memory, and can allocate objects
statically.
Also change name prefix, from py_ to mp_ (mp for Micro Python).