The ones that are moved out of iRAM should not need to be there, because
either they call functions in iROM (eg mp_hal_stdout_tx_str), or they are
only ever called from a function in iROM and not from an interrupt (eg
ets_esf_free_bufs).
This frees up about 800 bytes of iRAM.
GPIO interrupts can occur when the flash ROM cache is in use and so the
GPIO interrupt handler must be in iRAM. This commit moves the handler to
iRAM, and also moves mp_sched_schedule to iRAM which is called by
pin_intr_handler.
As part of this fix the Pin class can no longer support hard=True in the
Pin.irq() method, because the VM and runtime are too big to put in iRAM.
Fixes#5714.
This change is made for two reasons:
1. A 3rd-party library (eg berkeley-db-1.xx, axtls) may use the system
provided errno for certain errors, and yet MicroPython stream objects
that it calls will be using the internal mp_stream_errno. So if the
library returns an error it is not known whether the corresponding errno
code is stored in the system errno or mp_stream_errno. Using the system
errno in all cases (eg in the mp_stream_posix_XXX wrappers) fixes this
ambiguity.
2. For systems that have threading the system-provided errno should always
be used because the errno value is thread-local.
For systems that do not have an errno, the new lib/embed/__errno.c file is
provided.
Note: the uncrustify configuration is explicitly set to 'add' instead of
'force' in order not to alter the comments which use extra spaces after //
as a means of indenting text for clarity.
This commit changes the esp8266 boards to use littlefs v2 as the
filesystem, rather than FAT. Since the esp8266 doesn't expose the
filesystem to the PC over USB there's no strong reason to keep it as FAT.
Littlefs is smaller in code size, is more efficient in use of flash to
store data, is resilient over power failure, and using it saves about 4k of
heap RAM, which can now be used for other things.
This is a backwards incompatible change because all existing esp8266 boards
will need to update their filesystem after installing new firmware (eg
backup old files, install firmware, restore files to new filesystem).
As part of this commit the memory layout of the default board (GENERIC) has
changed. It now allocates all 1M of memory-mapped flash to the firmware,
so the filesystem area starts at the 2M point. This is done to allow more
frozen bytecode to be stored in the 1M of memory-mapped flash. This
requires an esp8266 module with 2M or more of flash to work, so a new board
called GENERIC_1M is added which has the old memory-mapping (but still
changed to use littlefs for the filesystem).
In summary there are now 3 esp8266 board definitions:
- GENERIC_512K: for 512k modules, doesn't have a filesystem.
- GENERIC_1M: for 1M modules, 572k for firmware+frozen code, 396k for
filesystem (littlefs).
- GENERIC: for 2M (or greater) modules, 968k for firmware+frozen code,
1M+ for filesystem (littlefs), FAT driver also included in firmware for
use on, eg, external SD cards.
This function is not used by the core but having it as part of the build
allows it to be used by user C modules, or board extensions. The linker
won't include it in the final firmware if it remains unused.
This string is recognised by uncrustify, to disable formatting in the
region marked by these comments. This is necessary in the qstrdef*.h files
to prevent modification of the strings within the Q(...). In other places
it is used to prevent excessive reformatting that would make the code less
readable.
It was originally in IRAM due to the linker script specification, but
since the function moved from lib/utils/interrupt_char.c to py/scheduler.c
it needs to be put back in IRAM.
Previous behaviour is when this argument is set to "true", in which case
the function will raise any pending exception. Setting it to "false" will
cancel any pending exception.
The ability to change the host is a frequently requested feature, so
explicitly document how it can be achieved using the existing code.
See issues #2121, #4385, #4622, #5122, #5536.
Prior to this commit, if the flash filesystem was not formatted then it
would error: "AttributeError: 'FlashBdev' object has no attribute 'mount'".
That is due to it not being able to detect the filesystem on the block
device and just trying to mount the block device directly.
This commit fixes the issue by just catching all exceptions. Also it's not
needed to try the mount if `flashbdev.bdev` is None.
Move webrepl support code from ports/esp8266/modules into extmod/webrepl
(to be alongside extmod/modwebrepl.c), and use frozen manifests to include
it in the build on esp8266 and esp32.
A small modification is made to webrepl.py to make it work on non-ESP
ports, i.e. don't call dupterm_notify if not available.
Implements text, rodata and bss generalised relocations, as well as generic
qstr-object linking. This allows importing dynamic native modules on all
supported architectures in a unified way.
This commit removes the Makefile-level MICROPY_FATFS config and moves the
MICROPY_VFS_FAT config to the Makefile level to replace it. It also moves
the include of the oofatfs source files in the build from each port to a
central place in extmod/extmod.mk.
For a port to enabled VFS FAT support it should now set MICROPY_VFS_FAT=1
at the level of the Makefile. This will include the relevant oofatfs files
in the build and set MICROPY_VFS_FAT=1 at the C (preprocessor) level.
This commit implements automatic module weak links for all built-in
modules, by searching for "ufoo" in the built-in module list if "foo"
cannot be found. This means that all modules named "ufoo" are always
available as "foo". Also, a port can no longer add any other weak links,
which makes strict the definition of a weak link.
It saves some code size (about 100-200 bytes) on ports that previously had
lots of weak links.
Some changes from the previous behaviour:
- It doesn't intern the non-u module names (eg "foo" is not interned),
which saves code size, but will mean that "import foo" creates a new qstr
(namely "foo") in RAM (unless the importing module is frozen).
- help('modules') no longer lists non-u module names, only the u-variants;
this reduces duplication in the help listing.
Weak links are effectively the same as having a set of symbolic links on
the filesystem that is searched last. So an "import foo" will search
built-in modules first, then all paths in sys.path, then weak links last,
importing "ufoo" if it exists. Thus a file called "foo.py" somewhere in
sys.path will still have precedence over the weak link of "foo" to "ufoo".
See issues: #1740, #4449, #5229, #5241.
When loading a manifest file, e.g. by include(), it will chdir first to the
directory of that manifest. This means that all file operations within a
manifest are relative to that manifest's location.
As a consequence of this, additional environment variables are needed to
find absolute paths, so the following are added: $(MPY_LIB_DIR),
$(PORT_DIR), $(BOARD_DIR). And rename $(MPY) to $(MPY_DIR) to be
consistent.
Existing manifests are updated to match.
The specific board can be selected with the BOARD makefile variable. This
defaults (if not specified) to BOARD=GENERIC, which is the original default
firmware build. For the 512k target use BOARD=GENERIC_512K.
The stm32 and nrf ports already had the behaviour that they would first
check if the script exists before executing it, and this patch makes all
other ports work the same way. This helps when developing apps because
it's hard to tell (when unconditionally trying to execute the scripts) if
the resulting OSError at boot up comes from missing boot.py or main.py, or
from some other error. And it's not really an error if these scripts don't
exist.
As mentioned in #4450, `websocket` was experimental with a single intended
user, `webrepl`. Therefore, we'll make this change without a weak
link `websocket` -> `uwebsocket`.
Replaces "PYB: soft reboot" with "MPY: soft reboot", etc.
Having a consistent prefix across ports reduces the difference between
ports, which is a general goal. And this change won't break pyboard.py
because that tool only looks for "soft reboot".
The original behaviour of open-drain-high was to use the open-drain mode of
the GPIO pin, and this seems to make driving a DHT more reliable. See
issue #4233.
So that the user can explicitly deactivate UART(0) if needed. See
issue #4314.
This introduces some risk to "brick" the device, if the user disables the
REPL without providing an alternative REPL (eg WebREPL), or any way to
reenable it. In such a case the device needs to be erased and
reprogrammed. This seems unavoidable, given the desire to have the option
to use the UART for something other than the REPL.
Building axtls gives a lot of warnings with -Wall enabled, and explicitly
disabling all of them cannot be done in a way compatible with gcc and
clang, and likely other compilers. So just use -Wno-all to prevent all of
the extra warnings (in addition to the necessary -Wno-unused-parameter,
-Wno-uninitialized, -Wno-sign-compare and -Wno-old-style-definition).
Fixes issue #4182.
This patch in effect renames MICROPY_DEBUG_PRINTER_DEST to
MICROPY_DEBUG_PRINTER, moving its default definition from
lib/utils/printf.c to py/mpconfig.h to make it official and documented, and
makes this macro a pointer rather than the actual mp_print_t struct. This
is done to get consistency with MICROPY_ERROR_PRINTER, and provide this
macro for use outside just lib/utils/printf.c.
Ports are updated to use the new macro name.
machine.Timer now takes a new argument in its constructor (or init method):
tick_hz which specified the units for the period argument. The period of
the timer in seconds is: period/tick_hz.
For backwards compatibility tick_hz defaults to 1000. If the user wants to
specify the period (numerator) in microseconds then tick_hz can be set to
1000000. The user can also specify a period of an arbitrary number of
cycles of an arbitrary frequency using these two arguments.
An additional freq argument has been added to allow frequencies to be
specified directly in Hertz. This supports floating point values when
available.
This patch allows scripts to have more control over the software WDT. If
an instance of machine.WDT is created then the underlying OS is prevented
from feeding the software WDT, and it is up to the user script to feed it
instead via WDT.feed(). The timeout for this WDT is currently fixed and
will be between 1.6 and 3.2 seconds.
A flash erase/write takes a while and during that time tasks may be
scheduled via an IRQ. To prevent overflow of the task queue (and loss of
tasks) call ets_loop_iter() before and after slow flash operations.
Note: if a task is posted to a full queue while a flash operation is in
progress then this leads to a fault when trying to print out the error
message that the queue is full. This patch doesn't try to fix this
particular issue, it just prevents it from happening in the first place.
This function may be called from a UART IRQ, which may interrupt the system
when it is erasing/reading/writing flash. In such a case all code
executing from the IRQ must be in iRAM (because the SPI flash is busy), so
put mp_keyboard_interrupt in iRAM so ctrl-C can be caught during flash
access.
This patch also takes get_fattime out of iRAM and puts it in iROM to make
space for mp_keyboard_interrupt. There's no real need to have get_fattime
in iRAM because it calls other functions in iROM.
Fixes issue #3897.
They are now efficient (in runtime performance) and provide a useful
feature that's hard to obtain without them enabled.
See issue #3644 and PR #3826 for background.
This patch makes it so that UART(0) can by dynamically attached to and
detached from the REPL by using the uos.dupterm function. Since WebREPL
uses dupterm slot 0 the UART uses dupterm slot 1 (a slot which is newly
introduced by this patch). UART(0) must now be attached manually in
boot.py (or otherwise) and inisetup.py is changed to provide code to do
this. For example, to attach use:
import uos, machine
uart = machine.UART(0, 115200)
uos.dupterm(uart, 1)
and to detach use:
uos.dupterm(None, 1)
When attached, all incoming chars on UART(0) go straight to stdin so
uart.read() will always return None. Use sys.stdin.read() if it's needed
to read characters from the UART(0) while it's also used for the REPL (or
detach, read, then reattach). When detached the UART(0) can be used for
other purposes.
If there are no objects in any of the dupterm slots when the REPL is
started (on hard or soft reset) then UART(0) is automatically attached.
Without this, the only way to recover a board without a REPL would be to
completely erase and reflash (which would install the default boot.py which
attaches the REPL).
Disabling this saves around 6000 bytes of code space and gets the 512k
build fitting in the available flash again (it increased lately due to an
increase in the size of the ESP8266 SDK).
Certain pins (eg 4 and 5) seem to behave differently at the hardware level
when in open-drain mode: they glitch when set "high" and drive the pin
active high for a brief period before disabling the output driver. To work
around this make the pin an input to let it float high.