303 lines
11 KiB
C
303 lines
11 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2020-2021 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
// This file is never compiled standalone, it's included directly from
|
|
// extmod/machine_pwm.c via MICROPY_PY_MACHINE_PWM_INCLUDEFILE.
|
|
|
|
#include "py/mphal.h"
|
|
#include "hardware/clocks.h"
|
|
#include "hardware/pwm.h"
|
|
|
|
/******************************************************************************/
|
|
// MicroPython bindings for machine.PWM
|
|
|
|
typedef struct _machine_pwm_obj_t {
|
|
mp_obj_base_t base;
|
|
uint8_t slice;
|
|
uint8_t channel;
|
|
uint8_t invert;
|
|
uint8_t duty_type;
|
|
mp_int_t duty;
|
|
} machine_pwm_obj_t;
|
|
|
|
enum {
|
|
VALUE_NOT_SET = -1,
|
|
DUTY_NOT_SET = 0,
|
|
DUTY_U16,
|
|
DUTY_NS
|
|
};
|
|
|
|
STATIC machine_pwm_obj_t machine_pwm_obj[] = {
|
|
{{&machine_pwm_type}, 0, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 0, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 1, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 1, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 2, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 2, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 3, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 3, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 4, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 4, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 5, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 5, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 6, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 6, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 7, PWM_CHAN_A, 0, DUTY_NOT_SET, 0 },
|
|
{{&machine_pwm_type}, 7, PWM_CHAN_B, 0, DUTY_NOT_SET, 0 },
|
|
};
|
|
|
|
STATIC bool defer_start;
|
|
STATIC bool slice_freq_set[8];
|
|
|
|
STATIC void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq);
|
|
STATIC void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16);
|
|
STATIC void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns);
|
|
|
|
STATIC void mp_machine_pwm_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
machine_pwm_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
mp_printf(print, "<PWM slice=%u channel=%u invert=%u>",
|
|
self->slice, self->channel, self->invert);
|
|
}
|
|
|
|
void machine_pwm_start(machine_pwm_obj_t *self) {
|
|
// Start the PWM if properly set.
|
|
if (defer_start == false && slice_freq_set[self->slice] == true && self->duty_type != DUTY_NOT_SET) {
|
|
if (self->channel == PWM_CHAN_A) {
|
|
pwm_set_output_polarity(self->slice, self->invert, (self + 1)->invert);
|
|
} else {
|
|
pwm_set_output_polarity(self->slice, (self - 1)->invert, self->invert);
|
|
}
|
|
pwm_set_enabled(self->slice, true);
|
|
}
|
|
}
|
|
|
|
STATIC void mp_machine_pwm_init_helper(machine_pwm_obj_t *self,
|
|
size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_freq, ARG_duty_u16, ARG_duty_ns, ARG_invert };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_freq, MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
|
|
{ MP_QSTR_duty_u16, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
|
|
{ MP_QSTR_duty_ns, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
|
|
{ MP_QSTR_invert, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = VALUE_NOT_SET} },
|
|
};
|
|
|
|
// Parse the arguments.
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args,
|
|
MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
// defer starting PWM until all provided args are checked.
|
|
defer_start = true;
|
|
if (args[ARG_freq].u_int != VALUE_NOT_SET) {
|
|
mp_machine_pwm_freq_set(self, args[ARG_freq].u_int);
|
|
}
|
|
if (args[ARG_duty_u16].u_int != VALUE_NOT_SET) {
|
|
mp_machine_pwm_duty_set_u16(self, args[ARG_duty_u16].u_int);
|
|
}
|
|
if (args[ARG_duty_ns].u_int != VALUE_NOT_SET) {
|
|
mp_machine_pwm_duty_set_ns(self, args[ARG_duty_ns].u_int);
|
|
}
|
|
if (args[ARG_invert].u_int != VALUE_NOT_SET) {
|
|
self->invert = !!args[ARG_invert].u_int;
|
|
}
|
|
defer_start = false;
|
|
machine_pwm_start(self);
|
|
}
|
|
|
|
// PWM(pin [, args])
|
|
STATIC mp_obj_t mp_machine_pwm_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
|
|
// Check number of arguments
|
|
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
|
|
|
|
// Get GPIO to connect to PWM.
|
|
uint32_t gpio = mp_hal_get_pin_obj(all_args[0]);
|
|
|
|
// Get static peripheral object.
|
|
uint slice = pwm_gpio_to_slice_num(gpio);
|
|
uint8_t channel = pwm_gpio_to_channel(gpio);
|
|
machine_pwm_obj_t *self = &machine_pwm_obj[slice * 2 + channel];
|
|
self->invert = 0;
|
|
self->duty_type = DUTY_NOT_SET;
|
|
|
|
// Process the remaining parameters.
|
|
mp_map_t kw_args;
|
|
mp_map_init_fixed_table(&kw_args, n_kw, all_args + n_args);
|
|
mp_machine_pwm_init_helper(self, n_args - 1, all_args + 1, &kw_args);
|
|
|
|
// Select PWM function for given GPIO.
|
|
gpio_set_function(gpio, GPIO_FUNC_PWM);
|
|
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
// Stop all active slices.
|
|
void machine_pwm_deinit_all(void) {
|
|
for (int i = 0; i < 8; i++) {
|
|
slice_freq_set[i] = false;
|
|
pwm_set_enabled(machine_pwm_obj[i].slice, false);
|
|
}
|
|
}
|
|
|
|
STATIC void mp_machine_pwm_deinit(machine_pwm_obj_t *self) {
|
|
pwm_set_enabled(self->slice, false);
|
|
}
|
|
|
|
// Returns: floor((16*F + offset) / div16)
|
|
// Avoids overflow in the numerator that would occur if
|
|
// 16*F + offset > 2**32
|
|
// F + offset/16 > 2**28 = 268435456 (approximately, due to flooring)
|
|
uint32_t get_slice_hz(uint32_t offset, uint32_t div16) {
|
|
uint32_t source_hz = clock_get_hz(clk_sys);
|
|
if (source_hz + offset / 16 > 268000000) {
|
|
return (16 * (uint64_t)source_hz + offset) / div16;
|
|
} else {
|
|
return (16 * source_hz + offset) / div16;
|
|
}
|
|
}
|
|
|
|
// Returns 16*F / denom, rounded.
|
|
uint32_t get_slice_hz_round(uint32_t div16) {
|
|
return get_slice_hz(div16 / 2, div16);
|
|
}
|
|
|
|
// Returns ceil(16*F / denom).
|
|
uint32_t get_slice_hz_ceil(uint32_t div16) {
|
|
return get_slice_hz(div16 - 1, div16);
|
|
}
|
|
|
|
STATIC mp_obj_t mp_machine_pwm_freq_get(machine_pwm_obj_t *self) {
|
|
if (slice_freq_set[self->slice] == true) {
|
|
uint32_t div16 = pwm_hw->slice[self->slice].div;
|
|
uint32_t top = pwm_hw->slice[self->slice].top;
|
|
uint32_t pwm_freq = get_slice_hz_round(div16 * (top + 1));
|
|
return MP_OBJ_NEW_SMALL_INT(pwm_freq);
|
|
} else {
|
|
return MP_OBJ_NEW_SMALL_INT(0);
|
|
}
|
|
}
|
|
|
|
STATIC void mp_machine_pwm_freq_set(machine_pwm_obj_t *self, mp_int_t freq) {
|
|
// Set the frequency, making "top" as large as possible for maximum resolution.
|
|
// Maximum "top" is set at 65534 to be able to achieve 100% duty with 65535.
|
|
#define TOP_MAX 65534
|
|
uint32_t source_hz = clock_get_hz(clk_sys);
|
|
uint32_t div16;
|
|
uint32_t top;
|
|
|
|
if ((source_hz + freq / 2) / freq < TOP_MAX) {
|
|
// If possible (based on the formula for TOP below), use a DIV of 1.
|
|
// This also prevents overflow in the DIV calculation.
|
|
div16 = 16;
|
|
|
|
// Same as get_slice_hz_round() below but canceling the 16s
|
|
// to avoid overflow for high freq.
|
|
top = (source_hz + freq / 2) / freq - 1;
|
|
} else {
|
|
// Otherwise, choose the smallest possible DIV for maximum
|
|
// duty cycle resolution.
|
|
// Constraint: 16*F/(div16*freq) < TOP_MAX
|
|
// So:
|
|
div16 = get_slice_hz_ceil(TOP_MAX * freq);
|
|
|
|
// Set TOP as accurately as possible using rounding.
|
|
top = get_slice_hz_round(div16 * freq) - 1;
|
|
}
|
|
|
|
|
|
if (div16 < 16) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("freq too large"));
|
|
} else if (div16 >= 256 * 16) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("freq too small"));
|
|
}
|
|
pwm_hw->slice[self->slice].div = div16;
|
|
pwm_hw->slice[self->slice].top = top;
|
|
slice_freq_set[self->slice] = true;
|
|
if (self->duty_type == DUTY_U16) {
|
|
mp_machine_pwm_duty_set_u16(self, self->duty);
|
|
} else if (self->duty_type == DUTY_NS) {
|
|
mp_machine_pwm_duty_set_ns(self, self->duty);
|
|
}
|
|
machine_pwm_obj_t *other = self->channel == PWM_CHAN_A ? self + 1 : self - 1;
|
|
if (other->duty_type == DUTY_U16) {
|
|
mp_machine_pwm_duty_set_u16(other, other->duty);
|
|
} else if (other->duty_type == DUTY_NS) {
|
|
mp_machine_pwm_duty_set_ns(other, other->duty);
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t mp_machine_pwm_duty_get_u16(machine_pwm_obj_t *self) {
|
|
if (self->duty_type != DUTY_NOT_SET && slice_freq_set[self->slice] == true) {
|
|
uint32_t top = pwm_hw->slice[self->slice].top;
|
|
uint32_t cc = pwm_hw->slice[self->slice].cc;
|
|
cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff;
|
|
|
|
// Use rounding (instead of flooring) here to give as accurate an
|
|
// estimate as possible.
|
|
return MP_OBJ_NEW_SMALL_INT((cc * 65535 + (top + 1) / 2) / (top + 1));
|
|
} else {
|
|
return MP_OBJ_NEW_SMALL_INT(0);
|
|
}
|
|
}
|
|
|
|
STATIC void mp_machine_pwm_duty_set_u16(machine_pwm_obj_t *self, mp_int_t duty_u16) {
|
|
uint32_t top = pwm_hw->slice[self->slice].top;
|
|
|
|
// Limit duty_u16 to 65535
|
|
// Use rounding here to set it as accurately as possible.
|
|
if (duty_u16 > 65535) {
|
|
duty_u16 = 65535;
|
|
}
|
|
uint32_t cc = (duty_u16 * (top + 1) + 65535 / 2) / 65535;
|
|
pwm_set_chan_level(self->slice, self->channel, cc);
|
|
self->duty = duty_u16;
|
|
self->duty_type = DUTY_U16;
|
|
machine_pwm_start(self);
|
|
}
|
|
|
|
STATIC mp_obj_t mp_machine_pwm_duty_get_ns(machine_pwm_obj_t *self) {
|
|
if (self->duty_type != DUTY_NOT_SET && slice_freq_set[self->slice] == true) {
|
|
uint32_t slice_hz = get_slice_hz_round(pwm_hw->slice[self->slice].div);
|
|
uint32_t cc = pwm_hw->slice[self->slice].cc;
|
|
cc = (cc >> (self->channel ? PWM_CH0_CC_B_LSB : PWM_CH0_CC_A_LSB)) & 0xffff;
|
|
return MP_OBJ_NEW_SMALL_INT(((uint64_t)cc * 1000000000ULL + slice_hz / 2) / slice_hz);
|
|
} else {
|
|
return MP_OBJ_NEW_SMALL_INT(0);
|
|
}
|
|
}
|
|
|
|
STATIC void mp_machine_pwm_duty_set_ns(machine_pwm_obj_t *self, mp_int_t duty_ns) {
|
|
uint32_t slice_hz = get_slice_hz_round(pwm_hw->slice[self->slice].div);
|
|
uint32_t cc = ((uint64_t)duty_ns * slice_hz + 500000000ULL) / 1000000000ULL;
|
|
uint32_t top = pwm_hw->slice[self->slice].top;
|
|
if (cc > (top + 1)) {
|
|
cc = top + 1;
|
|
}
|
|
pwm_set_chan_level(self->slice, self->channel, cc);
|
|
self->duty = duty_ns;
|
|
self->duty_type = DUTY_NS;
|
|
machine_pwm_start(self);
|
|
}
|