3bca93b2d0
MicroPython code may rely on the return value of sys.stdout.buffer.write() to reflect the number of bytes actually written. While in most scenarios a write() operation is successful, there are cases where it fails, leading to data loss. This problem arises because, currently, write() merely returns the number of bytes it was supposed to write, without indication of failure. One scenario where write() might fail, is where USB is used and the receiving end doesn't read quickly enough to empty the receive buffer. In that case, write() on the MicroPython side can timeout, resulting in the loss of data without any indication, a behavior observed notably in communication between a Pi Pico as a client and a Linux host using the ACM driver. A complex issue arises with mp_hal_stdout_tx_strn() when it involves multiple outputs, such as USB, dupterm and hardware UART. The challenge is in handling cases where writing to one output is successful, but another fails, either fully or partially. This patch implements the following solution: mp_hal_stdout_tx_strn() attempts to write len bytes to all of the possible destinations for that data, and returns the minimum successful write length. The implementation of this is complicated by several factors: - multiple outputs may be enabled or disabled at compiled time - multiple outputs may be enabled or disabled at runtime - mp_os_dupterm_tx_strn() is one such output, optionally containing multiple additional outputs - each of these outputs may or may not be able to report success - each of these outputs may or may not be able to report partial writes As a result, there's no single strategy that fits all ports, necessitating unique logic for each instance of mp_hal_stdout_tx_strn(). Note that addressing sys.stdout.write() is more complex due to its data modification process ("cooked" output), and it remains unchanged in this patch. Developers who are concerned about accurate return values from write operations should use sys.stdout.buffer.write(). This patch might disrupt some existing code, but it's also expected to resolve issues, considering that the peculiar return value behavior of sys.stdout.buffer.write() is not well-documented and likely not widely known. Therefore, it's improbable that much existing code relies on the previous behavior. Signed-off-by: Maarten van der Schrieck <maarten@thingsconnected.nl> |
||
---|---|---|
.. | ||
boards | ||
src | ||
CMakeLists.txt | ||
Kconfig | ||
README.md | ||
help.c | ||
machine_i2c.c | ||
machine_pin.c | ||
machine_spi.c | ||
machine_uart.c | ||
main.c | ||
make-bin-testsuite | ||
modbluetooth_zephyr.c | ||
modmachine.c | ||
modmachine.h | ||
modsocket.c | ||
modtime.c | ||
modzephyr.c | ||
modzephyr.h | ||
modzsensor.c | ||
mpconfigport.h | ||
mpconfigport_bin_testsuite.h | ||
mpconfigport_minimal.h | ||
mphalport.c | ||
mphalport.h | ||
prj.conf | ||
prj_minimal.conf | ||
uart_core.c | ||
zephyr_storage.c |
README.md
MicroPython port to Zephyr RTOS
This is a work-in-progress port of MicroPython to Zephyr RTOS (http://zephyrproject.org).
This port requires Zephyr version v3.1.0, and may also work on higher versions. All boards supported by Zephyr (with standard level of features support, like UART console) should work with MicroPython (but not all were tested).
Features supported at this time:
- REPL (interactive prompt) over Zephyr UART console.
time
module for time measurements and delays.machine.Pin
class for GPIO control, with IRQ support.machine.I2C
class for I2C control.machine.SPI
class for SPI control.socket
module for networking (IPv4/IPv6).- "Frozen modules" support to allow to bundle Python modules together with firmware. Including complete applications, including with run-on-boot capability.
- virtual filesystem with FAT and littlefs formats, backed by either DiskAccess or FlashArea (flash map).
Over time, bindings for various Zephyr subsystems may be added.
Building
Follow to Zephyr web site for Getting Started instruction of installing Zephyr SDK, getting Zephyr source code, and setting up development environment. (Direct link: https://docs.zephyrproject.org/latest/getting_started/index.html). You may want to build Zephyr's own sample applications to make sure your setup is correct.
If you already have Zephyr installed but are having issues building the MicroPython port then try installing the correct version of Zephyr via:
$ west init zephyrproject -m https://github.com/zephyrproject-rtos/zephyr --mr v3.1.0
Alternatively, you don't have to redo the Zephyr installation to just switch from master to a tagged release, you can instead do:
$ cd zephyrproject/zephyr
$ git checkout v3.1.0
$ west update
With Zephyr installed you may then need to configure your environment,
for example by sourcing zephyrproject/zephyr/zephyr-env.sh
.
Once Zephyr is ready to use you can build the MicroPython port just like any
other Zephyr application. You can do this anywhere in your file system, it does
not have to be in the ports/zephyr
directory. Assuming you have cloned the
MicroPython repository into your home directory, you can build the Zephyr port
for a frdm_k64f board like this:
$ west build -b frdm_k64f ~/micropython/ports/zephyr
To build for QEMU instead:
$ west build -b qemu_x86 ~/micropython/ports/zephyr
Consult the Zephyr documentation above for the list of
supported boards. Board configuration files appearing in ports/zephyr/boards/
correspond to boards that have been tested with MicroPython and may have
additional options enabled, like filesystem support.
Running
To flash the resulting firmware to your board:
$ west flash
Or, to flash it to your board and start a gdb debug session:
$ west debug
To run the resulting firmware in QEMU (for BOARDs like qemu_x86, qemu_cortex_m3):
$ west build -t run
Networking is enabled with the default configuration, so you need to follow instructions in https://docs.zephyrproject.org/latest/guides/networking/qemu_setup.html#networking-with-qemu to setup the host side of TAP/SLIP networking. If you get an error like:
could not connect serial device to character backend 'unix:/tmp/slip.sock'
it's a sign that you didn't follow the instructions above. If you would like to just run it quickly without extra setup, see "minimal" build below.
Quick example
To blink an LED:
import time
from machine import Pin
LED = Pin(("GPIO_1", 21), Pin.OUT)
while True:
LED.value(1)
time.sleep(0.5)
LED.value(0)
time.sleep(0.5)
The above code uses an LED location for a FRDM-K64F board (port B, pin 21; following Zephyr conventions port are identified by "GPIO_x", where x starts from 0). You will need to adjust it for another board (using board's reference materials). To execute the above sample, copy it to clipboard, in MicroPython REPL enter "paste mode" using Ctrl+E, paste clipboard, press Ctrl+D to finish paste mode and start execution.
To respond to Pin change IRQs, on a FRDM-K64F board run:
from machine import Pin
SW2 = Pin(("GPIO_2", 6), Pin.IN)
SW3 = Pin(("GPIO_0", 4), Pin.IN)
SW2.irq(lambda t: print("SW2 changed"))
SW3.irq(lambda t: print("SW3 changed"))
while True:
pass
Example of using I2C to scan for I2C slaves:
from machine import I2C
i2c = I2C("I2C_0")
i2c.scan()
Example of using SPI to write a buffer to the MOSI pin:
from machine import SPI
spi = SPI("SPI_0")
spi.init(baudrate=500000, polarity=1, phase=1, bits=8, firstbit=SPI.MSB)
spi.write(b'abcd')
Minimal build
MicroPython is committed to maintain minimal binary size for Zephyr port below 128KB, as long as Zephyr project is committed to maintain stable minimal size of their kernel (which they appear to be). Note that at such size, there is no support for any Zephyr features beyond REPL over UART, and only very minimal set of builtin Python modules is available. Thus, this build is more suitable for code size control and quick demonstrations on smaller systems. It's also suitable for careful enabling of features one by one to achieve needed functionality and code size. This is in the contrast to the "default" build, which may get more and more features enabled over time.
To make a minimal build:
$ west build -b qemu_x86 ~/micropython/ports/zephyr -- -DCONF_FILE=prj_minimal.conf
To run a minimal build in QEMU without requiring TAP networking setup run the following after you built an image with the previous command:
$ west build -t run