1392 lines
54 KiB
C
1392 lines
54 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2017 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdbool.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <unistd.h> // for ssize_t
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include "py/lexer.h"
|
|
#include "py/parse.h"
|
|
#include "py/parsenum.h"
|
|
#include "py/runtime.h"
|
|
#include "py/objint.h"
|
|
#include "py/objstr.h"
|
|
#include "py/builtin.h"
|
|
|
|
#if MICROPY_ENABLE_COMPILER
|
|
|
|
#define RULE_ACT_ARG_MASK (0x0f)
|
|
#define RULE_ACT_KIND_MASK (0x30)
|
|
#define RULE_ACT_ALLOW_IDENT (0x40)
|
|
#define RULE_ACT_ADD_BLANK (0x80)
|
|
#define RULE_ACT_OR (0x10)
|
|
#define RULE_ACT_AND (0x20)
|
|
#define RULE_ACT_LIST (0x30)
|
|
|
|
#define RULE_ARG_KIND_MASK (0xf000)
|
|
#define RULE_ARG_ARG_MASK (0x0fff)
|
|
#define RULE_ARG_TOK (0x1000)
|
|
#define RULE_ARG_RULE (0x2000)
|
|
#define RULE_ARG_OPT_RULE (0x3000)
|
|
|
|
// *FORMAT-OFF*
|
|
|
|
enum {
|
|
// define rules with a compile function
|
|
#define DEF_RULE(rule, comp, kind, ...) RULE_##rule,
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
RULE_const_object, // special node for a constant, generic Python object
|
|
|
|
// define rules without a compile function
|
|
#define DEF_RULE(rule, comp, kind, ...)
|
|
#define DEF_RULE_NC(rule, kind, ...) RULE_##rule,
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
};
|
|
|
|
// Define an array of actions corresponding to each rule
|
|
STATIC const uint8_t rule_act_table[] = {
|
|
#define or(n) (RULE_ACT_OR | n)
|
|
#define and(n) (RULE_ACT_AND | n)
|
|
#define and_ident(n) (RULE_ACT_AND | n | RULE_ACT_ALLOW_IDENT)
|
|
#define and_blank(n) (RULE_ACT_AND | n | RULE_ACT_ADD_BLANK)
|
|
#define one_or_more (RULE_ACT_LIST | 2)
|
|
#define list (RULE_ACT_LIST | 1)
|
|
#define list_with_end (RULE_ACT_LIST | 3)
|
|
|
|
#define DEF_RULE(rule, comp, kind, ...) kind,
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
|
|
0, // RULE_const_object
|
|
|
|
#define DEF_RULE(rule, comp, kind, ...)
|
|
#define DEF_RULE_NC(rule, kind, ...) kind,
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
|
|
#undef or
|
|
#undef and
|
|
#undef and_ident
|
|
#undef and_blank
|
|
#undef one_or_more
|
|
#undef list
|
|
#undef list_with_end
|
|
};
|
|
|
|
// Define the argument data for each rule, as a combined array
|
|
STATIC const uint16_t rule_arg_combined_table[] = {
|
|
#define tok(t) (RULE_ARG_TOK | MP_TOKEN_##t)
|
|
#define rule(r) (RULE_ARG_RULE | RULE_##r)
|
|
#define opt_rule(r) (RULE_ARG_OPT_RULE | RULE_##r)
|
|
|
|
#define DEF_RULE(rule, comp, kind, ...) __VA_ARGS__,
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
|
|
#define DEF_RULE(rule, comp, kind, ...)
|
|
#define DEF_RULE_NC(rule, kind, ...) __VA_ARGS__,
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
|
|
#undef tok
|
|
#undef rule
|
|
#undef opt_rule
|
|
};
|
|
|
|
// Macro to create a list of N identifiers where N is the number of variable arguments to the macro
|
|
#define RULE_EXPAND(x) x
|
|
#define RULE_PADDING(rule, ...) RULE_PADDING2(rule, __VA_ARGS__, RULE_PADDING_IDS(rule))
|
|
#define RULE_PADDING2(rule, ...) RULE_EXPAND(RULE_PADDING3(rule, __VA_ARGS__))
|
|
#define RULE_PADDING3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, ...) __VA_ARGS__
|
|
#define RULE_PADDING_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r,
|
|
|
|
// Use an enum to create constants specifying how much room a rule takes in rule_arg_combined_table
|
|
enum {
|
|
#define DEF_RULE(rule, comp, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
#define DEF_RULE(rule, comp, kind, ...)
|
|
#define DEF_RULE_NC(rule, kind, ...) RULE_PADDING(rule, __VA_ARGS__)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
};
|
|
|
|
// Macro to compute the start of a rule in rule_arg_combined_table
|
|
#define RULE_ARG_OFFSET(rule, ...) RULE_ARG_OFFSET2(rule, __VA_ARGS__, RULE_ARG_OFFSET_IDS(rule))
|
|
#define RULE_ARG_OFFSET2(rule, ...) RULE_EXPAND(RULE_ARG_OFFSET3(rule, __VA_ARGS__))
|
|
#define RULE_ARG_OFFSET3(rule, _1, _2, _3, _4, _5, _6, _7, _8, _9, _10, _11, _12, _13, _14, ...) _14
|
|
#define RULE_ARG_OFFSET_IDS(r) PAD13_##r, PAD12_##r, PAD11_##r, PAD10_##r, PAD9_##r, PAD8_##r, PAD7_##r, PAD6_##r, PAD5_##r, PAD4_##r, PAD3_##r, PAD2_##r, PAD1_##r, PAD0_##r,
|
|
|
|
// Use the above enum values to create a table of offsets for each rule's arg
|
|
// data, which indexes rule_arg_combined_table. The offsets require 9 bits of
|
|
// storage but only the lower 8 bits are stored here. The 9th bit is computed
|
|
// in get_rule_arg using the FIRST_RULE_WITH_OFFSET_ABOVE_255 constant.
|
|
STATIC const uint8_t rule_arg_offset_table[] = {
|
|
#define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
0, // RULE_const_object
|
|
#define DEF_RULE(rule, comp, kind, ...)
|
|
#define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) & 0xff,
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
};
|
|
|
|
// Define a constant that's used to determine the 9th bit of the values in rule_arg_offset_table
|
|
static const size_t FIRST_RULE_WITH_OFFSET_ABOVE_255 =
|
|
#define DEF_RULE(rule, comp, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
#define DEF_RULE(rule, comp, kind, ...)
|
|
#define DEF_RULE_NC(rule, kind, ...) RULE_ARG_OFFSET(rule, __VA_ARGS__) >= 0x100 ? RULE_##rule :
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
0;
|
|
|
|
#if MICROPY_DEBUG_PARSE_RULE_NAME
|
|
// Define an array of rule names corresponding to each rule
|
|
STATIC const char *const rule_name_table[] = {
|
|
#define DEF_RULE(rule, comp, kind, ...) #rule,
|
|
#define DEF_RULE_NC(rule, kind, ...)
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
"", // RULE_const_object
|
|
#define DEF_RULE(rule, comp, kind, ...)
|
|
#define DEF_RULE_NC(rule, kind, ...) #rule,
|
|
#include "py/grammar.h"
|
|
#undef DEF_RULE
|
|
#undef DEF_RULE_NC
|
|
};
|
|
#endif
|
|
|
|
// *FORMAT-ON*
|
|
|
|
typedef struct _rule_stack_t {
|
|
size_t src_line : (8 * sizeof(size_t) - 8); // maximum bits storing source line number
|
|
size_t rule_id : 8; // this must be large enough to fit largest rule number
|
|
size_t arg_i; // this dictates the maximum nodes in a "list" of things
|
|
} rule_stack_t;
|
|
|
|
typedef struct _mp_parse_chunk_t {
|
|
size_t alloc;
|
|
union {
|
|
size_t used;
|
|
struct _mp_parse_chunk_t *next;
|
|
} union_;
|
|
byte data[];
|
|
} mp_parse_chunk_t;
|
|
|
|
typedef struct _parser_t {
|
|
size_t rule_stack_alloc;
|
|
size_t rule_stack_top;
|
|
rule_stack_t *rule_stack;
|
|
|
|
size_t result_stack_alloc;
|
|
size_t result_stack_top;
|
|
mp_parse_node_t *result_stack;
|
|
|
|
mp_lexer_t *lexer;
|
|
|
|
mp_parse_tree_t tree;
|
|
mp_parse_chunk_t *cur_chunk;
|
|
|
|
#if MICROPY_COMP_CONST
|
|
mp_map_t consts;
|
|
#endif
|
|
} parser_t;
|
|
|
|
STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args);
|
|
|
|
STATIC const uint16_t *get_rule_arg(uint8_t r_id) {
|
|
size_t off = rule_arg_offset_table[r_id];
|
|
if (r_id >= FIRST_RULE_WITH_OFFSET_ABOVE_255) {
|
|
off |= 0x100;
|
|
}
|
|
return &rule_arg_combined_table[off];
|
|
}
|
|
|
|
STATIC void *parser_alloc(parser_t *parser, size_t num_bytes) {
|
|
// use a custom memory allocator to store parse nodes sequentially in large chunks
|
|
|
|
mp_parse_chunk_t *chunk = parser->cur_chunk;
|
|
|
|
if (chunk != NULL && chunk->union_.used + num_bytes > chunk->alloc) {
|
|
// not enough room at end of previously allocated chunk so try to grow
|
|
mp_parse_chunk_t *new_data = (mp_parse_chunk_t *)m_renew_maybe(byte, chunk,
|
|
sizeof(mp_parse_chunk_t) + chunk->alloc,
|
|
sizeof(mp_parse_chunk_t) + chunk->alloc + num_bytes, false);
|
|
if (new_data == NULL) {
|
|
// could not grow existing memory; shrink it to fit previous
|
|
(void)m_renew_maybe(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc,
|
|
sizeof(mp_parse_chunk_t) + chunk->union_.used, false);
|
|
chunk->alloc = chunk->union_.used;
|
|
chunk->union_.next = parser->tree.chunk;
|
|
parser->tree.chunk = chunk;
|
|
chunk = NULL;
|
|
} else {
|
|
// could grow existing memory
|
|
chunk->alloc += num_bytes;
|
|
}
|
|
}
|
|
|
|
if (chunk == NULL) {
|
|
// no previous chunk, allocate a new chunk
|
|
size_t alloc = MICROPY_ALLOC_PARSE_CHUNK_INIT;
|
|
if (alloc < num_bytes) {
|
|
alloc = num_bytes;
|
|
}
|
|
chunk = (mp_parse_chunk_t *)m_new(byte, sizeof(mp_parse_chunk_t) + alloc);
|
|
chunk->alloc = alloc;
|
|
chunk->union_.used = 0;
|
|
parser->cur_chunk = chunk;
|
|
}
|
|
|
|
byte *ret = chunk->data + chunk->union_.used;
|
|
chunk->union_.used += num_bytes;
|
|
return ret;
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST_TUPLE
|
|
STATIC void parser_free_parse_node_struct(parser_t *parser, mp_parse_node_struct_t *pns) {
|
|
mp_parse_chunk_t *chunk = parser->cur_chunk;
|
|
if (chunk->data <= (byte *)pns && (byte *)pns < chunk->data + chunk->union_.used) {
|
|
size_t num_bytes = sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
chunk->union_.used -= num_bytes;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
STATIC void push_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t arg_i) {
|
|
if (parser->rule_stack_top >= parser->rule_stack_alloc) {
|
|
rule_stack_t *rs = m_renew(rule_stack_t, parser->rule_stack, parser->rule_stack_alloc, parser->rule_stack_alloc + MICROPY_ALLOC_PARSE_RULE_INC);
|
|
parser->rule_stack = rs;
|
|
parser->rule_stack_alloc += MICROPY_ALLOC_PARSE_RULE_INC;
|
|
}
|
|
rule_stack_t *rs = &parser->rule_stack[parser->rule_stack_top++];
|
|
rs->src_line = src_line;
|
|
rs->rule_id = rule_id;
|
|
rs->arg_i = arg_i;
|
|
}
|
|
|
|
STATIC void push_rule_from_arg(parser_t *parser, size_t arg) {
|
|
assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE || (arg & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE);
|
|
size_t rule_id = arg & RULE_ARG_ARG_MASK;
|
|
push_rule(parser, parser->lexer->tok_line, rule_id, 0);
|
|
}
|
|
|
|
STATIC uint8_t pop_rule(parser_t *parser, size_t *arg_i, size_t *src_line) {
|
|
parser->rule_stack_top -= 1;
|
|
uint8_t rule_id = parser->rule_stack[parser->rule_stack_top].rule_id;
|
|
*arg_i = parser->rule_stack[parser->rule_stack_top].arg_i;
|
|
*src_line = parser->rule_stack[parser->rule_stack_top].src_line;
|
|
return rule_id;
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST_TUPLE
|
|
STATIC uint8_t peek_rule(parser_t *parser, size_t n) {
|
|
assert(parser->rule_stack_top > n);
|
|
return parser->rule_stack[parser->rule_stack_top - 1 - n].rule_id;
|
|
}
|
|
#endif
|
|
|
|
bool mp_parse_node_get_int_maybe(mp_parse_node_t pn, mp_obj_t *o) {
|
|
if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
*o = MP_OBJ_NEW_SMALL_INT(MP_PARSE_NODE_LEAF_SMALL_INT(pn));
|
|
return true;
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
*o = mp_parse_node_extract_const_object(pns);
|
|
return mp_obj_is_int(*o);
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST_TUPLE || MICROPY_COMP_CONST
|
|
STATIC bool mp_parse_node_is_const(mp_parse_node_t pn) {
|
|
if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
// Small integer.
|
|
return true;
|
|
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
|
|
// Possible str, or constant literal.
|
|
uintptr_t kind = MP_PARSE_NODE_LEAF_KIND(pn);
|
|
if (kind == MP_PARSE_NODE_STRING) {
|
|
return true;
|
|
} else if (kind == MP_PARSE_NODE_TOKEN) {
|
|
uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
|
|
return arg == MP_TOKEN_KW_NONE
|
|
|| arg == MP_TOKEN_KW_FALSE
|
|
|| arg == MP_TOKEN_KW_TRUE
|
|
|| arg == MP_TOKEN_ELLIPSIS;
|
|
}
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
|
|
// Constant object.
|
|
return true;
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_atom_paren)) {
|
|
// Possible empty tuple.
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
return MP_PARSE_NODE_IS_NULL(pns->nodes[0]);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
STATIC mp_obj_t mp_parse_node_convert_to_obj(mp_parse_node_t pn) {
|
|
assert(mp_parse_node_is_const(pn));
|
|
if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
#if MICROPY_DYNAMIC_COMPILER
|
|
mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1));
|
|
if (!((arg & sign_mask) == 0 || (arg & sign_mask) == sign_mask)) {
|
|
// Integer doesn't fit in a small-int, so create a multi-precision int object.
|
|
return mp_obj_new_int_from_ll(arg);
|
|
}
|
|
#endif
|
|
return MP_OBJ_NEW_SMALL_INT(arg);
|
|
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
|
|
uintptr_t kind = MP_PARSE_NODE_LEAF_KIND(pn);
|
|
uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
|
|
if (kind == MP_PARSE_NODE_STRING) {
|
|
return MP_OBJ_NEW_QSTR(arg);
|
|
} else {
|
|
assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN);
|
|
switch (arg) {
|
|
case MP_TOKEN_KW_NONE:
|
|
return mp_const_none;
|
|
case MP_TOKEN_KW_FALSE:
|
|
return mp_const_false;
|
|
case MP_TOKEN_KW_TRUE:
|
|
return mp_const_true;
|
|
default:
|
|
assert(arg == MP_TOKEN_ELLIPSIS);
|
|
return MP_OBJ_FROM_PTR(&mp_const_ellipsis_obj);
|
|
}
|
|
}
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_const_object)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
return mp_parse_node_extract_const_object(pns);
|
|
} else {
|
|
assert(MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_atom_paren));
|
|
assert(MP_PARSE_NODE_IS_NULL(((mp_parse_node_struct_t *)pn)->nodes[0]));
|
|
return mp_const_empty_tuple;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
STATIC bool parse_node_is_const_bool(mp_parse_node_t pn, bool value) {
|
|
// Returns true if 'pn' is a constant whose boolean value is equivalent to 'value'
|
|
#if MICROPY_COMP_CONST_TUPLE || MICROPY_COMP_CONST
|
|
return mp_parse_node_is_const(pn) && mp_obj_is_true(mp_parse_node_convert_to_obj(pn)) == value;
|
|
#else
|
|
return MP_PARSE_NODE_IS_TOKEN_KIND(pn, value ? MP_TOKEN_KW_TRUE : MP_TOKEN_KW_FALSE)
|
|
|| (MP_PARSE_NODE_IS_SMALL_INT(pn) && !!MP_PARSE_NODE_LEAF_SMALL_INT(pn) == value);
|
|
#endif
|
|
}
|
|
|
|
bool mp_parse_node_is_const_false(mp_parse_node_t pn) {
|
|
return parse_node_is_const_bool(pn, false);
|
|
}
|
|
|
|
bool mp_parse_node_is_const_true(mp_parse_node_t pn) {
|
|
return parse_node_is_const_bool(pn, true);
|
|
}
|
|
|
|
size_t mp_parse_node_extract_list(mp_parse_node_t *pn, size_t pn_kind, mp_parse_node_t **nodes) {
|
|
if (MP_PARSE_NODE_IS_NULL(*pn)) {
|
|
*nodes = NULL;
|
|
return 0;
|
|
} else if (MP_PARSE_NODE_IS_LEAF(*pn)) {
|
|
*nodes = pn;
|
|
return 1;
|
|
} else {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)(*pn);
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) != pn_kind) {
|
|
*nodes = pn;
|
|
return 1;
|
|
} else {
|
|
*nodes = pns->nodes;
|
|
return MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MICROPY_DEBUG_PRINTERS
|
|
void mp_parse_node_print(const mp_print_t *print, mp_parse_node_t pn, size_t indent) {
|
|
if (MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
mp_printf(print, "[% 4d] ", (int)((mp_parse_node_struct_t *)pn)->source_line);
|
|
} else {
|
|
mp_printf(print, " ");
|
|
}
|
|
for (size_t i = 0; i < indent; i++) {
|
|
mp_printf(print, " ");
|
|
}
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
mp_printf(print, "NULL\n");
|
|
} else if (MP_PARSE_NODE_IS_SMALL_INT(pn)) {
|
|
mp_int_t arg = MP_PARSE_NODE_LEAF_SMALL_INT(pn);
|
|
mp_printf(print, "int(" INT_FMT ")\n", arg);
|
|
} else if (MP_PARSE_NODE_IS_LEAF(pn)) {
|
|
uintptr_t arg = MP_PARSE_NODE_LEAF_ARG(pn);
|
|
switch (MP_PARSE_NODE_LEAF_KIND(pn)) {
|
|
case MP_PARSE_NODE_ID:
|
|
mp_printf(print, "id(%s)\n", qstr_str(arg));
|
|
break;
|
|
case MP_PARSE_NODE_STRING:
|
|
mp_printf(print, "str(%s)\n", qstr_str(arg));
|
|
break;
|
|
default:
|
|
assert(MP_PARSE_NODE_LEAF_KIND(pn) == MP_PARSE_NODE_TOKEN);
|
|
mp_printf(print, "tok(%u)\n", (uint)arg);
|
|
break;
|
|
}
|
|
} else {
|
|
// node must be a mp_parse_node_struct_t
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_const_object) {
|
|
mp_obj_t obj = mp_parse_node_extract_const_object(pns);
|
|
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
|
|
mp_printf(print, "literal const(%016llx)=", obj);
|
|
#else
|
|
mp_printf(print, "literal const(%p)=", obj);
|
|
#endif
|
|
mp_obj_print_helper(print, obj, PRINT_REPR);
|
|
mp_printf(print, "\n");
|
|
} else {
|
|
size_t n = MP_PARSE_NODE_STRUCT_NUM_NODES(pns);
|
|
#if MICROPY_DEBUG_PARSE_RULE_NAME
|
|
mp_printf(print, "%s(%u) (n=%u)\n", rule_name_table[MP_PARSE_NODE_STRUCT_KIND(pns)], (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
|
|
#else
|
|
mp_printf(print, "rule(%u) (n=%u)\n", (uint)MP_PARSE_NODE_STRUCT_KIND(pns), (uint)n);
|
|
#endif
|
|
for (size_t i = 0; i < n; i++) {
|
|
mp_parse_node_print(print, pns->nodes[i], indent + 2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // MICROPY_DEBUG_PRINTERS
|
|
|
|
/*
|
|
STATIC void result_stack_show(const mp_print_t *print, parser_t *parser) {
|
|
mp_printf(print, "result stack, most recent first\n");
|
|
for (ssize_t i = parser->result_stack_top - 1; i >= 0; i--) {
|
|
mp_parse_node_print(print, parser->result_stack[i], 0);
|
|
}
|
|
}
|
|
*/
|
|
|
|
STATIC mp_parse_node_t pop_result(parser_t *parser) {
|
|
assert(parser->result_stack_top > 0);
|
|
return parser->result_stack[--parser->result_stack_top];
|
|
}
|
|
|
|
STATIC mp_parse_node_t peek_result(parser_t *parser, size_t pos) {
|
|
assert(parser->result_stack_top > pos);
|
|
return parser->result_stack[parser->result_stack_top - 1 - pos];
|
|
}
|
|
|
|
STATIC void push_result_node(parser_t *parser, mp_parse_node_t pn) {
|
|
if (parser->result_stack_top >= parser->result_stack_alloc) {
|
|
mp_parse_node_t *stack = m_renew(mp_parse_node_t, parser->result_stack, parser->result_stack_alloc, parser->result_stack_alloc + MICROPY_ALLOC_PARSE_RESULT_INC);
|
|
parser->result_stack = stack;
|
|
parser->result_stack_alloc += MICROPY_ALLOC_PARSE_RESULT_INC;
|
|
}
|
|
parser->result_stack[parser->result_stack_top++] = pn;
|
|
}
|
|
|
|
STATIC mp_parse_node_t make_node_const_object(parser_t *parser, size_t src_line, mp_obj_t obj) {
|
|
mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_obj_t));
|
|
pn->source_line = src_line;
|
|
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
|
|
// nodes are 32-bit pointers, but need to store 64-bit object
|
|
pn->kind_num_nodes = RULE_const_object | (2 << 8);
|
|
pn->nodes[0] = (uint64_t)obj;
|
|
pn->nodes[1] = (uint64_t)obj >> 32;
|
|
#else
|
|
pn->kind_num_nodes = RULE_const_object | (1 << 8);
|
|
pn->nodes[0] = (uintptr_t)obj;
|
|
#endif
|
|
return (mp_parse_node_t)pn;
|
|
}
|
|
|
|
// Create a parse node representing a constant object, possibly optimising the case of
|
|
// an integer, by putting the (small) integer value directly in the parse node itself.
|
|
STATIC mp_parse_node_t make_node_const_object_optimised(parser_t *parser, size_t src_line, mp_obj_t obj) {
|
|
if (mp_obj_is_small_int(obj)) {
|
|
mp_int_t val = MP_OBJ_SMALL_INT_VALUE(obj);
|
|
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_D
|
|
// A parse node is only 32-bits and the small-int value must fit in 31-bits
|
|
if (((val ^ (val << 1)) & 0xffffffff80000000) != 0) {
|
|
return make_node_const_object(parser, src_line, obj);
|
|
}
|
|
#endif
|
|
#if MICROPY_DYNAMIC_COMPILER
|
|
// Check that the integer value fits in target runtime's small-int
|
|
mp_uint_t sign_mask = -((mp_uint_t)1 << (mp_dynamic_compiler.small_int_bits - 1));
|
|
if (!((val & sign_mask) == 0 || (val & sign_mask) == sign_mask)) {
|
|
return make_node_const_object(parser, src_line, obj);
|
|
}
|
|
#endif
|
|
return mp_parse_node_new_small_int(val);
|
|
} else {
|
|
return make_node_const_object(parser, src_line, obj);
|
|
}
|
|
}
|
|
|
|
STATIC void push_result_token(parser_t *parser, uint8_t rule_id) {
|
|
mp_parse_node_t pn;
|
|
mp_lexer_t *lex = parser->lexer;
|
|
if (lex->tok_kind == MP_TOKEN_NAME) {
|
|
qstr id = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
|
|
#if MICROPY_COMP_CONST
|
|
// if name is a standalone identifier, look it up in the table of dynamic constants
|
|
mp_map_elem_t *elem;
|
|
if (rule_id == RULE_atom
|
|
&& (elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP)) != NULL) {
|
|
pn = make_node_const_object_optimised(parser, lex->tok_line, elem->value);
|
|
} else {
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
|
|
}
|
|
#else
|
|
(void)rule_id;
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_ID, id);
|
|
#endif
|
|
} else if (lex->tok_kind == MP_TOKEN_INTEGER) {
|
|
mp_obj_t o = mp_parse_num_integer(lex->vstr.buf, lex->vstr.len, 0, lex);
|
|
pn = make_node_const_object_optimised(parser, lex->tok_line, o);
|
|
} else if (lex->tok_kind == MP_TOKEN_FLOAT_OR_IMAG) {
|
|
mp_obj_t o = mp_parse_num_float(lex->vstr.buf, lex->vstr.len, true, lex);
|
|
pn = make_node_const_object(parser, lex->tok_line, o);
|
|
} else if (lex->tok_kind == MP_TOKEN_STRING) {
|
|
// Don't automatically intern all strings. Doc strings (which are usually large)
|
|
// will be discarded by the compiler, and so we shouldn't intern them.
|
|
qstr qst = MP_QSTRnull;
|
|
if (lex->vstr.len <= MICROPY_ALLOC_PARSE_INTERN_STRING_LEN) {
|
|
// intern short strings
|
|
qst = qstr_from_strn(lex->vstr.buf, lex->vstr.len);
|
|
} else {
|
|
// check if this string is already interned
|
|
qst = qstr_find_strn(lex->vstr.buf, lex->vstr.len);
|
|
}
|
|
if (qst != MP_QSTRnull) {
|
|
// qstr exists, make a leaf node
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_STRING, qst);
|
|
} else {
|
|
// not interned, make a node holding a pointer to the string object
|
|
mp_obj_t o = mp_obj_new_str_copy(&mp_type_str, (const byte *)lex->vstr.buf, lex->vstr.len);
|
|
pn = make_node_const_object(parser, lex->tok_line, o);
|
|
}
|
|
} else if (lex->tok_kind == MP_TOKEN_BYTES) {
|
|
// make a node holding a pointer to the bytes object
|
|
mp_obj_t o = mp_obj_new_bytes((const byte *)lex->vstr.buf, lex->vstr.len);
|
|
pn = make_node_const_object(parser, lex->tok_line, o);
|
|
} else {
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, lex->tok_kind);
|
|
}
|
|
push_result_node(parser, pn);
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST_FOLDING
|
|
|
|
#if MICROPY_COMP_MODULE_CONST
|
|
STATIC const mp_rom_map_elem_t mp_constants_table[] = {
|
|
#if MICROPY_PY_ERRNO
|
|
{ MP_ROM_QSTR(MP_QSTR_errno), MP_ROM_PTR(&mp_module_errno) },
|
|
#endif
|
|
#if MICROPY_PY_UCTYPES
|
|
{ MP_ROM_QSTR(MP_QSTR_uctypes), MP_ROM_PTR(&mp_module_uctypes) },
|
|
#endif
|
|
// Extra constants as defined by a port
|
|
MICROPY_PORT_CONSTANTS
|
|
};
|
|
STATIC MP_DEFINE_CONST_MAP(mp_constants_map, mp_constants_table);
|
|
#endif
|
|
|
|
#if MICROPY_COMP_CONST_FOLDING_COMPILER_WORKAROUND
|
|
// Some versions of the xtensa-esp32-elf-gcc compiler generate wrong code if this
|
|
// function is static, so provide a hook for them to work around this problem.
|
|
MP_NOINLINE
|
|
#endif
|
|
STATIC bool fold_logical_constants(parser_t *parser, uint8_t rule_id, size_t *num_args) {
|
|
if (rule_id == RULE_or_test
|
|
|| rule_id == RULE_and_test) {
|
|
// folding for binary logical ops: or and
|
|
size_t copy_to = *num_args;
|
|
for (size_t i = copy_to; i > 0;) {
|
|
mp_parse_node_t pn = peek_result(parser, --i);
|
|
parser->result_stack[parser->result_stack_top - copy_to] = pn;
|
|
if (i == 0) {
|
|
// always need to keep the last value
|
|
break;
|
|
}
|
|
if (rule_id == RULE_or_test) {
|
|
if (mp_parse_node_is_const_true(pn)) {
|
|
//
|
|
break;
|
|
} else if (!mp_parse_node_is_const_false(pn)) {
|
|
copy_to -= 1;
|
|
}
|
|
} else {
|
|
// RULE_and_test
|
|
if (mp_parse_node_is_const_false(pn)) {
|
|
break;
|
|
} else if (!mp_parse_node_is_const_true(pn)) {
|
|
copy_to -= 1;
|
|
}
|
|
}
|
|
}
|
|
copy_to -= 1; // copy_to now contains number of args to pop
|
|
|
|
// pop and discard all the short-circuited expressions
|
|
for (size_t i = 0; i < copy_to; ++i) {
|
|
pop_result(parser);
|
|
}
|
|
*num_args -= copy_to;
|
|
|
|
// we did a complete folding if there's only 1 arg left
|
|
return *num_args == 1;
|
|
|
|
} else if (rule_id == RULE_not_test_2) {
|
|
// folding for unary logical op: not
|
|
mp_parse_node_t pn = peek_result(parser, 0);
|
|
if (mp_parse_node_is_const_false(pn)) {
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_TRUE);
|
|
} else if (mp_parse_node_is_const_true(pn)) {
|
|
pn = mp_parse_node_new_leaf(MP_PARSE_NODE_TOKEN, MP_TOKEN_KW_FALSE);
|
|
} else {
|
|
return false;
|
|
}
|
|
pop_result(parser);
|
|
push_result_node(parser, pn);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
STATIC bool fold_constants(parser_t *parser, uint8_t rule_id, size_t num_args) {
|
|
// this code does folding of arbitrary integer expressions, eg 1 + 2 * 3 + 4
|
|
// it does not do partial folding, eg 1 + 2 + x -> 3 + x
|
|
|
|
mp_obj_t arg0;
|
|
if (rule_id == RULE_expr
|
|
|| rule_id == RULE_xor_expr
|
|
|| rule_id == RULE_and_expr
|
|
|| rule_id == RULE_power) {
|
|
// folding for binary ops: | ^ & **
|
|
mp_parse_node_t pn = peek_result(parser, num_args - 1);
|
|
if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
|
|
return false;
|
|
}
|
|
mp_binary_op_t op;
|
|
if (rule_id == RULE_expr) {
|
|
op = MP_BINARY_OP_OR;
|
|
} else if (rule_id == RULE_xor_expr) {
|
|
op = MP_BINARY_OP_XOR;
|
|
} else if (rule_id == RULE_and_expr) {
|
|
op = MP_BINARY_OP_AND;
|
|
} else {
|
|
op = MP_BINARY_OP_POWER;
|
|
}
|
|
for (ssize_t i = num_args - 2; i >= 0; --i) {
|
|
pn = peek_result(parser, i);
|
|
mp_obj_t arg1;
|
|
if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
|
|
return false;
|
|
}
|
|
if (op == MP_BINARY_OP_POWER && mp_obj_int_sign(arg1) < 0) {
|
|
// ** can't have negative rhs
|
|
return false;
|
|
}
|
|
arg0 = mp_binary_op(op, arg0, arg1);
|
|
}
|
|
} else if (rule_id == RULE_shift_expr
|
|
|| rule_id == RULE_arith_expr
|
|
|| rule_id == RULE_term) {
|
|
// folding for binary ops: << >> + - * @ / % //
|
|
mp_parse_node_t pn = peek_result(parser, num_args - 1);
|
|
if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
|
|
return false;
|
|
}
|
|
for (ssize_t i = num_args - 2; i >= 1; i -= 2) {
|
|
pn = peek_result(parser, i - 1);
|
|
mp_obj_t arg1;
|
|
if (!mp_parse_node_get_int_maybe(pn, &arg1)) {
|
|
return false;
|
|
}
|
|
mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, i));
|
|
if (tok == MP_TOKEN_OP_AT || tok == MP_TOKEN_OP_SLASH) {
|
|
// Can't fold @ or /
|
|
return false;
|
|
}
|
|
mp_binary_op_t op = MP_BINARY_OP_LSHIFT + (tok - MP_TOKEN_OP_DBL_LESS);
|
|
int rhs_sign = mp_obj_int_sign(arg1);
|
|
if (op <= MP_BINARY_OP_RSHIFT) {
|
|
// << and >> can't have negative rhs
|
|
if (rhs_sign < 0) {
|
|
return false;
|
|
}
|
|
} else if (op >= MP_BINARY_OP_FLOOR_DIVIDE) {
|
|
// % and // can't have zero rhs
|
|
if (rhs_sign == 0) {
|
|
return false;
|
|
}
|
|
}
|
|
arg0 = mp_binary_op(op, arg0, arg1);
|
|
}
|
|
} else if (rule_id == RULE_factor_2) {
|
|
// folding for unary ops: + - ~
|
|
mp_parse_node_t pn = peek_result(parser, 0);
|
|
if (!mp_parse_node_get_int_maybe(pn, &arg0)) {
|
|
return false;
|
|
}
|
|
mp_token_kind_t tok = MP_PARSE_NODE_LEAF_ARG(peek_result(parser, 1));
|
|
mp_unary_op_t op;
|
|
if (tok == MP_TOKEN_OP_TILDE) {
|
|
op = MP_UNARY_OP_INVERT;
|
|
} else {
|
|
assert(tok == MP_TOKEN_OP_PLUS || tok == MP_TOKEN_OP_MINUS); // should be
|
|
op = MP_UNARY_OP_POSITIVE + (tok - MP_TOKEN_OP_PLUS);
|
|
}
|
|
arg0 = mp_unary_op(op, arg0);
|
|
|
|
#if MICROPY_COMP_CONST
|
|
} else if (rule_id == RULE_expr_stmt) {
|
|
mp_parse_node_t pn1 = peek_result(parser, 0);
|
|
if (!MP_PARSE_NODE_IS_NULL(pn1)
|
|
&& !(MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_augassign)
|
|
|| MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_expr_stmt_assign_list))) {
|
|
// this node is of the form <x> = <y>
|
|
mp_parse_node_t pn0 = peek_result(parser, 1);
|
|
if (MP_PARSE_NODE_IS_ID(pn0)
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_atom_expr_normal)
|
|
&& MP_PARSE_NODE_IS_ID(((mp_parse_node_struct_t *)pn1)->nodes[0])
|
|
&& MP_PARSE_NODE_LEAF_ARG(((mp_parse_node_struct_t *)pn1)->nodes[0]) == MP_QSTR_const
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(((mp_parse_node_struct_t *)pn1)->nodes[1], RULE_trailer_paren)
|
|
) {
|
|
// code to assign dynamic constants: id = const(value)
|
|
|
|
// get the id
|
|
qstr id = MP_PARSE_NODE_LEAF_ARG(pn0);
|
|
|
|
// get the value
|
|
mp_parse_node_t pn_value = ((mp_parse_node_struct_t *)((mp_parse_node_struct_t *)pn1)->nodes[1])->nodes[0];
|
|
if (!mp_parse_node_is_const(pn_value)) {
|
|
mp_obj_t exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
|
|
MP_ERROR_TEXT("not a constant"));
|
|
mp_obj_exception_add_traceback(exc, parser->lexer->source_name,
|
|
((mp_parse_node_struct_t *)pn1)->source_line, MP_QSTRnull);
|
|
nlr_raise(exc);
|
|
}
|
|
mp_obj_t value = mp_parse_node_convert_to_obj(pn_value);
|
|
|
|
// store the value in the table of dynamic constants
|
|
mp_map_elem_t *elem = mp_map_lookup(&parser->consts, MP_OBJ_NEW_QSTR(id), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND);
|
|
assert(elem->value == MP_OBJ_NULL);
|
|
elem->value = value;
|
|
|
|
// If the constant starts with an underscore then treat it as a private
|
|
// variable and don't emit any code to store the value to the id.
|
|
if (qstr_str(id)[0] == '_') {
|
|
pop_result(parser); // pop const(value)
|
|
pop_result(parser); // pop id
|
|
push_result_rule(parser, 0, RULE_pass_stmt, 0); // replace with "pass"
|
|
return true;
|
|
}
|
|
|
|
// replace const(value) with value
|
|
pop_result(parser);
|
|
push_result_node(parser, pn_value);
|
|
|
|
// finished folding this assignment, but we still want it to be part of the tree
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
#endif
|
|
|
|
#if MICROPY_COMP_MODULE_CONST
|
|
} else if (rule_id == RULE_atom_expr_normal) {
|
|
mp_parse_node_t pn0 = peek_result(parser, 1);
|
|
mp_parse_node_t pn1 = peek_result(parser, 0);
|
|
if (!(MP_PARSE_NODE_IS_ID(pn0)
|
|
&& MP_PARSE_NODE_IS_STRUCT_KIND(pn1, RULE_trailer_period))) {
|
|
return false;
|
|
}
|
|
// id1.id2
|
|
// look it up in constant table, see if it can be replaced with an integer
|
|
mp_parse_node_struct_t *pns1 = (mp_parse_node_struct_t *)pn1;
|
|
assert(MP_PARSE_NODE_IS_ID(pns1->nodes[0]));
|
|
qstr q_base = MP_PARSE_NODE_LEAF_ARG(pn0);
|
|
qstr q_attr = MP_PARSE_NODE_LEAF_ARG(pns1->nodes[0]);
|
|
mp_map_elem_t *elem = mp_map_lookup((mp_map_t *)&mp_constants_map, MP_OBJ_NEW_QSTR(q_base), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
return false;
|
|
}
|
|
mp_obj_t dest[2];
|
|
mp_load_method_maybe(elem->value, q_attr, dest);
|
|
if (!(dest[0] != MP_OBJ_NULL && mp_obj_is_int(dest[0]) && dest[1] == MP_OBJ_NULL)) {
|
|
return false;
|
|
}
|
|
arg0 = dest[0];
|
|
#endif
|
|
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
// success folding this rule
|
|
|
|
for (size_t i = num_args; i > 0; i--) {
|
|
pop_result(parser);
|
|
}
|
|
push_result_node(parser, make_node_const_object_optimised(parser, 0, arg0));
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // MICROPY_COMP_CONST_FOLDING
|
|
|
|
#if MICROPY_COMP_CONST_TUPLE
|
|
STATIC bool build_tuple_from_stack(parser_t *parser, size_t src_line, size_t num_args) {
|
|
for (size_t i = num_args; i > 0;) {
|
|
mp_parse_node_t pn = peek_result(parser, --i);
|
|
if (!mp_parse_node_is_const(pn)) {
|
|
return false;
|
|
}
|
|
}
|
|
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(num_args, NULL));
|
|
for (size_t i = num_args; i > 0;) {
|
|
mp_parse_node_t pn = pop_result(parser);
|
|
tuple->items[--i] = mp_parse_node_convert_to_obj(pn);
|
|
if (MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
parser_free_parse_node_struct(parser, (mp_parse_node_struct_t *)pn);
|
|
}
|
|
}
|
|
push_result_node(parser, make_node_const_object(parser, src_line, MP_OBJ_FROM_PTR(tuple)));
|
|
return true;
|
|
}
|
|
|
|
STATIC bool build_tuple(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) {
|
|
if (rule_id == RULE_testlist_comp) {
|
|
if (peek_rule(parser, 0) == RULE_atom_paren) {
|
|
// Tuple of the form "(a,)".
|
|
return build_tuple_from_stack(parser, src_line, num_args);
|
|
}
|
|
}
|
|
if (rule_id == RULE_testlist_comp_3c) {
|
|
assert(peek_rule(parser, 0) == RULE_testlist_comp_3b);
|
|
assert(peek_rule(parser, 1) == RULE_testlist_comp);
|
|
if (peek_rule(parser, 2) == RULE_atom_paren) {
|
|
// Tuple of the form "(a, b)".
|
|
if (build_tuple_from_stack(parser, src_line, num_args)) {
|
|
parser->rule_stack_top -= 2; // discard 2 rules
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
if (rule_id == RULE_testlist_star_expr
|
|
|| rule_id == RULE_testlist
|
|
|| rule_id == RULE_subscriptlist) {
|
|
// Tuple of the form:
|
|
// - x = a, b
|
|
// - return a, b
|
|
// - for x in a, b: pass
|
|
// - x[a, b]
|
|
return build_tuple_from_stack(parser, src_line, num_args);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
STATIC void push_result_rule(parser_t *parser, size_t src_line, uint8_t rule_id, size_t num_args) {
|
|
// Simplify and optimise certain rules, to reduce memory usage and simplify the compiler.
|
|
if (rule_id == RULE_atom_paren) {
|
|
// Remove parenthesis around a single expression if possible.
|
|
// This atom_paren rule always has a single argument, and after this
|
|
// optimisation that argument is either NULL or testlist_comp.
|
|
mp_parse_node_t pn = peek_result(parser, 0);
|
|
if (MP_PARSE_NODE_IS_NULL(pn)) {
|
|
// need to keep parenthesis for ()
|
|
} else if (MP_PARSE_NODE_IS_STRUCT_KIND(pn, RULE_testlist_comp)) {
|
|
// need to keep parenthesis for (a, b, ...)
|
|
} else {
|
|
// parenthesis around a single expression, so it's just the expression
|
|
return;
|
|
}
|
|
} else if (rule_id == RULE_testlist_comp) {
|
|
// The testlist_comp rule can be the sole argument to either atom_parent
|
|
// or atom_bracket, for (...) and [...] respectively.
|
|
assert(num_args == 2);
|
|
mp_parse_node_t pn = peek_result(parser, 0);
|
|
if (MP_PARSE_NODE_IS_STRUCT(pn)) {
|
|
mp_parse_node_struct_t *pns = (mp_parse_node_struct_t *)pn;
|
|
if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_testlist_comp_3b) {
|
|
// tuple of one item, with trailing comma
|
|
pop_result(parser);
|
|
--num_args;
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_testlist_comp_3c) {
|
|
// tuple of many items, convert testlist_comp_3c to testlist_comp
|
|
pop_result(parser);
|
|
assert(pn == peek_result(parser, 0));
|
|
pns->kind_num_nodes = rule_id | MP_PARSE_NODE_STRUCT_NUM_NODES(pns) << 8;
|
|
return;
|
|
} else if (MP_PARSE_NODE_STRUCT_KIND(pns) == RULE_comp_for) {
|
|
// generator expression
|
|
} else {
|
|
// tuple with 2 items
|
|
}
|
|
} else {
|
|
// tuple with 2 items
|
|
}
|
|
} else if (rule_id == RULE_testlist_comp_3c) {
|
|
// steal first arg of outer testlist_comp rule
|
|
++num_args;
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST_FOLDING
|
|
if (fold_logical_constants(parser, rule_id, &num_args)) {
|
|
// we folded this rule so return straight away
|
|
return;
|
|
}
|
|
if (fold_constants(parser, rule_id, num_args)) {
|
|
// we folded this rule so return straight away
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_COMP_CONST_TUPLE
|
|
if (build_tuple(parser, src_line, rule_id, num_args)) {
|
|
// we built a tuple from this rule so return straight away
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
mp_parse_node_struct_t *pn = parser_alloc(parser, sizeof(mp_parse_node_struct_t) + sizeof(mp_parse_node_t) * num_args);
|
|
pn->source_line = src_line;
|
|
pn->kind_num_nodes = (rule_id & 0xff) | (num_args << 8);
|
|
for (size_t i = num_args; i > 0; i--) {
|
|
pn->nodes[i - 1] = pop_result(parser);
|
|
}
|
|
if (rule_id == RULE_testlist_comp_3c) {
|
|
// need to push something non-null to replace stolen first arg of testlist_comp
|
|
push_result_node(parser, (mp_parse_node_t)pn);
|
|
}
|
|
push_result_node(parser, (mp_parse_node_t)pn);
|
|
}
|
|
|
|
mp_parse_tree_t mp_parse(mp_lexer_t *lex, mp_parse_input_kind_t input_kind) {
|
|
// Set exception handler to free the lexer if an exception is raised.
|
|
MP_DEFINE_NLR_JUMP_CALLBACK_FUNCTION_1(ctx, mp_lexer_free, lex);
|
|
nlr_push_jump_callback(&ctx.callback, mp_call_function_1_from_nlr_jump_callback);
|
|
|
|
// initialise parser and allocate memory for its stacks
|
|
|
|
parser_t parser;
|
|
|
|
parser.rule_stack_alloc = MICROPY_ALLOC_PARSE_RULE_INIT;
|
|
parser.rule_stack_top = 0;
|
|
parser.rule_stack = m_new(rule_stack_t, parser.rule_stack_alloc);
|
|
|
|
parser.result_stack_alloc = MICROPY_ALLOC_PARSE_RESULT_INIT;
|
|
parser.result_stack_top = 0;
|
|
parser.result_stack = m_new(mp_parse_node_t, parser.result_stack_alloc);
|
|
|
|
parser.lexer = lex;
|
|
|
|
parser.tree.chunk = NULL;
|
|
parser.cur_chunk = NULL;
|
|
|
|
#if MICROPY_COMP_CONST
|
|
mp_map_init(&parser.consts, 0);
|
|
#endif
|
|
|
|
// work out the top-level rule to use, and push it on the stack
|
|
size_t top_level_rule;
|
|
switch (input_kind) {
|
|
case MP_PARSE_SINGLE_INPUT:
|
|
top_level_rule = RULE_single_input;
|
|
break;
|
|
case MP_PARSE_EVAL_INPUT:
|
|
top_level_rule = RULE_eval_input;
|
|
break;
|
|
default:
|
|
top_level_rule = RULE_file_input;
|
|
}
|
|
push_rule(&parser, lex->tok_line, top_level_rule, 0);
|
|
|
|
// parse!
|
|
|
|
bool backtrack = false;
|
|
|
|
for (;;) {
|
|
next_rule:
|
|
if (parser.rule_stack_top == 0) {
|
|
break;
|
|
}
|
|
|
|
// Pop the next rule to process it
|
|
size_t i; // state for the current rule
|
|
size_t rule_src_line; // source line for the first token matched by the current rule
|
|
uint8_t rule_id = pop_rule(&parser, &i, &rule_src_line);
|
|
uint8_t rule_act = rule_act_table[rule_id];
|
|
const uint16_t *rule_arg = get_rule_arg(rule_id);
|
|
size_t n = rule_act & RULE_ACT_ARG_MASK;
|
|
|
|
#if 0
|
|
// debugging
|
|
printf("depth=" UINT_FMT " ", parser.rule_stack_top);
|
|
for (int j = 0; j < parser.rule_stack_top; ++j) {
|
|
printf(" ");
|
|
}
|
|
printf("%s n=" UINT_FMT " i=" UINT_FMT " bt=%d\n", rule_name_table[rule_id], n, i, backtrack);
|
|
#endif
|
|
|
|
switch (rule_act & RULE_ACT_KIND_MASK) {
|
|
case RULE_ACT_OR:
|
|
if (i > 0 && !backtrack) {
|
|
goto next_rule;
|
|
} else {
|
|
backtrack = false;
|
|
}
|
|
for (; i < n; ++i) {
|
|
uint16_t kind = rule_arg[i] & RULE_ARG_KIND_MASK;
|
|
if (kind == RULE_ARG_TOK) {
|
|
if (lex->tok_kind == (rule_arg[i] & RULE_ARG_ARG_MASK)) {
|
|
push_result_token(&parser, rule_id);
|
|
mp_lexer_to_next(lex);
|
|
goto next_rule;
|
|
}
|
|
} else {
|
|
assert(kind == RULE_ARG_RULE);
|
|
if (i + 1 < n) {
|
|
push_rule(&parser, rule_src_line, rule_id, i + 1); // save this or-rule
|
|
}
|
|
push_rule_from_arg(&parser, rule_arg[i]); // push child of or-rule
|
|
goto next_rule;
|
|
}
|
|
}
|
|
backtrack = true;
|
|
break;
|
|
|
|
case RULE_ACT_AND: {
|
|
|
|
// failed, backtrack if we can, else syntax error
|
|
if (backtrack) {
|
|
assert(i > 0);
|
|
if ((rule_arg[i - 1] & RULE_ARG_KIND_MASK) == RULE_ARG_OPT_RULE) {
|
|
// an optional rule that failed, so continue with next arg
|
|
push_result_node(&parser, MP_PARSE_NODE_NULL);
|
|
backtrack = false;
|
|
} else {
|
|
// a mandatory rule that failed, so propagate backtrack
|
|
if (i > 1) {
|
|
// already eaten tokens so can't backtrack
|
|
goto syntax_error;
|
|
} else {
|
|
goto next_rule;
|
|
}
|
|
}
|
|
}
|
|
|
|
// progress through the rule
|
|
for (; i < n; ++i) {
|
|
if ((rule_arg[i] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
|
|
// need to match a token
|
|
mp_token_kind_t tok_kind = rule_arg[i] & RULE_ARG_ARG_MASK;
|
|
if (lex->tok_kind == tok_kind) {
|
|
// matched token
|
|
if (tok_kind == MP_TOKEN_NAME) {
|
|
push_result_token(&parser, rule_id);
|
|
}
|
|
mp_lexer_to_next(lex);
|
|
} else {
|
|
// failed to match token
|
|
if (i > 0) {
|
|
// already eaten tokens so can't backtrack
|
|
goto syntax_error;
|
|
} else {
|
|
// this rule failed, so backtrack
|
|
backtrack = true;
|
|
goto next_rule;
|
|
}
|
|
}
|
|
} else {
|
|
push_rule(&parser, rule_src_line, rule_id, i + 1); // save this and-rule
|
|
push_rule_from_arg(&parser, rule_arg[i]); // push child of and-rule
|
|
goto next_rule;
|
|
}
|
|
}
|
|
|
|
assert(i == n);
|
|
|
|
// matched the rule, so now build the corresponding parse_node
|
|
|
|
#if !MICROPY_ENABLE_DOC_STRING
|
|
// this code discards lonely statements, such as doc strings
|
|
if (input_kind != MP_PARSE_SINGLE_INPUT && rule_id == RULE_expr_stmt && peek_result(&parser, 0) == MP_PARSE_NODE_NULL) {
|
|
mp_parse_node_t p = peek_result(&parser, 1);
|
|
if ((MP_PARSE_NODE_IS_LEAF(p) && !MP_PARSE_NODE_IS_ID(p))
|
|
|| MP_PARSE_NODE_IS_STRUCT_KIND(p, RULE_const_object)) {
|
|
pop_result(&parser); // MP_PARSE_NODE_NULL
|
|
pop_result(&parser); // const expression (leaf or RULE_const_object)
|
|
// Pushing the "pass" rule here will overwrite any RULE_const_object
|
|
// entry that was on the result stack, allowing the GC to reclaim
|
|
// the memory from the const object when needed.
|
|
push_result_rule(&parser, rule_src_line, RULE_pass_stmt, 0);
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// count number of arguments for the parse node
|
|
i = 0;
|
|
size_t num_not_nil = 0;
|
|
for (size_t x = n; x > 0;) {
|
|
--x;
|
|
if ((rule_arg[x] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
|
|
mp_token_kind_t tok_kind = rule_arg[x] & RULE_ARG_ARG_MASK;
|
|
if (tok_kind == MP_TOKEN_NAME) {
|
|
// only tokens which were names are pushed to stack
|
|
i += 1;
|
|
num_not_nil += 1;
|
|
}
|
|
} else {
|
|
// rules are always pushed
|
|
if (peek_result(&parser, i) != MP_PARSE_NODE_NULL) {
|
|
num_not_nil += 1;
|
|
}
|
|
i += 1;
|
|
}
|
|
}
|
|
|
|
if (num_not_nil == 1 && (rule_act & RULE_ACT_ALLOW_IDENT)) {
|
|
// this rule has only 1 argument and should not be emitted
|
|
mp_parse_node_t pn = MP_PARSE_NODE_NULL;
|
|
for (size_t x = 0; x < i; ++x) {
|
|
mp_parse_node_t pn2 = pop_result(&parser);
|
|
if (pn2 != MP_PARSE_NODE_NULL) {
|
|
pn = pn2;
|
|
}
|
|
}
|
|
push_result_node(&parser, pn);
|
|
} else {
|
|
// this rule must be emitted
|
|
|
|
if (rule_act & RULE_ACT_ADD_BLANK) {
|
|
// and add an extra blank node at the end (used by the compiler to store data)
|
|
push_result_node(&parser, MP_PARSE_NODE_NULL);
|
|
i += 1;
|
|
}
|
|
|
|
push_result_rule(&parser, rule_src_line, rule_id, i);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
assert((rule_act & RULE_ACT_KIND_MASK) == RULE_ACT_LIST);
|
|
|
|
// n=2 is: item item*
|
|
// n=1 is: item (sep item)*
|
|
// n=3 is: item (sep item)* [sep]
|
|
bool had_trailing_sep;
|
|
if (backtrack) {
|
|
list_backtrack:
|
|
had_trailing_sep = false;
|
|
if (n == 2) {
|
|
if (i == 1) {
|
|
// fail on item, first time round; propagate backtrack
|
|
goto next_rule;
|
|
} else {
|
|
// fail on item, in later rounds; finish with this rule
|
|
backtrack = false;
|
|
}
|
|
} else {
|
|
if (i == 1) {
|
|
// fail on item, first time round; propagate backtrack
|
|
goto next_rule;
|
|
} else if ((i & 1) == 1) {
|
|
// fail on item, in later rounds; have eaten tokens so can't backtrack
|
|
if (n == 3) {
|
|
// list allows trailing separator; finish parsing list
|
|
had_trailing_sep = true;
|
|
backtrack = false;
|
|
} else {
|
|
// list doesn't allowing trailing separator; fail
|
|
goto syntax_error;
|
|
}
|
|
} else {
|
|
// fail on separator; finish parsing list
|
|
backtrack = false;
|
|
}
|
|
}
|
|
} else {
|
|
for (;;) {
|
|
size_t arg = rule_arg[i & 1 & n];
|
|
if ((arg & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
|
|
if (lex->tok_kind == (arg & RULE_ARG_ARG_MASK)) {
|
|
if (i & 1 & n) {
|
|
// separators which are tokens are not pushed to result stack
|
|
} else {
|
|
push_result_token(&parser, rule_id);
|
|
}
|
|
mp_lexer_to_next(lex);
|
|
// got element of list, so continue parsing list
|
|
i += 1;
|
|
} else {
|
|
// couldn't get element of list
|
|
i += 1;
|
|
backtrack = true;
|
|
goto list_backtrack;
|
|
}
|
|
} else {
|
|
assert((arg & RULE_ARG_KIND_MASK) == RULE_ARG_RULE);
|
|
push_rule(&parser, rule_src_line, rule_id, i + 1); // save this list-rule
|
|
push_rule_from_arg(&parser, arg); // push child of list-rule
|
|
goto next_rule;
|
|
}
|
|
}
|
|
}
|
|
assert(i >= 1);
|
|
|
|
// compute number of elements in list, result in i
|
|
i -= 1;
|
|
if ((n & 1) && (rule_arg[1] & RULE_ARG_KIND_MASK) == RULE_ARG_TOK) {
|
|
// don't count separators when they are tokens
|
|
i = (i + 1) / 2;
|
|
}
|
|
|
|
if (i == 1) {
|
|
// list matched single item
|
|
if (had_trailing_sep) {
|
|
// if there was a trailing separator, make a list of a single item
|
|
push_result_rule(&parser, rule_src_line, rule_id, i);
|
|
} else {
|
|
// just leave single item on stack (ie don't wrap in a list)
|
|
}
|
|
} else {
|
|
push_result_rule(&parser, rule_src_line, rule_id, i);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MICROPY_COMP_CONST
|
|
mp_map_deinit(&parser.consts);
|
|
#endif
|
|
|
|
// truncate final chunk and link into chain of chunks
|
|
if (parser.cur_chunk != NULL) {
|
|
(void)m_renew_maybe(byte, parser.cur_chunk,
|
|
sizeof(mp_parse_chunk_t) + parser.cur_chunk->alloc,
|
|
sizeof(mp_parse_chunk_t) + parser.cur_chunk->union_.used,
|
|
false);
|
|
parser.cur_chunk->alloc = parser.cur_chunk->union_.used;
|
|
parser.cur_chunk->union_.next = parser.tree.chunk;
|
|
parser.tree.chunk = parser.cur_chunk;
|
|
}
|
|
|
|
if (
|
|
lex->tok_kind != MP_TOKEN_END // check we are at the end of the token stream
|
|
|| parser.result_stack_top == 0 // check that we got a node (can fail on empty input)
|
|
) {
|
|
syntax_error:;
|
|
mp_obj_t exc;
|
|
if (lex->tok_kind == MP_TOKEN_INDENT) {
|
|
exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
|
|
MP_ERROR_TEXT("unexpected indent"));
|
|
} else if (lex->tok_kind == MP_TOKEN_DEDENT_MISMATCH) {
|
|
exc = mp_obj_new_exception_msg(&mp_type_IndentationError,
|
|
MP_ERROR_TEXT("unindent doesn't match any outer indent level"));
|
|
#if MICROPY_PY_FSTRINGS
|
|
} else if (lex->tok_kind == MP_TOKEN_MALFORMED_FSTRING) {
|
|
exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
|
|
MP_ERROR_TEXT("malformed f-string"));
|
|
} else if (lex->tok_kind == MP_TOKEN_FSTRING_RAW) {
|
|
exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
|
|
MP_ERROR_TEXT("raw f-strings are not supported"));
|
|
#endif
|
|
} else {
|
|
exc = mp_obj_new_exception_msg(&mp_type_SyntaxError,
|
|
MP_ERROR_TEXT("invalid syntax"));
|
|
}
|
|
// add traceback to give info about file name and location
|
|
// we don't have a 'block' name, so just pass the NULL qstr to indicate this
|
|
mp_obj_exception_add_traceback(exc, lex->source_name, lex->tok_line, MP_QSTRnull);
|
|
nlr_raise(exc);
|
|
}
|
|
|
|
// get the root parse node that we created
|
|
assert(parser.result_stack_top == 1);
|
|
parser.tree.root = parser.result_stack[0];
|
|
|
|
// free the memory that we don't need anymore
|
|
m_del(rule_stack_t, parser.rule_stack, parser.rule_stack_alloc);
|
|
m_del(mp_parse_node_t, parser.result_stack, parser.result_stack_alloc);
|
|
|
|
// Deregister exception handler and free the lexer.
|
|
nlr_pop_jump_callback(true);
|
|
|
|
return parser.tree;
|
|
}
|
|
|
|
void mp_parse_tree_clear(mp_parse_tree_t *tree) {
|
|
mp_parse_chunk_t *chunk = tree->chunk;
|
|
while (chunk != NULL) {
|
|
mp_parse_chunk_t *next = chunk->union_.next;
|
|
m_del(byte, chunk, sizeof(mp_parse_chunk_t) + chunk->alloc);
|
|
chunk = next;
|
|
}
|
|
}
|
|
|
|
#endif // MICROPY_ENABLE_COMPILER
|