micropython/stm/main.c

1143 lines
32 KiB
C

#include <stdio.h>
#include <stm32f4xx.h>
#include <stm32f4xx_rcc.h>
#include <stm32f4xx_gpio.h>
#include <stm32f4xx_tim.h>
#include <stm32f4xx_pwr.h>
#include <stm32f4xx_rtc.h>
#include <stm32f4xx_usart.h>
#include <stm_misc.h>
#include "std.h"
#include "misc.h"
#include "mpyconfig.h"
#include "gc.h"
#include "systick.h"
#include "led.h"
#include "lcd.h"
#include "storage.h"
#include "mma.h"
#include "usart.h"
#include "usb.h"
#include "ff.h"
#include "audio.h"
static FATFS fatfs0;
extern uint32_t _heap_start;
void flash_error(int n) {
for (int i = 0; i < n; i++) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_R2, 0);
sys_tick_delay_ms(250);
led_state(PYB_LED_R1, 0);
led_state(PYB_LED_R2, 1);
sys_tick_delay_ms(250);
}
led_state(PYB_LED_R2, 0);
}
static void impl02_c_version(void) {
int x = 0;
while (x < 400) {
int y = 0;
while (y < 400) {
volatile int z = 0;
while (z < 400) {
z = z + 1;
}
y = y + 1;
}
x = x + 1;
}
}
#define PYB_USRSW_PORT (GPIOA)
#define PYB_USRSW_PIN (GPIO_Pin_13)
void sw_init(void) {
// make it an input with pull-up
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = PYB_USRSW_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(PYB_USRSW_PORT, &GPIO_InitStructure);
}
int sw_get(void) {
if (PYB_USRSW_PORT->IDR & PYB_USRSW_PIN) {
// pulled high, so switch is not pressed
return 0;
} else {
// pulled low, so switch is pressed
return 1;
}
}
void __fatal_error(const char *msg) {
lcd_print_strn("\nFATAL ERROR:\n", 14);
lcd_print_strn(msg, strlen(msg));
for (;;) {
flash_error(1);
}
}
#include "nlr.h"
#include "misc.h"
#include "lexer.h"
#include "lexerstm.h"
#include "mpyconfig.h"
#include "parse.h"
#include "compile.h"
#include "runtime.h"
#include "repl.h"
static qstr pyb_config_source_dir = 0;
static qstr pyb_config_main = 0;
py_obj_t pyb_source_dir(py_obj_t source_dir) {
pyb_config_source_dir = py_obj_get_qstr(source_dir);
return py_const_none;
}
py_obj_t pyb_main(py_obj_t main) {
pyb_config_main = py_obj_get_qstr(main);
return py_const_none;
}
// sync all file systems
py_obj_t pyb_sync(void) {
storage_flush();
return py_const_none;
}
py_obj_t pyb_delay(py_obj_t count) {
sys_tick_delay_ms(py_obj_get_int(count));
return py_const_none;
}
py_obj_t pyb_led(py_obj_t state) {
led_state(PYB_LED_G1, rt_is_true(state));
return state;
}
py_obj_t pyb_sw(void) {
if (sw_get()) {
return py_const_true;
} else {
return py_const_false;
}
}
/*
void g(uint i) {
printf("g:%d\n", i);
if (i & 1) {
nlr_jump((void*)(42 + i));
}
}
void f(void) {
nlr_buf_t nlr;
int i;
for (i = 0; i < 4; i++) {
printf("f:loop:%d:%p\n", i, &nlr);
if (nlr_push(&nlr) == 0) {
// normal
//printf("a:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
g(i);
printf("f:lp:%d:nrm\n", i);
nlr_pop();
} else {
// nlr
//printf("b:%p:%p %p %p %u\n", &nlr, nlr.ip, nlr.sp, nlr.prev, nlr.ret_val);
printf("f:lp:%d:nlr:%d\n", i, (int)nlr.ret_val);
}
}
}
void nlr_test(void) {
f(1);
}
*/
void fatality(void) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_G1, 1);
led_state(PYB_LED_R2, 1);
led_state(PYB_LED_G2, 1);
}
static const char fresh_boot_py[] =
"# boot.py -- run on boot-up\n"
"# can run arbitrary Python, but best to keep it minimal\n"
"\n"
"pyb.source_dir('/src')\n"
"pyb.main('main.py')\n"
"#pyb.usb_usr('VCP')\n"
"#pyb.usb_msd(True, 'dual partition')\n"
"#pyb.flush_cache(False)\n"
"#pyb.error_log('error.txt')\n"
;
// get lots of info about the board
static py_obj_t pyb_info(void) {
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
{
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
}
// to print info about memory
{
extern void *_sidata;
extern void *_sdata;
extern void *_edata;
extern void *_sbss;
extern void *_ebss;
extern void *_estack;
extern void *_etext;
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_etext=%p\n", &_etext);
printf("_heap_start=%p\n", &_heap_start);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" %lu total\n", info.total);
printf(" %lu : %lu\n", info.used, info.free);
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
}
// free space on flash
{
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
}
return py_const_none;
}
py_obj_t pyb_usart_send(py_obj_t data) {
usart_tx_char(py_obj_get_int(data));
return py_const_none;
}
py_obj_t pyb_usart_receive(void) {
return py_obj_new_int(usart_rx_char());
}
py_obj_t pyb_usart_status(void) {
if (usart_rx_any()) {
return py_const_true;
} else {
return py_const_false;
}
}
char *strdup(const char *str) {
uint32_t len = strlen(str);
char *s2 = m_new(char, len + 1);
memcpy(s2, str, len);
s2[len] = 0;
return s2;
}
#define READLINE_HIST_SIZE (8)
static const char *readline_hist[READLINE_HIST_SIZE] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
void stdout_tx_str(const char *str) {
usart_tx_str(str);
usb_vcp_send_str(str);
}
int readline(vstr_t *line, const char *prompt) {
stdout_tx_str(prompt);
int len = vstr_len(line);
int escape = 0;
int hist_num = 0;
for (;;) {
char c;
for (;;) {
if (usb_vcp_rx_any() != 0) {
c = usb_vcp_rx_get();
break;
} else if (usart_rx_any()) {
c = usart_rx_char();
break;
}
sys_tick_delay_ms(1);
}
if (escape == 0) {
if (c == 4 && vstr_len(line) == len) {
return 0;
} else if (c == '\r') {
stdout_tx_str("\r\n");
for (int i = READLINE_HIST_SIZE - 1; i > 0; i--) {
readline_hist[i] = readline_hist[i - 1];
}
readline_hist[0] = strdup(vstr_str(line));
return 1;
} else if (c == 27) {
escape = true;
} else if (c == 127) {
if (vstr_len(line) > len) {
vstr_cut_tail(line, 1);
stdout_tx_str("\b \b");
}
} else if (32 <= c && c <= 126) {
vstr_add_char(line, c);
stdout_tx_str(line->buf + line->len - 1);
}
} else if (escape == 1) {
if (c == '[') {
escape = 2;
} else {
escape = 0;
}
} else if (escape == 2) {
escape = 0;
if (c == 'A') {
// up arrow
if (hist_num < READLINE_HIST_SIZE && readline_hist[hist_num] != NULL) {
// erase line
for (int i = line->len - len; i > 0; i--) {
stdout_tx_str("\b \b");
}
// set line to history
line->len = len;
vstr_add_str(line, readline_hist[hist_num]);
// draw line
stdout_tx_str(readline_hist[hist_num]);
// increase hist num
hist_num += 1;
}
}
} else {
escape = 0;
}
sys_tick_delay_ms(10);
}
}
void do_repl(void) {
stdout_tx_str("Micro Python 0.5; STM32F405RG; PYBv2\r\n");
stdout_tx_str("Type \"help\" for more information.\r\n");
vstr_t line;
vstr_init(&line);
for (;;) {
vstr_reset(&line);
int ret = readline(&line, ">>> ");
if (ret == 0) {
// EOF
break;
}
if (vstr_len(&line) == 0) {
continue;
}
if (py_repl_is_compound_stmt(vstr_str(&line))) {
for (;;) {
vstr_add_char(&line, '\n');
int len = vstr_len(&line);
int ret = readline(&line, "... ");
if (ret == 0 || vstr_len(&line) == len) {
// done entering compound statement
break;
}
}
}
py_lexer_str_buf_t sb;
py_lexer_t *lex = py_lexer_new_from_str_len("<stdin>", vstr_str(&line), vstr_len(&line), false, &sb);
py_parse_node_t pn = py_parse(lex, PY_PARSE_SINGLE_INPUT);
py_lexer_free(lex);
if (pn != PY_PARSE_NODE_NULL) {
bool comp_ok = py_compile(pn, true);
if (comp_ok) {
py_obj_t module_fun = rt_make_function_from_id(1);
if (module_fun != py_const_none) {
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
rt_call_function_0(module_fun);
nlr_pop();
} else {
// uncaught exception
py_obj_print((py_obj_t)nlr.ret_val);
printf("\n");
}
}
}
}
}
stdout_tx_str("\r\n");
}
bool do_file(const char *filename) {
py_lexer_file_buf_t fb;
py_lexer_t *lex = py_lexer_new_from_file(filename, &fb);
if (lex == NULL) {
printf("could not open file '%s' for reading\n", filename);
return false;
}
py_parse_node_t pn = py_parse(lex, PY_PARSE_FILE_INPUT);
py_lexer_free(lex);
if (pn == PY_PARSE_NODE_NULL) {
return false;
}
bool comp_ok = py_compile(pn, false);
if (!comp_ok) {
return false;
}
py_obj_t module_fun = rt_make_function_from_id(1);
if (module_fun == py_const_none) {
return false;
}
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
rt_call_function_0(module_fun);
nlr_pop();
return true;
} else {
// uncaught exception
py_obj_print((py_obj_t)nlr.ret_val);
printf("\n");
return false;
}
}
#define RAM_START (0x20000000) // fixed for chip
#define HEAP_END (0x2001c000) // tunable
#define RAM_END (0x20020000) // fixed for chip
void gc_helper_get_regs_and_clean_stack(machine_uint_t *regs, machine_uint_t heap_end);
void gc_collect(void) {
uint32_t start = sys_tick_counter;
gc_collect_start();
gc_collect_root((void**)RAM_START, (((uint32_t)&_heap_start) - RAM_START) / 4);
machine_uint_t regs[10];
gc_helper_get_regs_and_clean_stack(regs, HEAP_END);
gc_collect_root((void**)HEAP_END, (RAM_END - HEAP_END) / 4); // will trace regs since they now live in this function on the stack
gc_collect_end();
uint32_t ticks = sys_tick_counter - start; // TODO implement a function that does this properly
gc_info_t info;
gc_info(&info);
printf("GC@%lu %lums\n", start, ticks);
printf(" %lu total\n", info.total);
printf(" %lu : %lu\n", info.used, info.free);
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
}
py_obj_t pyb_gc(void) {
gc_collect();
return py_const_none;
}
// PWM
// TIM2 and TIM5 have CH1, CH2, CH3, CH4 on PA0-PA3 respectively
// they are both 32-bit counters
// 16-bit prescaler
// TIM2_CH3 also on PB10 (used below)
void servo_init(void) {
// TIM2 clock enable
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
// GPIOC Configuration: TIM2_CH3 (PB10)
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOB, &GPIO_InitStructure);
// Connect TIM2 pins to AF1
GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_TIM2);
// Compute the prescaler value so TIM2 runs at 100kHz
uint16_t PrescalerValue = (uint16_t) ((SystemCoreClock / 2) / 100000) - 1;
// Time base configuration
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_TimeBaseStructure.TIM_Period = 2000; // timer cycles at 50Hz
TIM_TimeBaseStructure.TIM_Prescaler = PrescalerValue;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
// PWM1 Mode configuration: Channel1
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 150; // units of 10us
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC3Init(TIM2, &TIM_OCInitStructure);
// ?
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Enable);
// ?
TIM_ARRPreloadConfig(TIM2, ENABLE);
// TIM2 enable counter
TIM_Cmd(TIM2, ENABLE);
}
py_obj_t pyb_servo_set(py_obj_t value) {
int v = py_obj_get_int(value);
if (v < 100) { v = 100; }
if (v > 200) { v = 200; }
TIM2->CCR3 = v;
return py_const_none;
}
py_obj_t pyb_pwm_set(py_obj_t period, py_obj_t pulse) {
int pe = py_obj_get_int(period);
int pu = py_obj_get_int(pulse);
TIM2->ARR = pe;
TIM2->CCR3 = pu;
return py_const_none;
}
#define MMA_ADDR (0x4c)
py_obj_t pyb_mma_read() {
mma_start(MMA_ADDR, 1);
mma_send_byte(0);
mma_restart(MMA_ADDR, 0);
py_obj_t data[4];
for (int i = 3; i >= 1; i--) {
int v = mma_read_ack() & 0x3f;
if (v & 0x20) {
v |= ~0x1f;
}
data[i] = py_obj_new_int(v);
}
data[0] = py_obj_new_int(mma_read_nack());
return rt_build_tuple(4, data); // items in reverse order in data
}
py_obj_t pyb_hid_send_report(py_obj_t arg) {
py_obj_t *items = py_obj_get_array_fixed_n(arg, 4);
uint8_t data[4];
data[0] = py_obj_get_int(items[0]);
data[1] = py_obj_get_int(items[1]);
data[2] = py_obj_get_int(items[2]);
data[3] = py_obj_get_int(items[3]);
usb_hid_send_report(data);
return py_const_none;
}
static void rtc_init(void) {
/* Enable the PWR clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
/* Allow access to RTC */
PWR_BackupAccessCmd(ENABLE);
/* Enable the LSE OSC */
RCC_LSEConfig(RCC_LSE_ON);
/* Wait till LSE is ready */
while(RCC_GetFlagStatus(RCC_FLAG_LSERDY) == RESET) {
}
/* Select the RTC Clock Source */
RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);
/* ck_spre(1Hz) = RTCCLK(LSE) /(uwAsynchPrediv + 1)*(uwSynchPrediv + 1)*/
uint32_t uwSynchPrediv = 0xFF;
uint32_t uwAsynchPrediv = 0x7F;
/* Enable the RTC Clock */
RCC_RTCCLKCmd(ENABLE);
/* Wait for RTC APB registers synchronisation */
RTC_WaitForSynchro();
/* Configure the RTC data register and RTC prescaler */
RTC_InitTypeDef RTC_InitStructure;
RTC_InitStructure.RTC_AsynchPrediv = uwAsynchPrediv;
RTC_InitStructure.RTC_SynchPrediv = uwSynchPrediv;
RTC_InitStructure.RTC_HourFormat = RTC_HourFormat_24;
RTC_Init(&RTC_InitStructure);
// Set the date (BCD)
RTC_DateTypeDef RTC_DateStructure;
RTC_DateStructure.RTC_Year = 0x13;
RTC_DateStructure.RTC_Month = RTC_Month_October;
RTC_DateStructure.RTC_Date = 0x26;
RTC_DateStructure.RTC_WeekDay = RTC_Weekday_Saturday;
RTC_SetDate(RTC_Format_BCD, &RTC_DateStructure);
// Set the time (BCD)
RTC_TimeTypeDef RTC_TimeStructure;
RTC_TimeStructure.RTC_H12 = RTC_H12_AM;
RTC_TimeStructure.RTC_Hours = 0x01;
RTC_TimeStructure.RTC_Minutes = 0x53;
RTC_TimeStructure.RTC_Seconds = 0x00;
RTC_SetTime(RTC_Format_BCD, &RTC_TimeStructure);
// Indicator for the RTC configuration
//RTC_WriteBackupRegister(RTC_BKP_DR0, 0x32F2);
}
py_obj_t pyb_rtc_read(void) {
RTC_TimeTypeDef RTC_TimeStructure;
RTC_GetTime(RTC_Format_BIN, &RTC_TimeStructure);
printf("%02d:%02d:%02d\n", RTC_TimeStructure.RTC_Hours, RTC_TimeStructure.RTC_Minutes, RTC_TimeStructure.RTC_Seconds);
return py_const_none;
}
py_obj_t pyb_lcd8(py_obj_t pos, py_obj_t val) {
int pos_val = py_obj_get_int(pos);
int val_val = py_obj_get_int(val);
lcd_draw_pixel_8(pos_val, val_val);
return py_const_none;
}
void file_obj_print(py_obj_t o) {
FIL *fp;
py_user_get_data(o, (machine_uint_t*)&fp, NULL);
printf("<file %p>", fp);
}
py_obj_t file_obj_read(py_obj_t self, py_obj_t arg) {
FIL *fp;
py_user_get_data(self, (machine_uint_t*)&fp, NULL);
int n = py_obj_get_int(arg);
char *buf = m_new(char, n + 1);
UINT n_out;
f_read(fp, buf, n, &n_out);
buf[n_out] = 0;
return py_obj_new_str(qstr_from_str_take(buf));
}
py_obj_t file_obj_write(py_obj_t self, py_obj_t arg) {
FIL *fp;
py_user_get_data(self, (machine_uint_t*)&fp, NULL);
const char *s = qstr_str(py_obj_get_qstr(arg));
UINT n_out;
FRESULT res = f_write(fp, s, strlen(s), &n_out);
if (res != FR_OK) {
printf("File error: could not write to file; error code %d\n", res);
} else if (n_out != strlen(s)) {
printf("File error: could not write all data to file; wrote %d / %d bytes\n", n_out, strlen(s));
}
return py_const_none;
}
py_obj_t file_obj_close(py_obj_t self) {
FIL *fp;
py_user_get_data(self, (machine_uint_t*)&fp, NULL);
f_close(fp);
return py_const_none;
}
// TODO gc hook to close the file if not already closed
const py_user_info_t file_obj_info = {
"File",
file_obj_print,
{
{"read", 1, file_obj_read},
{"write", 1, file_obj_write},
{"close", 0, file_obj_close},
{NULL, 0, NULL},
}
};
py_obj_t pyb_io_open(py_obj_t o_filename, py_obj_t o_mode) {
const char *filename = qstr_str(py_obj_get_qstr(o_filename));
const char *mode = qstr_str(py_obj_get_qstr(o_mode));
FIL *fp = m_new(FIL, 1);
if (mode[0] == 'r') {
// open for reading
FRESULT res = f_open(fp, filename, FA_READ);
if (res != FR_OK) {
printf("FileNotFoundError: [Errno 2] No such file or directory: '%s'\n", filename);
return py_const_none;
}
} else if (mode[0] == 'w') {
// open for writing, truncate the file first
FRESULT res = f_open(fp, filename, FA_WRITE | FA_CREATE_ALWAYS);
if (res != FR_OK) {
printf("?FileError: could not create file: '%s'\n", filename);
return py_const_none;
}
} else {
printf("ValueError: invalid mode: '%s'\n", mode);
return py_const_none;
}
return py_obj_new_user(&file_obj_info, (machine_uint_t)fp, 0);
}
int main(void) {
// TODO disable JTAG
// set interrupt priority config to use all 4 bits for pre-empting
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
// enable the CCM RAM and the GPIO's
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN;
// configure SDIO pins to be high to start with (apparently makes it more robust)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOC, &GPIO_InitStructure);
// Configure PD.02 CMD line
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_Init(GPIOD, &GPIO_InitStructure);
}
// basic sub-system init
sys_tick_init();
led_init();
rtc_init();
// turn on LED to indicate bootup
led_state(PYB_LED_G1, 1);
// more sub-system init
sw_init();
storage_init();
usart_init();
soft_reset:
// LCD init
lcd_init();
// GC init
gc_init(&_heap_start, (void*)HEAP_END);
// Micro Python init
qstr_init();
rt_init();
// servo
servo_init();
// audio
audio_init();
// add some functions to the python namespace
{
py_obj_t m = py_module_new();
rt_store_attr(m, qstr_from_str_static("info"), rt_make_function_0(pyb_info));
rt_store_attr(m, qstr_from_str_static("source_dir"), rt_make_function_1(pyb_source_dir));
rt_store_attr(m, qstr_from_str_static("main"), rt_make_function_1(pyb_main));
rt_store_attr(m, qstr_from_str_static("sync"), rt_make_function_0(pyb_sync));
rt_store_attr(m, qstr_from_str_static("gc"), rt_make_function_0(pyb_gc));
rt_store_attr(m, qstr_from_str_static("delay"), rt_make_function_1(pyb_delay));
rt_store_attr(m, qstr_from_str_static("led"), rt_make_function_1(pyb_led));
rt_store_attr(m, qstr_from_str_static("sw"), rt_make_function_0(pyb_sw));
rt_store_attr(m, qstr_from_str_static("servo"), rt_make_function_1(pyb_servo_set));
rt_store_attr(m, qstr_from_str_static("pwm"), rt_make_function_2(pyb_pwm_set));
rt_store_attr(m, qstr_from_str_static("mma"), rt_make_function_0(pyb_mma_read));
rt_store_attr(m, qstr_from_str_static("hid"), rt_make_function_1(pyb_hid_send_report));
rt_store_attr(m, qstr_from_str_static("time"), rt_make_function_0(pyb_rtc_read));
rt_store_attr(m, qstr_from_str_static("uout"), rt_make_function_1(pyb_usart_send));
rt_store_attr(m, qstr_from_str_static("uin"), rt_make_function_0(pyb_usart_receive));
rt_store_attr(m, qstr_from_str_static("ustat"), rt_make_function_0(pyb_usart_status));
rt_store_attr(m, qstr_from_str_static("lcd8"), rt_make_function_2(pyb_lcd8));
rt_store_name(qstr_from_str_static("pyb"), m);
rt_store_name(qstr_from_str_static("open"), rt_make_function_2(pyb_io_open));
}
// print a message to the LCD
lcd_print_str(" micro py board\n");
// local filesystem init
{
// try to mount the flash
FRESULT res = f_mount(&fatfs0, "0:", 1);
if (res == FR_OK) {
// mount sucessful
} else if (res == FR_NO_FILESYSTEM) {
// no filesystem, so create a fresh one
// LED on to indicate creation of LFS
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
res = f_mkfs("0:", 0, 0);
if (res == FR_OK) {
// success creating fresh LFS
} else {
__fatal_error("could not create LFS");
}
// keep LED on for at least 200ms
sys_tick_wait_at_least(stc, 200);
led_state(PYB_LED_R2, 0);
} else {
__fatal_error("could not access LFS");
}
}
// make sure we have a /boot.py
{
FILINFO fno;
FRESULT res = f_stat("0:/boot.py", &fno);
if (res == FR_OK) {
if (fno.fattrib & AM_DIR) {
// exists as a directory
// TODO handle this case
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
} else {
// exists as a file, good!
}
} else {
// doesn't exist, create fresh file
// LED on to indicate creation of boot.py
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
FIL fp;
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(stc, 200);
led_state(PYB_LED_R2, 0);
}
}
// run /boot.py
if (!do_file("0:/boot.py")) {
flash_error(4);
}
// USB
usb_init();
// MMA
{
// init and reset address to zero
mma_init();
mma_start(MMA_ADDR, 1);
mma_send_byte(0);
mma_stop();
/*
// read and print all 11 registers
mma_start(MMA_ADDR, 1);
mma_send_byte(0);
mma_restart(MMA_ADDR, 0);
for (int i = 0; i <= 0xa; i++) {
int data;
if (i == 0xa) {
data = mma_read_nack();
} else {
data = mma_read_ack();
}
printf(" %02x", data);
}
printf("\n");
*/
// put into active mode
mma_start(MMA_ADDR, 1);
mma_send_byte(7); // mode
mma_send_byte(1); // active mode
mma_stop();
/*
// infinite loop to read values
for (;;) {
sys_tick_delay_ms(500);
mma_start(MMA_ADDR, 1);
mma_send_byte(0);
mma_restart(MMA_ADDR, 0);
for (int i = 0; i <= 3; i++) {
int data;
if (i == 3) {
data = mma_read_nack();
printf(" %02x\n", data);
} else {
data = mma_read_ack() & 0x3f;
if (data & 0x20) {
data |= ~0x1f;
}
printf(" % 2d", data);
}
}
}
*/
}
// turn boot-up LED off
led_state(PYB_LED_G1, 0);
// run main script
{
vstr_t *vstr = vstr_new();
vstr_add_str(vstr, "0:/");
if (pyb_config_source_dir == 0) {
vstr_add_str(vstr, "src");
} else {
vstr_add_str(vstr, qstr_str(pyb_config_source_dir));
}
vstr_add_char(vstr, '/');
if (pyb_config_main == 0) {
vstr_add_str(vstr, "main.py");
} else {
vstr_add_str(vstr, qstr_str(pyb_config_main));
}
if (!do_file(vstr_str(vstr))) {
flash_error(3);
}
vstr_free(vstr);
}
//printf("init;al=%u\n", m_get_total_bytes_allocated()); // 1600, due to qstr_init
//sys_tick_delay_ms(1000);
// Python!
if (0) {
//const char *pysrc = "def f():\n x=x+1\nprint(42)\n";
const char *pysrc =
// impl01.py
/*
"x = 0\n"
"while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n";
*/
// impl02.py
/*
"#@micropython.native\n"
"def f():\n"
" x = 0\n"
" while x < 400:\n"
" y = 0\n"
" while y < 400:\n"
" z = 0\n"
" while z < 400:\n"
" z = z + 1\n"
" y = y + 1\n"
" x = x + 1\n"
"f()\n";
*/
/*
"print('in python!')\n"
"x = 0\n"
"while x < 4:\n"
" pyb_led(True)\n"
" pyb_delay(201)\n"
" pyb_led(False)\n"
" pyb_delay(201)\n"
" x += 1\n"
"print('press me!')\n"
"while True:\n"
" pyb_led(pyb_sw())\n";
*/
/*
// impl16.py
"@micropython.asm_thumb\n"
"def delay(r0):\n"
" b(loop_entry)\n"
" label(loop1)\n"
" movw(r1, 55999)\n"
" label(loop2)\n"
" subs(r1, r1, 1)\n"
" cmp(r1, 0)\n"
" bgt(loop2)\n"
" subs(r0, r0, 1)\n"
" label(loop_entry)\n"
" cmp(r0, 0)\n"
" bgt(loop1)\n"
"print('in python!')\n"
"@micropython.native\n"
"def flash(n):\n"
" x = 0\n"
" while x < n:\n"
" pyb_led(True)\n"
" delay(249)\n"
" pyb_led(False)\n"
" delay(249)\n"
" x = x + 1\n"
"flash(20)\n";
*/
// impl18.py
/*
"# basic exceptions\n"
"x = 1\n"
"try:\n"
" x.a()\n"
"except:\n"
" print(x)\n";
*/
// impl19.py
"# for loop\n"
"def f():\n"
" for x in range(400):\n"
" for y in range(400):\n"
" for z in range(400):\n"
" pass\n"
"f()\n";
py_lexer_str_buf_t py_lexer_str_buf;
py_lexer_t *lex = py_lexer_new_from_str_len("<stdin>", pysrc, strlen(pysrc), false, &py_lexer_str_buf);
// nalloc=1740;6340;6836 -> 140;4600;496 bytes for lexer, parser, compiler
printf("lex; al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
py_parse_node_t pn = py_parse(lex, PY_PARSE_FILE_INPUT);
py_lexer_free(lex);
if (pn != PY_PARSE_NODE_NULL) {
printf("pars;al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
//parse_node_show(pn, 0);
bool comp_ok = py_compile(pn, false);
printf("comp;al=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
if (!comp_ok) {
printf("compile error\n");
} else {
// execute it!
py_obj_t module_fun = rt_make_function_from_id(1);
// flash once
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
py_obj_t ret = rt_call_function_0(module_fun);
printf("done! got: ");
py_obj_print(ret);
printf("\n");
nlr_pop();
} else {
// uncaught exception
printf("exception: ");
py_obj_print((py_obj_t)nlr.ret_val);
printf("\n");
}
// flash once
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
sys_tick_delay_ms(1000);
printf("nalloc=%u\n", m_get_total_bytes_allocated());
sys_tick_delay_ms(1000);
}
}
}
// HID example
if (0) {
uint8_t data[4];
data[0] = 0;
data[1] = 1;
data[2] = -2;
data[3] = 0;
for (;;) {
if (sw_get()) {
data[0] = 0x01; // 0x04 is middle, 0x02 is right
} else {
data[0] = 0x00;
}
mma_start(MMA_ADDR, 1);
mma_send_byte(0);
mma_restart(MMA_ADDR, 0);
for (int i = 0; i <= 1; i++) {
int v = mma_read_ack() & 0x3f;
if (v & 0x20) {
v |= ~0x1f;
}
data[1 + i] = v;
}
mma_read_nack();
usb_hid_send_report(data);
sys_tick_delay_ms(15);
}
}
do_repl();
// benchmark C version of impl02.py
if (0) {
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
impl02_c_version();
led_state(PYB_LED_G1, 1);
sys_tick_delay_ms(100);
led_state(PYB_LED_G1, 0);
}
// SD card testing
if (1) {
extern void sdio_init(void);
sdio_init();
}
printf("PYB: sync filesystems\n");
pyb_sync();
printf("PYB: soft reboot\n");
goto soft_reset;
}
double __aeabi_f2d(float x) {
// TODO
return 0.0;
}
float __aeabi_d2f(double x) {
// TODO
return 0.0;
}
double sqrt(double x) {
// TODO
return 0.0;
}