2999 lines
98 KiB
C
2999 lines
98 KiB
C
/**
|
|
******************************************************************************
|
|
* @file stm32f4xx_hal_cryp_ex.c
|
|
* @author MCD Application Team
|
|
* @version V1.0.0
|
|
* @date 18-February-2014
|
|
* @brief Extended CRYP HAL module driver
|
|
* This file provides firmware functions to manage the following
|
|
* functionalities of CRYP extension peripheral:
|
|
* + Extended AES processing functions
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### How to use this driver #####
|
|
==============================================================================
|
|
[..]
|
|
The CRYP Extension HAL driver can be used as follows:
|
|
(#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
|
|
(##) Enable the CRYP interface clock using __CRYP_CLK_ENABLE()
|
|
(##) In case of using interrupts (e.g. HAL_CRYPEx_AESGCM_Encrypt_IT())
|
|
(+++) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
|
|
(+++) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
|
|
(+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
|
|
(##) In case of using DMA to control data transfer (e.g. HAL_AES_ECB_Encrypt_DMA())
|
|
(+++) Enable the DMAx interface clock using __DMAx_CLK_ENABLE()
|
|
(+++) Configure and enable two DMA streams one for managing data transfer from
|
|
memory to peripheral (input stream) and another stream for managing data
|
|
transfer from peripheral to memory (output stream)
|
|
(+++) Associate the initilalized DMA handle to the CRYP DMA handle
|
|
using __HAL_LINKDMA()
|
|
(+++) Configure the priority and enable the NVIC for the transfer complete
|
|
interrupt on the two DMA Streams. The output stream should have higher
|
|
priority than the input stream HAL_NVIC_SetPriority() and HAL_NVIC_EnableIRQ()
|
|
(#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly:
|
|
(##) The data type: 1-bit, 8-bit, 16-bit and 32-bit
|
|
(##) The key size: 128, 192 and 256. This parameter is relevant only for AES
|
|
(##) The encryption/decryption key. Its size depends on the algorithm
|
|
used for encryption/decryption
|
|
(##) The initialization vector (counter). It is not used ECB mode.
|
|
(#)Three processing (encryption/decryption) functions are available:
|
|
(##) Polling mode: encryption and decryption APIs are blocking functions
|
|
i.e. they process the data and wait till the processing is finished
|
|
e.g. HAL_CRYPEx_AESGCM_Encrypt()
|
|
(##) Interrupt mode: encryption and decryption APIs are not blocking functions
|
|
i.e. they process the data under interrupt
|
|
e.g. HAL_CRYPEx_AESGCM_Encrypt_IT()
|
|
(##) DMA mode: encryption and decryption APIs are not blocking functions
|
|
i.e. the data transfer is ensured by DMA
|
|
e.g. HAL_CRYPEx_AESGCM_Encrypt_DMA()
|
|
(#)When the processing function is called at first time after HAL_CRYP_Init()
|
|
the CRYP peripheral is initialized and processes the buffer in input.
|
|
At second call, the processing function performs an append of the already
|
|
processed buffer.
|
|
When a new data block is to be processed, call HAL_CRYP_Init() then the
|
|
processing function.
|
|
(#)In AES-GCM and AES-CCM modes are an authenticated encryption algorithms
|
|
which provide authentication messages.
|
|
HAL_AES_GCM_Finish() and HAL_AES_CCM_Finish() are used to provide those
|
|
authentication messages.
|
|
Call those functions after the processing ones (polling, interrupt or DMA).
|
|
e.g. in AES-CCM mode call HAL_CRYPEx_AESCCM_Encrypt() to encrypt the plain data
|
|
then call HAL_CRYPEx_AESCCM_Finish() to get the authentication message
|
|
(#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.
|
|
|
|
@endverbatim
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "stm32f4xx_hal.h"
|
|
|
|
/** @addtogroup STM32F4xx_HAL_Driver
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup CRYPEx
|
|
* @brief CRYP Extension HAL module driver.
|
|
* @{
|
|
*/
|
|
|
|
#ifdef HAL_CRYP_MODULE_ENABLED
|
|
|
|
#if defined(STM32F437xx) || defined(STM32F439xx)
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* Private variables ---------------------------------------------------------*/
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize);
|
|
static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize);
|
|
static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout);
|
|
static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout);
|
|
static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma);
|
|
static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma);
|
|
static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma);
|
|
static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);
|
|
|
|
/* Private functions ---------------------------------------------------------*/
|
|
|
|
/** @defgroup CRYPEx_Private_Functions
|
|
* @{
|
|
*/
|
|
|
|
/** @defgroup CRYPEx_Group1 Extended AES processing functions
|
|
* @brief Extended processing functions.
|
|
*
|
|
@verbatim
|
|
==============================================================================
|
|
##### Extended AES processing functions #####
|
|
==============================================================================
|
|
[..] This section provides functions allowing to:
|
|
(+) Encrypt plaintext using AES-128/192/256 using GCM and CCM chaining modes
|
|
(+) Decrypt cyphertext using AES-128/192/256 using GCM and CCM chaining modes
|
|
(+) Finish the processing. This function is available only for GCM and CCM
|
|
[..] Three processing methods are available:
|
|
(+) Polling mode
|
|
(+) Interrupt mode
|
|
(+) DMA mode
|
|
|
|
@endverbatim
|
|
* @{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES CCM encryption mode then
|
|
* encrypt pPlainData. The cypher data are available in pCypherData.
|
|
* @param hcryp: CRYP handle
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t headersize = hcryp->Init.HeaderSize;
|
|
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
|
|
uint32_t loopcounter = 0;
|
|
uint32_t bufferidx = 0;
|
|
uint8_t blockb0[16] = {0};/* Block B0 */
|
|
uint8_t ctr[16] = {0}; /* Counter */
|
|
uint32_t b0addr = (uint32_t)blockb0;
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/************************ Formatting the header block *********************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
|
|
if(headersize < 65280)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
|
|
headersize += 2;
|
|
}
|
|
else
|
|
{
|
|
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFF;
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFE;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
|
|
headersize += 6;
|
|
}
|
|
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
|
|
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
|
|
}
|
|
/* Check if the header size is modulo 16 */
|
|
if ((headersize % 16) != 0)
|
|
{
|
|
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
|
|
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = 0;
|
|
}
|
|
/* Set the header size to modulo 16 */
|
|
headersize = ((headersize/16) + 1) * 16;
|
|
}
|
|
/* Set the pointer headeraddr to hcryp->Init.pScratch */
|
|
headeraddr = (uint32_t)hcryp->Init.pScratch;
|
|
}
|
|
/*********************** Formatting the block B0 **************************/
|
|
if(headersize != 0)
|
|
{
|
|
blockb0[0] = 0x40;
|
|
}
|
|
/* Flags byte */
|
|
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
|
|
|
|
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
|
|
}
|
|
for ( ; loopcounter < 13; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = 0;
|
|
}
|
|
|
|
blockb0[14] = (Size >> 8);
|
|
blockb0[15] = (Size & 0xFF);
|
|
|
|
/************************* Formatting the initial counter *****************/
|
|
/* Byte 0:
|
|
Bits 7 and 6 are reserved and shall be set to 0
|
|
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter blocks
|
|
are distinct from B0
|
|
Bits 0, 1, and 2 contain the same encoding of q as in B0
|
|
*/
|
|
ctr[0] = blockb0[0] & 0x07;
|
|
/* byte 1 to NonceSize is the IV (Nonce) */
|
|
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
|
|
{
|
|
ctr[loopcounter] = blockb0[loopcounter];
|
|
}
|
|
/* Set the LSB to 1 */
|
|
ctr[15] |= 0x01;
|
|
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES CCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B);
|
|
|
|
/* Select init phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
|
|
|
|
b0addr = (uint32_t)blockb0;
|
|
/* Write the blockb0 block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/***************************** Header phase *******************************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Select header phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
|
|
{
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Write the header block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
}
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Save formatted counter into the scratch buffer pScratch */
|
|
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
|
|
}
|
|
/* Reset bit 0 */
|
|
hcryp->Init.pScratch[15] &= 0xfe;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Write Plain Data and Get Cypher Data */
|
|
if(CRYPEx_GCMCCM_ProcessData(hcryp,pPlainData, Size, pCypherData, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES GCM encryption mode then
|
|
* encrypt pPlainData. The cypher data are available in pCypherData.
|
|
* @param hcryp: CRYP handle
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES GCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the header phase */
|
|
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Write Plain Data and Get Cypher Data */
|
|
if(CRYPEx_GCMCCM_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES GCM decryption mode then
|
|
* decrypted pCypherData. The cypher data are available in pPlainData.
|
|
* @param hcryp: CRYP handle
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES GCM decryption mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get the timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Set the header phase */
|
|
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Write Plain Data and Get Cypher Data */
|
|
if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Computes the authentication TAG.
|
|
* @param hcryp: CRYP handle
|
|
* @param Size: Total length of the plain/cyphertext buffer
|
|
* @param AuthTag: Pointer to the authentication buffer
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Finish(CRYP_HandleTypeDef *hcryp, uint16_t Size, uint8_t *AuthTag, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t headerlength = hcryp->Init.HeaderSize * 8; /* Header length in bits */
|
|
uint32_t inputlength = Size * 8; /* input length in bits */
|
|
uint32_t tagaddr = (uint32_t)AuthTag;
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
|
|
{
|
|
/* Change the CRYP phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_FINAL;
|
|
|
|
/* Disable CRYP to start the final phase */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Select final phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_FINAL);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Write the number of bits in header (64 bits) followed by the number of bits
|
|
in the payload */
|
|
if(hcryp->Init.DataType == CRYP_DATATYPE_1B)
|
|
{
|
|
CRYP->DR = 0;
|
|
CRYP->DR = __RBIT(headerlength);
|
|
CRYP->DR = 0;
|
|
CRYP->DR = __RBIT(inputlength);
|
|
}
|
|
else if(hcryp->Init.DataType == CRYP_DATATYPE_8B)
|
|
{
|
|
CRYP->DR = 0;
|
|
CRYP->DR = __REV(headerlength);
|
|
CRYP->DR = 0;
|
|
CRYP->DR = __REV(inputlength);
|
|
}
|
|
else if(hcryp->Init.DataType == CRYP_DATATYPE_16B)
|
|
{
|
|
CRYP->DR = 0;
|
|
CRYP->DR = __REV16(headerlength);
|
|
CRYP->DR = 0;
|
|
CRYP->DR = __REV16(inputlength);
|
|
}
|
|
else if(hcryp->Init.DataType == CRYP_DATATYPE_32B)
|
|
{
|
|
CRYP->DR = 0;
|
|
CRYP->DR = (uint32_t)(headerlength);
|
|
CRYP->DR = 0;
|
|
CRYP->DR = (uint32_t)(inputlength);
|
|
}
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Read the Auth TAG in the IN FIFO */
|
|
*(uint32_t*)(tagaddr) = CRYP->DOUT;
|
|
tagaddr+=4;
|
|
*(uint32_t*)(tagaddr) = CRYP->DOUT;
|
|
tagaddr+=4;
|
|
*(uint32_t*)(tagaddr) = CRYP->DOUT;
|
|
tagaddr+=4;
|
|
*(uint32_t*)(tagaddr) = CRYP->DOUT;
|
|
}
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Computes the authentication TAG for AES CCM mode.
|
|
* @note This API is called after HAL_AES_CCM_Encrypt()/HAL_AES_CCM_Decrypt()
|
|
* @param hcryp: CRYP handle
|
|
* @param AuthTag: Pointer to the authentication buffer
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Finish(CRYP_HandleTypeDef *hcryp, uint8_t *AuthTag, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t tagaddr = (uint32_t)AuthTag;
|
|
uint32_t ctraddr = (uint32_t)hcryp->Init.pScratch;
|
|
uint32_t temptag[4] = {0}; /* Temporary TAG (MAC) */
|
|
uint32_t loopcounter;
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_PROCESS)
|
|
{
|
|
/* Change the CRYP phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_FINAL;
|
|
|
|
/* Disable CRYP to start the final phase */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Select final phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_FINAL);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Write the counter block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)ctraddr;
|
|
ctraddr+=4;
|
|
CRYP->DR = *(uint32_t*)ctraddr;
|
|
ctraddr+=4;
|
|
CRYP->DR = *(uint32_t*)ctraddr;
|
|
ctraddr+=4;
|
|
CRYP->DR = *(uint32_t*)ctraddr;
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Read the Auth TAG in the IN FIFO */
|
|
temptag[0] = CRYP->DOUT;
|
|
temptag[1] = CRYP->DOUT;
|
|
temptag[2] = CRYP->DOUT;
|
|
temptag[3] = CRYP->DOUT;
|
|
}
|
|
|
|
/* Copy temporary authentication TAG in user TAG buffer */
|
|
for(loopcounter = 0; loopcounter < hcryp->Init.TagSize ; loopcounter++)
|
|
{
|
|
/* Set the authentication TAG buffer */
|
|
*((uint8_t*)tagaddr+loopcounter) = *((uint8_t*)temptag+loopcounter);
|
|
}
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES CCM decryption mode then
|
|
* decrypted pCypherData. The cypher data are available in pPlainData.
|
|
* @param hcryp: CRYP handle
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @param Timeout: Timeout duration
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t headersize = hcryp->Init.HeaderSize;
|
|
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
|
|
uint32_t loopcounter = 0;
|
|
uint32_t bufferidx = 0;
|
|
uint8_t blockb0[16] = {0};/* Block B0 */
|
|
uint8_t ctr[16] = {0}; /* Counter */
|
|
uint32_t b0addr = (uint32_t)blockb0;
|
|
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/************************ Formatting the header block *********************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
|
|
if(headersize < 65280)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
|
|
headersize += 2;
|
|
}
|
|
else
|
|
{
|
|
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFF;
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFE;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
|
|
headersize += 6;
|
|
}
|
|
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
|
|
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
|
|
}
|
|
/* Check if the header size is modulo 16 */
|
|
if ((headersize % 16) != 0)
|
|
{
|
|
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
|
|
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = 0;
|
|
}
|
|
/* Set the header size to modulo 16 */
|
|
headersize = ((headersize/16) + 1) * 16;
|
|
}
|
|
/* Set the pointer headeraddr to hcryp->Init.pScratch */
|
|
headeraddr = (uint32_t)hcryp->Init.pScratch;
|
|
}
|
|
/*********************** Formatting the block B0 **************************/
|
|
if(headersize != 0)
|
|
{
|
|
blockb0[0] = 0x40;
|
|
}
|
|
/* Flags byte */
|
|
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
|
|
|
|
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
|
|
}
|
|
for ( ; loopcounter < 13; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = 0;
|
|
}
|
|
|
|
blockb0[14] = (Size >> 8);
|
|
blockb0[15] = (Size & 0xFF);
|
|
|
|
/************************* Formatting the initial counter *****************/
|
|
/* Byte 0:
|
|
Bits 7 and 6 are reserved and shall be set to 0
|
|
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
|
|
blocks are distinct from B0
|
|
Bits 0, 1, and 2 contain the same encoding of q as in B0
|
|
*/
|
|
ctr[0] = blockb0[0] & 0x07;
|
|
/* byte 1 to NonceSize is the IV (Nonce) */
|
|
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
|
|
{
|
|
ctr[loopcounter] = blockb0[loopcounter];
|
|
}
|
|
/* Set the LSB to 1 */
|
|
ctr[15] |= 0x01;
|
|
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES CCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B);
|
|
|
|
/* Select init phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
|
|
|
|
b0addr = (uint32_t)blockb0;
|
|
/* Write the blockb0 block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/***************************** Header phase *******************************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Select header phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
|
|
|
|
/* Enable Crypto processor */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/* Write the header block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
}
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Save formatted counter into the scratch buffer pScratch */
|
|
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
|
|
}
|
|
/* Reset bit 0 */
|
|
hcryp->Init.pScratch[15] &= 0xfe;
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Write Plain Data and Get Cypher Data */
|
|
if(CRYPEx_GCMCCM_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES GCM encryption mode using IT.
|
|
* @param hcryp: CRYP handle
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t inputaddr;
|
|
uint32_t outputaddr;
|
|
|
|
if(hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Get the buffer addresses and sizes */
|
|
hcryp->CrypInCount = Size;
|
|
hcryp->pCrypInBuffPtr = pPlainData;
|
|
hcryp->pCrypOutBuffPtr = pCypherData;
|
|
hcryp->CrypOutCount = Size;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES GCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Enable CRYP to start the init phase */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
|
|
}
|
|
}
|
|
|
|
/* Set the header phase */
|
|
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
if(Size != 0)
|
|
{
|
|
/* Enable Interrupts */
|
|
__HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI);
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
}
|
|
else
|
|
{
|
|
/* Process Locked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/* Change the CRYP state and phase */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else if (__HAL_CRYP_GET_IT(CRYP_IT_INI))
|
|
{
|
|
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
|
|
/* Write the Input block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
hcryp->pCrypInBuffPtr += 16;
|
|
hcryp->CrypInCount -= 16;
|
|
if(hcryp->CrypInCount == 0)
|
|
{
|
|
__HAL_CRYP_DISABLE_IT(CRYP_IT_INI);
|
|
/* Call the Input data transfer complete callback */
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
}
|
|
}
|
|
else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI))
|
|
{
|
|
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
|
|
/* Read the Output block from the Output FIFO */
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
hcryp->pCrypOutBuffPtr += 16;
|
|
hcryp->CrypOutCount -= 16;
|
|
if(hcryp->CrypOutCount == 0)
|
|
{
|
|
__HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI);
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Call Input transfer complete callback */
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
|
|
* @param hcryp: CRYP handle
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t inputaddr;
|
|
uint32_t outputaddr;
|
|
|
|
uint32_t headersize = hcryp->Init.HeaderSize;
|
|
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
|
|
uint32_t loopcounter = 0;
|
|
uint32_t bufferidx = 0;
|
|
uint8_t blockb0[16] = {0};/* Block B0 */
|
|
uint8_t ctr[16] = {0}; /* Counter */
|
|
uint32_t b0addr = (uint32_t)blockb0;
|
|
|
|
if(hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
hcryp->CrypInCount = Size;
|
|
hcryp->pCrypInBuffPtr = pPlainData;
|
|
hcryp->pCrypOutBuffPtr = pCypherData;
|
|
hcryp->CrypOutCount = Size;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/************************ Formatting the header block *******************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
|
|
if(headersize < 65280)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
|
|
headersize += 2;
|
|
}
|
|
else
|
|
{
|
|
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFF;
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFE;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
|
|
headersize += 6;
|
|
}
|
|
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
|
|
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
|
|
}
|
|
/* Check if the header size is modulo 16 */
|
|
if ((headersize % 16) != 0)
|
|
{
|
|
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
|
|
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = 0;
|
|
}
|
|
/* Set the header size to modulo 16 */
|
|
headersize = ((headersize/16) + 1) * 16;
|
|
}
|
|
/* Set the pointer headeraddr to hcryp->Init.pScratch */
|
|
headeraddr = (uint32_t)hcryp->Init.pScratch;
|
|
}
|
|
/*********************** Formatting the block B0 ************************/
|
|
if(headersize != 0)
|
|
{
|
|
blockb0[0] = 0x40;
|
|
}
|
|
/* Flags byte */
|
|
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
|
|
|
|
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
|
|
}
|
|
for ( ; loopcounter < 13; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = 0;
|
|
}
|
|
|
|
blockb0[14] = (Size >> 8);
|
|
blockb0[15] = (Size & 0xFF);
|
|
|
|
/************************* Formatting the initial counter ***************/
|
|
/* Byte 0:
|
|
Bits 7 and 6 are reserved and shall be set to 0
|
|
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
|
|
blocks are distinct from B0
|
|
Bits 0, 1, and 2 contain the same encoding of q as in B0
|
|
*/
|
|
ctr[0] = blockb0[0] & 0x07;
|
|
/* byte 1 to NonceSize is the IV (Nonce) */
|
|
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
|
|
{
|
|
ctr[loopcounter] = blockb0[loopcounter];
|
|
}
|
|
/* Set the LSB to 1 */
|
|
ctr[15] |= 0x01;
|
|
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES CCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, hcryp->Init.KeySize);
|
|
|
|
/* Select init phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
|
|
|
|
b0addr = (uint32_t)blockb0;
|
|
/* Write the blockb0 block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/***************************** Header phase *****************************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Select header phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
|
|
|
|
/* Enable Crypto processor */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Write the header block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
}
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/* Save formatted counter into the scratch buffer pScratch */
|
|
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
|
|
}
|
|
/* Reset bit 0 */
|
|
hcryp->Init.pScratch[15] &= 0xfe;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
if(Size != 0)
|
|
{
|
|
/* Enable Interrupts */
|
|
__HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI);
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
}
|
|
else
|
|
{
|
|
/* Change the CRYP state and phase */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else if (__HAL_CRYP_GET_IT(CRYP_IT_INI))
|
|
{
|
|
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
|
|
/* Write the Input block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
hcryp->pCrypInBuffPtr += 16;
|
|
hcryp->CrypInCount -= 16;
|
|
if(hcryp->CrypInCount == 0)
|
|
{
|
|
__HAL_CRYP_DISABLE_IT(CRYP_IT_INI);
|
|
/* Call Input transfer complete callback */
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
}
|
|
}
|
|
else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI))
|
|
{
|
|
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
|
|
/* Read the Output block from the Output FIFO */
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
hcryp->pCrypOutBuffPtr += 16;
|
|
hcryp->CrypOutCount -= 16;
|
|
if(hcryp->CrypOutCount == 0)
|
|
{
|
|
__HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI);
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Call Input transfer complete callback */
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES GCM decryption mode using IT.
|
|
* @param hcryp: CRYP handle
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t inputaddr;
|
|
uint32_t outputaddr;
|
|
|
|
if(hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
/* Get the buffer addresses and sizes */
|
|
hcryp->CrypInCount = Size;
|
|
hcryp->pCrypInBuffPtr = pCypherData;
|
|
hcryp->pCrypOutBuffPtr = pPlainData;
|
|
hcryp->CrypOutCount = Size;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES GCM decryption mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Enable CRYP to start the init phase */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set the header phase */
|
|
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
if(Size != 0)
|
|
{
|
|
/* Enable Interrupts */
|
|
__HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI);
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
}
|
|
else
|
|
{
|
|
/* Process Locked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/* Change the CRYP state and phase */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else if (__HAL_CRYP_GET_IT(CRYP_IT_INI))
|
|
{
|
|
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
|
|
/* Write the Input block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
hcryp->pCrypInBuffPtr += 16;
|
|
hcryp->CrypInCount -= 16;
|
|
if(hcryp->CrypInCount == 0)
|
|
{
|
|
__HAL_CRYP_DISABLE_IT(CRYP_IT_INI);
|
|
/* Call the Input data transfer complete callback */
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
}
|
|
}
|
|
else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI))
|
|
{
|
|
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
|
|
/* Read the Output block from the Output FIFO */
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
hcryp->pCrypOutBuffPtr += 16;
|
|
hcryp->CrypOutCount -= 16;
|
|
if(hcryp->CrypOutCount == 0)
|
|
{
|
|
__HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI);
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Call Input transfer complete callback */
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES CCM decryption mode using interrupt
|
|
* then decrypted pCypherData. The cypher data are available in pPlainData.
|
|
* @param hcryp: CRYP handle
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
|
|
{
|
|
uint32_t inputaddr;
|
|
uint32_t outputaddr;
|
|
uint32_t timeout = 0;
|
|
uint32_t headersize = hcryp->Init.HeaderSize;
|
|
uint32_t headeraddr = (uint32_t)hcryp->Init.Header;
|
|
uint32_t loopcounter = 0;
|
|
uint32_t bufferidx = 0;
|
|
uint8_t blockb0[16] = {0};/* Block B0 */
|
|
uint8_t ctr[16] = {0}; /* Counter */
|
|
uint32_t b0addr = (uint32_t)blockb0;
|
|
|
|
if(hcryp->State == HAL_CRYP_STATE_READY)
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
hcryp->CrypInCount = Size;
|
|
hcryp->pCrypInBuffPtr = pCypherData;
|
|
hcryp->pCrypOutBuffPtr = pPlainData;
|
|
hcryp->CrypOutCount = Size;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/************************ Formatting the header block *******************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
|
|
if(headersize < 65280)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
|
|
headersize += 2;
|
|
}
|
|
else
|
|
{
|
|
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFF;
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFE;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
|
|
headersize += 6;
|
|
}
|
|
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
|
|
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
|
|
}
|
|
/* Check if the header size is modulo 16 */
|
|
if ((headersize % 16) != 0)
|
|
{
|
|
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
|
|
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = 0;
|
|
}
|
|
/* Set the header size to modulo 16 */
|
|
headersize = ((headersize/16) + 1) * 16;
|
|
}
|
|
/* Set the pointer headeraddr to hcryp->Init.pScratch */
|
|
headeraddr = (uint32_t)hcryp->Init.pScratch;
|
|
}
|
|
/*********************** Formatting the block B0 ************************/
|
|
if(headersize != 0)
|
|
{
|
|
blockb0[0] = 0x40;
|
|
}
|
|
/* Flags byte */
|
|
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
|
|
|
|
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
|
|
}
|
|
for ( ; loopcounter < 13; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = 0;
|
|
}
|
|
|
|
blockb0[14] = (Size >> 8);
|
|
blockb0[15] = (Size & 0xFF);
|
|
|
|
/************************* Formatting the initial counter ***************/
|
|
/* Byte 0:
|
|
Bits 7 and 6 are reserved and shall be set to 0
|
|
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
|
|
blocks are distinct from B0
|
|
Bits 0, 1, and 2 contain the same encoding of q as in B0
|
|
*/
|
|
ctr[0] = blockb0[0] & 0x07;
|
|
/* byte 1 to NonceSize is the IV (Nonce) */
|
|
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
|
|
{
|
|
ctr[loopcounter] = blockb0[loopcounter];
|
|
}
|
|
/* Set the LSB to 1 */
|
|
ctr[15] |= 0x01;
|
|
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES CCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, hcryp->Init.KeySize);
|
|
|
|
/* Select init phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
|
|
|
|
b0addr = (uint32_t)blockb0;
|
|
/* Write the blockb0 block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/***************************** Header phase *****************************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Select header phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
|
|
|
|
/* Enable Crypto processor */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Write the header block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
}
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/* Save formatted counter into the scratch buffer pScratch */
|
|
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
|
|
}
|
|
/* Reset bit 0 */
|
|
hcryp->Init.pScratch[15] &= 0xfe;
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Enable Interrupts */
|
|
__HAL_CRYP_ENABLE_IT(CRYP_IT_INI | CRYP_IT_OUTI);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else if (__HAL_CRYP_GET_IT(CRYP_IT_INI))
|
|
{
|
|
inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
|
|
/* Write the Input block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
hcryp->pCrypInBuffPtr += 16;
|
|
hcryp->CrypInCount -= 16;
|
|
if(hcryp->CrypInCount == 0)
|
|
{
|
|
__HAL_CRYP_DISABLE_IT(CRYP_IT_INI);
|
|
/* Call the Input data transfer complete callback */
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
}
|
|
}
|
|
else if (__HAL_CRYP_GET_IT(CRYP_IT_OUTI))
|
|
{
|
|
outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
|
|
/* Read the Output block from the Output FIFO */
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
hcryp->pCrypOutBuffPtr += 16;
|
|
hcryp->CrypOutCount -= 16;
|
|
if(hcryp->CrypOutCount == 0)
|
|
{
|
|
__HAL_CRYP_DISABLE_IT(CRYP_IT_OUTI);
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
/* Call Input transfer complete callback */
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
}
|
|
}
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES GCM encryption mode using DMA.
|
|
* @param hcryp: CRYP handle
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t inputaddr;
|
|
uint32_t outputaddr;
|
|
|
|
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
inputaddr = (uint32_t)pPlainData;
|
|
outputaddr = (uint32_t)pCypherData;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES GCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Enable CRYP to start the init phase */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Set the header phase */
|
|
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Set the input and output addresses and start DMA transfer */
|
|
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
|
|
|
|
/* Unlock process */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES CCM encryption mode using interrupt.
|
|
* @param hcryp: CRYP handle
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t inputaddr;
|
|
uint32_t outputaddr;
|
|
uint32_t headersize;
|
|
uint32_t headeraddr;
|
|
uint32_t loopcounter = 0;
|
|
uint32_t bufferidx = 0;
|
|
uint8_t blockb0[16] = {0};/* Block B0 */
|
|
uint8_t ctr[16] = {0}; /* Counter */
|
|
uint32_t b0addr = (uint32_t)blockb0;
|
|
|
|
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
inputaddr = (uint32_t)pPlainData;
|
|
outputaddr = (uint32_t)pCypherData;
|
|
|
|
headersize = hcryp->Init.HeaderSize;
|
|
headeraddr = (uint32_t)hcryp->Init.Header;
|
|
|
|
hcryp->CrypInCount = Size;
|
|
hcryp->pCrypInBuffPtr = pPlainData;
|
|
hcryp->pCrypOutBuffPtr = pCypherData;
|
|
hcryp->CrypOutCount = Size;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/************************ Formatting the header block *******************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
|
|
if(headersize < 65280)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
|
|
headersize += 2;
|
|
}
|
|
else
|
|
{
|
|
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFF;
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFE;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
|
|
headersize += 6;
|
|
}
|
|
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
|
|
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
|
|
}
|
|
/* Check if the header size is modulo 16 */
|
|
if ((headersize % 16) != 0)
|
|
{
|
|
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
|
|
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = 0;
|
|
}
|
|
/* Set the header size to modulo 16 */
|
|
headersize = ((headersize/16) + 1) * 16;
|
|
}
|
|
/* Set the pointer headeraddr to hcryp->Init.pScratch */
|
|
headeraddr = (uint32_t)hcryp->Init.pScratch;
|
|
}
|
|
/*********************** Formatting the block B0 ************************/
|
|
if(headersize != 0)
|
|
{
|
|
blockb0[0] = 0x40;
|
|
}
|
|
/* Flags byte */
|
|
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
|
|
|
|
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
|
|
}
|
|
for ( ; loopcounter < 13; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = 0;
|
|
}
|
|
|
|
blockb0[14] = (Size >> 8);
|
|
blockb0[15] = (Size & 0xFF);
|
|
|
|
/************************* Formatting the initial counter ***************/
|
|
/* Byte 0:
|
|
Bits 7 and 6 are reserved and shall be set to 0
|
|
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
|
|
blocks are distinct from B0
|
|
Bits 0, 1, and 2 contain the same encoding of q as in B0
|
|
*/
|
|
ctr[0] = blockb0[0] & 0x07;
|
|
/* byte 1 to NonceSize is the IV (Nonce) */
|
|
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
|
|
{
|
|
ctr[loopcounter] = blockb0[loopcounter];
|
|
}
|
|
/* Set the LSB to 1 */
|
|
ctr[15] |= 0x01;
|
|
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES CCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B);
|
|
|
|
/* Select init phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
|
|
|
|
b0addr = (uint32_t)blockb0;
|
|
/* Write the blockb0 block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/***************************** Header phase *****************************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Select header phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
|
|
|
|
/* Enable Crypto processor */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Write the header block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
}
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/* Save formatted counter into the scratch buffer pScratch */
|
|
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
|
|
}
|
|
/* Reset bit 0 */
|
|
hcryp->Init.pScratch[15] &= 0xfe;
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Set the input and output addresses and start DMA transfer */
|
|
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
|
|
|
|
/* Unlock process */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES GCM decryption mode using DMA.
|
|
* @param hcryp: CRYP handle
|
|
* @param pCypherData: Pointer to the cyphertext buffer.
|
|
* @param Size: Length of the cyphertext buffer, must be a multiple of 16
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESGCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t inputaddr;
|
|
uint32_t outputaddr;
|
|
|
|
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
inputaddr = (uint32_t)pCypherData;
|
|
outputaddr = (uint32_t)pPlainData;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES GCM decryption mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_GCM_DECRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, hcryp->Init.pInitVect, CRYP_KEYSIZE_128B);
|
|
|
|
/* Enable CRYP to start the init phase */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
/* Set the header phase */
|
|
if(CRYPEx_GCMCCM_SetHeaderPhase(hcryp, hcryp->Init.Header, hcryp->Init.HeaderSize, 1) != HAL_OK)
|
|
{
|
|
return HAL_TIMEOUT;
|
|
}
|
|
/* Disable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
|
|
/* Set the input and output addresses and start DMA transfer */
|
|
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
|
|
|
|
/* Unlock process */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Initializes the CRYP peripheral in AES CCM decryption mode using DMA
|
|
* then decrypted pCypherData. The cypher data are available in pPlainData.
|
|
* @param hcryp: CRYP handle
|
|
* @param pCypherData: Pointer to the cyphertext buffer
|
|
* @param Size: Length of the plaintext buffer, must be a multiple of 16
|
|
* @param pPlainData: Pointer to the plaintext buffer
|
|
* @retval HAL status
|
|
*/
|
|
HAL_StatusTypeDef HAL_CRYPEx_AESCCM_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t inputaddr;
|
|
uint32_t outputaddr;
|
|
uint32_t headersize;
|
|
uint32_t headeraddr;
|
|
uint32_t loopcounter = 0;
|
|
uint32_t bufferidx = 0;
|
|
uint8_t blockb0[16] = {0};/* Block B0 */
|
|
uint8_t ctr[16] = {0}; /* Counter */
|
|
uint32_t b0addr = (uint32_t)blockb0;
|
|
|
|
if((hcryp->State == HAL_CRYP_STATE_READY) || (hcryp->Phase == HAL_CRYP_PHASE_PROCESS))
|
|
{
|
|
/* Process Locked */
|
|
__HAL_LOCK(hcryp);
|
|
|
|
inputaddr = (uint32_t)pCypherData;
|
|
outputaddr = (uint32_t)pPlainData;
|
|
|
|
headersize = hcryp->Init.HeaderSize;
|
|
headeraddr = (uint32_t)hcryp->Init.Header;
|
|
|
|
hcryp->CrypInCount = Size;
|
|
hcryp->pCrypInBuffPtr = pCypherData;
|
|
hcryp->pCrypOutBuffPtr = pPlainData;
|
|
hcryp->CrypOutCount = Size;
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_BUSY;
|
|
|
|
/* Check if initialization phase has already been performed */
|
|
if(hcryp->Phase == HAL_CRYP_PHASE_READY)
|
|
{
|
|
/************************ Formatting the header block *******************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Check that the associated data (or header) length is lower than 2^16 - 2^8 = 65536 - 256 = 65280 */
|
|
if(headersize < 65280)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize >> 8) & 0xFF);
|
|
hcryp->Init.pScratch[bufferidx++] = (uint8_t) ((headersize) & 0xFF);
|
|
headersize += 2;
|
|
}
|
|
else
|
|
{
|
|
/* Header is encoded as 0xff || 0xfe || [headersize]32, i.e., six octets */
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFF;
|
|
hcryp->Init.pScratch[bufferidx++] = 0xFE;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0xff000000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x00ff0000;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x0000ff00;
|
|
hcryp->Init.pScratch[bufferidx++] = headersize & 0x000000ff;
|
|
headersize += 6;
|
|
}
|
|
/* Copy the header buffer in internal buffer "hcryp->Init.pScratch" */
|
|
for(loopcounter = 0; loopcounter < headersize; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[bufferidx++] = hcryp->Init.Header[loopcounter];
|
|
}
|
|
/* Check if the header size is modulo 16 */
|
|
if ((headersize % 16) != 0)
|
|
{
|
|
/* Padd the header buffer with 0s till the hcryp->Init.pScratch length is modulo 16 */
|
|
for(loopcounter = headersize; loopcounter <= ((headersize/16) + 1) * 16; loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = 0;
|
|
}
|
|
/* Set the header size to modulo 16 */
|
|
headersize = ((headersize/16) + 1) * 16;
|
|
}
|
|
/* Set the pointer headeraddr to hcryp->Init.pScratch */
|
|
headeraddr = (uint32_t)hcryp->Init.pScratch;
|
|
}
|
|
/*********************** Formatting the block B0 ************************/
|
|
if(headersize != 0)
|
|
{
|
|
blockb0[0] = 0x40;
|
|
}
|
|
/* Flags byte */
|
|
/* blockb0[0] |= 0u | (((( (uint8_t) hcryp->Init.TagSize - 2) / 2) & 0x07 ) << 3 ) | ( ( (uint8_t) (15 - hcryp->Init.IVSize) - 1) & 0x07) */
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)(((uint8_t)(hcryp->Init.TagSize - (uint8_t)(2))) >> 1) & (uint8_t)0x07 ) << 3);
|
|
blockb0[0] |= (uint8_t)((uint8_t)((uint8_t)((uint8_t)(15) - hcryp->Init.IVSize) - (uint8_t)1) & (uint8_t)0x07);
|
|
|
|
for (loopcounter = 0; loopcounter < hcryp->Init.IVSize; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = hcryp->Init.pInitVect[loopcounter];
|
|
}
|
|
for ( ; loopcounter < 13; loopcounter++)
|
|
{
|
|
blockb0[loopcounter+1] = 0;
|
|
}
|
|
|
|
blockb0[14] = (Size >> 8);
|
|
blockb0[15] = (Size & 0xFF);
|
|
|
|
/************************* Formatting the initial counter ***************/
|
|
/* Byte 0:
|
|
Bits 7 and 6 are reserved and shall be set to 0
|
|
Bits 3, 4, and 5 shall also be set to 0, to ensure that all the counter
|
|
blocks are distinct from B0
|
|
Bits 0, 1, and 2 contain the same encoding of q as in B0
|
|
*/
|
|
ctr[0] = blockb0[0] & 0x07;
|
|
/* byte 1 to NonceSize is the IV (Nonce) */
|
|
for(loopcounter = 1; loopcounter < hcryp->Init.IVSize + 1; loopcounter++)
|
|
{
|
|
ctr[loopcounter] = blockb0[loopcounter];
|
|
}
|
|
/* Set the LSB to 1 */
|
|
ctr[15] |= 0x01;
|
|
|
|
/* Set the key */
|
|
CRYPEx_GCMCCM_SetKey(hcryp, hcryp->Init.pKey, hcryp->Init.KeySize);
|
|
|
|
/* Set the CRYP peripheral in AES CCM mode */
|
|
__HAL_CRYP_SET_MODE(CRYP_CR_ALGOMODE_AES_CCM_DECRYPT);
|
|
|
|
/* Set the Initialization Vector */
|
|
CRYPEx_GCMCCM_SetInitVector(hcryp, ctr, CRYP_KEYSIZE_128B);
|
|
|
|
/* Select init phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_INIT);
|
|
|
|
b0addr = (uint32_t)blockb0;
|
|
/* Write the blockb0 block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
b0addr+=4;
|
|
CRYP->DR = *(uint32_t*)(b0addr);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->CR & CRYP_CR_CRYPEN) == CRYP_CR_CRYPEN)
|
|
{
|
|
/* Check for the Timeout */
|
|
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
|
|
}
|
|
}
|
|
/***************************** Header phase *****************************/
|
|
if(headersize != 0)
|
|
{
|
|
/* Select header phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
|
|
|
|
/* Enable Crypto processor */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
for(loopcounter = 0; (loopcounter < headersize); loopcounter+=16)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
/* Write the header block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
}
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + 1;
|
|
|
|
while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/* Save formatted counter into the scratch buffer pScratch */
|
|
for(loopcounter = 0; (loopcounter < 16); loopcounter++)
|
|
{
|
|
hcryp->Init.pScratch[loopcounter] = ctr[loopcounter];
|
|
}
|
|
/* Reset bit 0 */
|
|
hcryp->Init.pScratch[15] &= 0xfe;
|
|
/* Select payload phase once the header phase is performed */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_PAYLOAD);
|
|
|
|
/* Flush FIFO */
|
|
__HAL_CRYP_FIFO_FLUSH();
|
|
|
|
/* Set the phase */
|
|
hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
|
|
}
|
|
/* Set the input and output addresses and start DMA transfer */
|
|
CRYPEx_GCMCCM_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
|
|
|
|
/* Unlock process */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
else
|
|
{
|
|
return HAL_ERROR;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles CRYP interrupt request.
|
|
* @param hcryp: CRYP handle
|
|
* @retval None
|
|
*/
|
|
void HAL_CRYPEx_GCMCCM_IRQHandler(CRYP_HandleTypeDef *hcryp)
|
|
{
|
|
switch(CRYP->CR & CRYP_CR_ALGOMODE_DIRECTION)
|
|
{
|
|
case CRYP_CR_ALGOMODE_AES_GCM_ENCRYPT:
|
|
HAL_CRYPEx_AESGCM_Encrypt_IT(hcryp, NULL, 0, NULL);
|
|
break;
|
|
|
|
case CRYP_CR_ALGOMODE_AES_GCM_DECRYPT:
|
|
HAL_CRYPEx_AESGCM_Decrypt_IT(hcryp, NULL, 0, NULL);
|
|
break;
|
|
|
|
case CRYP_CR_ALGOMODE_AES_CCM_ENCRYPT:
|
|
HAL_CRYPEx_AESCCM_Encrypt_IT(hcryp, NULL, 0, NULL);
|
|
break;
|
|
|
|
case CRYP_CR_ALGOMODE_AES_CCM_DECRYPT:
|
|
HAL_CRYPEx_AESCCM_Decrypt_IT(hcryp, NULL, 0, NULL);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @brief DMA CRYP Input Data process complete callback.
|
|
* @param hdma: DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYPEx_GCMCCM_DMAInCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* Disable the DMA transfer for input Fifo request by resetting the DIEN bit
|
|
in the DMACR register */
|
|
CRYP->DMACR &= (uint32_t)(~CRYP_DMACR_DIEN);
|
|
|
|
/* Call input data transfer complete callback */
|
|
HAL_CRYP_InCpltCallback(hcryp);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA CRYP Output Data process complete callback.
|
|
* @param hdma: DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYPEx_GCMCCM_DMAOutCplt(DMA_HandleTypeDef *hdma)
|
|
{
|
|
CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
|
|
/* Disable the DMA transfer for output Fifo request by resetting the DOEN bit
|
|
in the DMACR register */
|
|
CRYP->DMACR &= (uint32_t)(~CRYP_DMACR_DOEN);
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_DISABLE();
|
|
|
|
/* Change the CRYP peripheral state */
|
|
hcryp->State = HAL_CRYP_STATE_READY;
|
|
|
|
/* Call output data transfer complete callback */
|
|
HAL_CRYP_OutCpltCallback(hcryp);
|
|
}
|
|
|
|
/**
|
|
* @brief DMA CRYP communication error callback.
|
|
* @param hdma: DMA handle
|
|
* @retval None
|
|
*/
|
|
static void CRYPEx_GCMCCM_DMAError(DMA_HandleTypeDef *hdma)
|
|
{
|
|
CRYP_HandleTypeDef* hcryp = ( CRYP_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
|
|
hcryp->State= HAL_CRYP_STATE_READY;
|
|
HAL_CRYP_ErrorCallback(hcryp);
|
|
}
|
|
|
|
/**
|
|
* @brief Writes the Key in Key registers.
|
|
* @param hcryp: CRYP handle
|
|
* @param Key: Pointer to Key buffer
|
|
* @param KeySize: Size of Key
|
|
* @retval None
|
|
*/
|
|
static void CRYPEx_GCMCCM_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key, uint32_t KeySize)
|
|
{
|
|
uint32_t keyaddr = (uint32_t)Key;
|
|
|
|
switch(KeySize)
|
|
{
|
|
case CRYP_KEYSIZE_256B:
|
|
/* Key Initialisation */
|
|
CRYP->K0LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K0RR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K1LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K1RR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K2LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K2RR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K3LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K3RR = __REV(*(uint32_t*)(keyaddr));
|
|
break;
|
|
case CRYP_KEYSIZE_192B:
|
|
CRYP->K1LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K1RR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K2LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K2RR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K3LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K3RR = __REV(*(uint32_t*)(keyaddr));
|
|
break;
|
|
case CRYP_KEYSIZE_128B:
|
|
CRYP->K2LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K2RR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K3LR = __REV(*(uint32_t*)(keyaddr));
|
|
keyaddr+=4;
|
|
CRYP->K3RR = __REV(*(uint32_t*)(keyaddr));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Writes the InitVector/InitCounter in IV registers.
|
|
* @param hcryp: CRYP handle
|
|
* @param InitVector: Pointer to InitVector/InitCounter buffer
|
|
* @param IVSize: Size of the InitVector/InitCounter
|
|
* @retval None
|
|
*/
|
|
static void CRYPEx_GCMCCM_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector, uint32_t IVSize)
|
|
{
|
|
uint32_t ivaddr = (uint32_t)InitVector;
|
|
|
|
switch(IVSize)
|
|
{
|
|
case CRYP_KEYSIZE_128B:
|
|
CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr));
|
|
ivaddr+=4;
|
|
CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr));
|
|
ivaddr+=4;
|
|
CRYP->IV1LR = __REV(*(uint32_t*)(ivaddr));
|
|
ivaddr+=4;
|
|
CRYP->IV1RR = __REV(*(uint32_t*)(ivaddr));
|
|
break;
|
|
/* Whatever key size 192 or 256, Init vector is written in IV0LR and IV0RR */
|
|
case CRYP_KEYSIZE_192B:
|
|
CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr));
|
|
ivaddr+=4;
|
|
CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr));
|
|
break;
|
|
case CRYP_KEYSIZE_256B:
|
|
CRYP->IV0LR = __REV(*(uint32_t*)(ivaddr));
|
|
ivaddr+=4;
|
|
CRYP->IV0RR = __REV(*(uint32_t*)(ivaddr));
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief Process Data: Writes Input data in polling mode and read the Output data.
|
|
* @param hcryp: CRYP handle
|
|
* @param Input: Pointer to the Input buffer.
|
|
* @param Ilength: Length of the Input buffer, must be a multiple of 16
|
|
* @param Output: Pointer to the returned buffer
|
|
* @param Timeout: Timeout value
|
|
* @retval None
|
|
*/
|
|
static HAL_StatusTypeDef CRYPEx_GCMCCM_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t *Input, uint16_t Ilength, uint8_t *Output, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t i = 0;
|
|
uint32_t inputaddr = (uint32_t)Input;
|
|
uint32_t outputaddr = (uint32_t)Output;
|
|
|
|
for(i=0; (i < Ilength); i+=16)
|
|
{
|
|
/* Write the Input block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
CRYP->DR = *(uint32_t*)(inputaddr);
|
|
inputaddr+=4;
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_OFNE))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/* Read the Output block from the OUT FIFO */
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
*(uint32_t*)(outputaddr) = CRYP->DOUT;
|
|
outputaddr+=4;
|
|
}
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the header phase
|
|
* @param hcryp: CRYP handle
|
|
* @param Input: Pointer to the Input buffer.
|
|
* @param Ilength: Length of the Input buffer, must be a multiple of 16
|
|
* @param Timeout: Timeout value
|
|
* @retval None
|
|
*/
|
|
static HAL_StatusTypeDef CRYPEx_GCMCCM_SetHeaderPhase(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint32_t Timeout)
|
|
{
|
|
uint32_t timeout = 0;
|
|
uint32_t loopcounter = 0;
|
|
uint32_t headeraddr = (uint32_t)Input;
|
|
|
|
/***************************** Header phase *********************************/
|
|
if(hcryp->Init.HeaderSize != 0)
|
|
{
|
|
/* Select header phase */
|
|
__HAL_CRYP_SET_PHASE(CRYP_PHASE_HEADER);
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
for(loopcounter = 0; (loopcounter < hcryp->Init.HeaderSize); loopcounter+=16)
|
|
{
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while(HAL_IS_BIT_CLR(CRYP->SR, CRYP_FLAG_IFEM))
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
/* Write the Input block in the IN FIFO */
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
CRYP->DR = *(uint32_t*)(headeraddr);
|
|
headeraddr+=4;
|
|
}
|
|
|
|
/* Wait until the complete message has been processed */
|
|
|
|
/* Get timeout */
|
|
timeout = HAL_GetTick() + Timeout;
|
|
|
|
while((CRYP->SR & CRYP_FLAG_BUSY) == CRYP_FLAG_BUSY)
|
|
{
|
|
/* Check for the Timeout */
|
|
if(Timeout != HAL_MAX_DELAY)
|
|
{
|
|
if(HAL_GetTick() >= timeout)
|
|
{
|
|
/* Change state */
|
|
hcryp->State = HAL_CRYP_STATE_TIMEOUT;
|
|
|
|
/* Process Unlocked */
|
|
__HAL_UNLOCK(hcryp);
|
|
|
|
return HAL_TIMEOUT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Return function status */
|
|
return HAL_OK;
|
|
}
|
|
|
|
/**
|
|
* @brief Sets the DMA configuration and start the DMA transfert.
|
|
* @param hcryp: CRYP handle
|
|
* @param inputaddr: Address of the Input buffer
|
|
* @param Size: Size of the Input buffer, must be a multiple of 16
|
|
* @param outputaddr: Address of the Output buffer
|
|
* @retval None
|
|
*/
|
|
static void CRYPEx_GCMCCM_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
|
|
{
|
|
/* Set the CRYP DMA transfer complete callback */
|
|
hcryp->hdmain->XferCpltCallback = CRYPEx_GCMCCM_DMAInCplt;
|
|
/* Set the DMA error callback */
|
|
hcryp->hdmain->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
|
|
|
|
/* Set the CRYP DMA transfer complete callback */
|
|
hcryp->hdmaout->XferCpltCallback = CRYPEx_GCMCCM_DMAOutCplt;
|
|
/* Set the DMA error callback */
|
|
hcryp->hdmaout->XferErrorCallback = CRYPEx_GCMCCM_DMAError;
|
|
|
|
/* Enable the CRYP peripheral */
|
|
__HAL_CRYP_ENABLE();
|
|
|
|
/* Enable the DMA In DMA Stream */
|
|
HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&CRYP->DR, Size/4);
|
|
|
|
/* Enable In DMA request */
|
|
CRYP->DMACR = CRYP_DMACR_DIEN;
|
|
|
|
/* Enable the DMA Out DMA Stream */
|
|
HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&CRYP->DOUT, outputaddr, Size/4);
|
|
|
|
/* Enable Out DMA request */
|
|
CRYP->DMACR |= CRYP_DMACR_DOEN;
|
|
}
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
#endif /* STM32F437xx || STM32F439xx */
|
|
|
|
#endif /* HAL_CRYP_MODULE_ENABLED */
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/**
|
|
* @}
|
|
*/
|
|
|
|
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
|