micropython/py/emitnative.c

2475 lines
99 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
// Essentially normal Python has 1 type: Python objects
// Viper has more than 1 type, and is just a more complicated (a superset of) Python.
// If you declare everything in Viper as a Python object (ie omit type decls) then
// it should in principle be exactly the same as Python native.
// Having types means having more opcodes, like binary_op_nat_nat, binary_op_nat_obj etc.
// In practice we won't have a VM but rather do this in asm which is actually very minimal.
// Because it breaks strict Python equivalence it should be a completely separate
// decorator. It breaks equivalence because overflow on integers wraps around.
// It shouldn't break equivalence if you don't use the new types, but since the
// type decls might be used in normal Python for other reasons, it's probably safest,
// cleanest and clearest to make it a separate decorator.
// Actually, it does break equivalence because integers default to native integers,
// not Python objects.
// for x in l[0:8]: can be compiled into a native loop if l has pointer type
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/nlr.h"
#include "py/emit.h"
#include "py/bc.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
// wrapper around everything in this file
#if (MICROPY_EMIT_X64 && N_X64) \
|| (MICROPY_EMIT_X86 && N_X86) \
|| (MICROPY_EMIT_THUMB && N_THUMB) \
|| (MICROPY_EMIT_ARM && N_ARM)
#if N_X64
// x64 specific stuff
#include "py/asmx64.h"
#define EXPORT_FUN(name) emit_native_x64_##name
#define ASM_WORD_SIZE (8)
#define REG_RET ASM_X64_REG_RAX
#define REG_ARG_1 ASM_X64_REG_RDI
#define REG_ARG_2 ASM_X64_REG_RSI
#define REG_ARG_3 ASM_X64_REG_RDX
#define REG_ARG_4 ASM_X64_REG_RCX
#define REG_ARG_5 ASM_X64_REG_R08
// caller-save
#define REG_TEMP0 ASM_X64_REG_RAX
#define REG_TEMP1 ASM_X64_REG_RDI
#define REG_TEMP2 ASM_X64_REG_RSI
// callee-save
#define REG_LOCAL_1 ASM_X64_REG_RBX
#define REG_LOCAL_2 ASM_X64_REG_R12
#define REG_LOCAL_3 ASM_X64_REG_R13
#define REG_LOCAL_NUM (3)
#define ASM_PASS_COMPUTE ASM_X64_PASS_COMPUTE
#define ASM_PASS_EMIT ASM_X64_PASS_EMIT
#define ASM_T asm_x64_t
#define ASM_NEW asm_x64_new
#define ASM_FREE asm_x64_free
#define ASM_GET_CODE asm_x64_get_code
#define ASM_GET_CODE_POS asm_x64_get_code_pos
#define ASM_GET_CODE_SIZE asm_x64_get_code_size
#define ASM_START_PASS asm_x64_start_pass
#define ASM_END_PASS asm_x64_end_pass
#define ASM_ENTRY asm_x64_entry
#define ASM_EXIT asm_x64_exit
#define ASM_ALIGN asm_x64_align
#define ASM_DATA asm_x64_data
#define ASM_LABEL_ASSIGN asm_x64_label_assign
#define ASM_JUMP asm_x64_jmp_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \
do { \
asm_x64_test_r8_with_r8(as, reg, reg); \
asm_x64_jcc_label(as, ASM_X64_CC_JZ, label); \
} while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \
do { \
asm_x64_test_r8_with_r8(as, reg, reg); \
asm_x64_jcc_label(as, ASM_X64_CC_JNZ, label); \
} while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
do { \
asm_x64_cmp_r64_with_r64(as, reg1, reg2); \
asm_x64_jcc_label(as, ASM_X64_CC_JE, label); \
} while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_x64_call_ind(as, ptr, ASM_X64_REG_RAX)
#define ASM_MOV_REG_TO_LOCAL asm_x64_mov_r64_to_local
#define ASM_MOV_IMM_TO_REG asm_x64_mov_i64_to_r64_optimised
#define ASM_MOV_ALIGNED_IMM_TO_REG asm_x64_mov_i64_to_r64_aligned
#define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \
do { \
asm_x64_mov_i64_to_r64_optimised(as, (imm), (reg_temp)); \
asm_x64_mov_r64_to_local(as, (reg_temp), (local_num)); \
} while (false)
#define ASM_MOV_LOCAL_TO_REG asm_x64_mov_local_to_r64
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x64_mov_r64_r64((as), (reg_dest), (reg_src))
#define ASM_MOV_LOCAL_ADDR_TO_REG asm_x64_mov_local_addr_to_r64
#define ASM_LSL_REG(as, reg) asm_x64_shl_r64_cl((as), (reg))
#define ASM_ASR_REG(as, reg) asm_x64_sar_r64_cl((as), (reg))
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_x64_or_r64_r64((as), (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_x64_xor_r64_r64((as), (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_x64_and_r64_r64((as), (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_x64_add_r64_r64((as), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_x64_sub_r64_r64((as), (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem64_to_r64((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_x64_mov_mem64_to_r64((as), (reg_base), 8 * (word_offset), (reg_dest))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem8_to_r64zx((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_x64_mov_mem16_to_r64zx((as), (reg_base), 0, (reg_dest))
#define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_x64_mov_r64_to_mem64((as), (reg_src), (reg_base), 0)
#define ASM_STORE_REG_REG_OFFSET(as, reg_src, reg_base, word_offset) asm_x64_mov_r64_to_mem64((as), (reg_src), (reg_base), 8 * (word_offset))
#define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_x64_mov_r8_to_mem8((as), (reg_src), (reg_base), 0)
#define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_x64_mov_r16_to_mem16((as), (reg_src), (reg_base), 0)
#elif N_X86
// x86 specific stuff
#include "py/asmx86.h"
STATIC byte mp_f_n_args[MP_F_NUMBER_OF] = {
[MP_F_CONVERT_OBJ_TO_NATIVE] = 2,
[MP_F_CONVERT_NATIVE_TO_OBJ] = 2,
[MP_F_LOAD_CONST_STR] = 1,
[MP_F_LOAD_CONST_BYTES] = 1,
[MP_F_LOAD_NAME] = 1,
[MP_F_LOAD_GLOBAL] = 1,
[MP_F_LOAD_BUILD_CLASS] = 0,
[MP_F_LOAD_ATTR] = 2,
[MP_F_LOAD_METHOD] = 3,
[MP_F_STORE_NAME] = 2,
[MP_F_STORE_GLOBAL] = 2,
[MP_F_STORE_ATTR] = 3,
[MP_F_OBJ_SUBSCR] = 3,
[MP_F_OBJ_IS_TRUE] = 1,
[MP_F_UNARY_OP] = 2,
[MP_F_BINARY_OP] = 3,
[MP_F_BUILD_TUPLE] = 2,
[MP_F_BUILD_LIST] = 2,
[MP_F_LIST_APPEND] = 2,
[MP_F_BUILD_MAP] = 1,
[MP_F_STORE_MAP] = 3,
#if MICROPY_PY_BUILTINS_SET
[MP_F_BUILD_SET] = 2,
[MP_F_STORE_SET] = 2,
#endif
[MP_F_MAKE_FUNCTION_FROM_RAW_CODE] = 3,
[MP_F_NATIVE_CALL_FUNCTION_N_KW] = 3,
[MP_F_CALL_METHOD_N_KW] = 3,
[MP_F_CALL_METHOD_N_KW_VAR] = 3,
[MP_F_GETITER] = 1,
[MP_F_ITERNEXT] = 1,
[MP_F_NLR_PUSH] = 1,
[MP_F_NLR_POP] = 0,
[MP_F_NATIVE_RAISE] = 1,
[MP_F_IMPORT_NAME] = 3,
[MP_F_IMPORT_FROM] = 2,
[MP_F_IMPORT_ALL] = 1,
#if MICROPY_PY_BUILTINS_SLICE
[MP_F_NEW_SLICE] = 3,
#endif
[MP_F_UNPACK_SEQUENCE] = 3,
[MP_F_UNPACK_EX] = 3,
[MP_F_DELETE_NAME] = 1,
[MP_F_DELETE_GLOBAL] = 1,
[MP_F_NEW_CELL] = 1,
[MP_F_MAKE_CLOSURE_FROM_RAW_CODE] = 3,
[MP_F_SETUP_CODE_STATE] = 5,
};
#define EXPORT_FUN(name) emit_native_x86_##name
#define ASM_WORD_SIZE (4)
#define REG_RET ASM_X86_REG_EAX
#define REG_ARG_1 ASM_X86_REG_ARG_1
#define REG_ARG_2 ASM_X86_REG_ARG_2
#define REG_ARG_3 ASM_X86_REG_ARG_3
#define REG_ARG_4 ASM_X86_REG_ARG_4
#define REG_ARG_5 ASM_X86_REG_ARG_5
// caller-save, so can be used as temporaries
#define REG_TEMP0 ASM_X86_REG_EAX
#define REG_TEMP1 ASM_X86_REG_ECX
#define REG_TEMP2 ASM_X86_REG_EDX
// callee-save, so can be used as locals
#define REG_LOCAL_1 ASM_X86_REG_EBX
#define REG_LOCAL_2 ASM_X86_REG_ESI
#define REG_LOCAL_3 ASM_X86_REG_EDI
#define REG_LOCAL_NUM (3)
#define ASM_PASS_COMPUTE ASM_X86_PASS_COMPUTE
#define ASM_PASS_EMIT ASM_X86_PASS_EMIT
#define ASM_T asm_x86_t
#define ASM_NEW asm_x86_new
#define ASM_FREE asm_x86_free
#define ASM_GET_CODE asm_x86_get_code
#define ASM_GET_CODE_POS asm_x86_get_code_pos
#define ASM_GET_CODE_SIZE asm_x86_get_code_size
#define ASM_START_PASS asm_x86_start_pass
#define ASM_END_PASS asm_x86_end_pass
#define ASM_ENTRY asm_x86_entry
#define ASM_EXIT asm_x86_exit
#define ASM_ALIGN asm_x86_align
#define ASM_DATA asm_x86_data
#define ASM_LABEL_ASSIGN asm_x86_label_assign
#define ASM_JUMP asm_x86_jmp_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \
do { \
asm_x86_test_r8_with_r8(as, reg, reg); \
asm_x86_jcc_label(as, ASM_X86_CC_JZ, label); \
} while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \
do { \
asm_x86_test_r8_with_r8(as, reg, reg); \
asm_x86_jcc_label(as, ASM_X86_CC_JNZ, label); \
} while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
do { \
asm_x86_cmp_r32_with_r32(as, reg1, reg2); \
asm_x86_jcc_label(as, ASM_X86_CC_JE, label); \
} while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_x86_call_ind(as, ptr, mp_f_n_args[idx], ASM_X86_REG_EAX)
#define ASM_MOV_REG_TO_LOCAL asm_x86_mov_r32_to_local
#define ASM_MOV_IMM_TO_REG asm_x86_mov_i32_to_r32
#define ASM_MOV_ALIGNED_IMM_TO_REG asm_x86_mov_i32_to_r32_aligned
#define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \
do { \
asm_x86_mov_i32_to_r32(as, (imm), (reg_temp)); \
asm_x86_mov_r32_to_local(as, (reg_temp), (local_num)); \
} while (false)
#define ASM_MOV_LOCAL_TO_REG asm_x86_mov_local_to_r32
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_x86_mov_r32_r32((as), (reg_dest), (reg_src))
#define ASM_MOV_LOCAL_ADDR_TO_REG asm_x86_mov_local_addr_to_r32
#define ASM_LSL_REG(as, reg) asm_x86_shl_r32_cl((as), (reg))
#define ASM_ASR_REG(as, reg) asm_x86_sar_r32_cl((as), (reg))
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_x86_or_r32_r32((as), (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_x86_xor_r32_r32((as), (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_x86_and_r32_r32((as), (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_x86_add_r32_r32((as), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_x86_sub_r32_r32((as), (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem32_to_r32((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_x86_mov_mem32_to_r32((as), (reg_base), 4 * (word_offset), (reg_dest))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem8_to_r32zx((as), (reg_base), 0, (reg_dest))
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_x86_mov_mem16_to_r32zx((as), (reg_base), 0, (reg_dest))
#define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_x86_mov_r32_to_mem32((as), (reg_src), (reg_base), 0)
#define ASM_STORE_REG_REG_OFFSET(as, reg_src, reg_base, word_offset) asm_x86_mov_r32_to_mem32((as), (reg_src), (reg_base), 4 * (word_offset))
#define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_x86_mov_r8_to_mem8((as), (reg_src), (reg_base), 0)
#define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_x86_mov_r16_to_mem16((as), (reg_src), (reg_base), 0)
#elif N_THUMB
// thumb specific stuff
#include "py/asmthumb.h"
#define EXPORT_FUN(name) emit_native_thumb_##name
#define ASM_WORD_SIZE (4)
#define REG_RET ASM_THUMB_REG_R0
#define REG_ARG_1 ASM_THUMB_REG_R0
#define REG_ARG_2 ASM_THUMB_REG_R1
#define REG_ARG_3 ASM_THUMB_REG_R2
#define REG_ARG_4 ASM_THUMB_REG_R3
// rest of args go on stack
#define REG_TEMP0 ASM_THUMB_REG_R0
#define REG_TEMP1 ASM_THUMB_REG_R1
#define REG_TEMP2 ASM_THUMB_REG_R2
#define REG_LOCAL_1 ASM_THUMB_REG_R4
#define REG_LOCAL_2 ASM_THUMB_REG_R5
#define REG_LOCAL_3 ASM_THUMB_REG_R6
#define REG_LOCAL_NUM (3)
#define ASM_PASS_COMPUTE ASM_THUMB_PASS_COMPUTE
#define ASM_PASS_EMIT ASM_THUMB_PASS_EMIT
#define ASM_T asm_thumb_t
#define ASM_NEW asm_thumb_new
#define ASM_FREE asm_thumb_free
#define ASM_GET_CODE asm_thumb_get_code
#define ASM_GET_CODE_POS asm_thumb_get_code_pos
#define ASM_GET_CODE_SIZE asm_thumb_get_code_size
#define ASM_START_PASS asm_thumb_start_pass
#define ASM_END_PASS asm_thumb_end_pass
#define ASM_ENTRY asm_thumb_entry
#define ASM_EXIT asm_thumb_exit
#define ASM_ALIGN asm_thumb_align
#define ASM_DATA asm_thumb_data
#define ASM_LABEL_ASSIGN asm_thumb_label_assign
#define ASM_JUMP asm_thumb_b_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \
do { \
asm_thumb_cmp_rlo_i8(as, reg, 0); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \
} while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \
do { \
asm_thumb_cmp_rlo_i8(as, reg, 0); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_NE, label); \
} while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
do { \
asm_thumb_cmp_rlo_rlo(as, reg1, reg2); \
asm_thumb_bcc_label(as, ASM_THUMB_CC_EQ, label); \
} while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_thumb_bl_ind(as, ptr, idx, ASM_THUMB_REG_R3)
#define ASM_MOV_REG_TO_LOCAL(as, reg, local_num) asm_thumb_mov_local_reg(as, (local_num), (reg))
#define ASM_MOV_IMM_TO_REG(as, imm, reg) asm_thumb_mov_reg_i32_optimised(as, (reg), (imm))
#define ASM_MOV_ALIGNED_IMM_TO_REG(as, imm, reg) asm_thumb_mov_reg_i32_aligned(as, (reg), (imm))
#define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \
do { \
asm_thumb_mov_reg_i32_optimised(as, (reg_temp), (imm)); \
asm_thumb_mov_local_reg(as, (local_num), (reg_temp)); \
} while (false)
#define ASM_MOV_LOCAL_TO_REG(as, local_num, reg) asm_thumb_mov_reg_local(as, (reg), (local_num))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_thumb_mov_reg_reg((as), (reg_dest), (reg_src))
#define ASM_MOV_LOCAL_ADDR_TO_REG(as, local_num, reg) asm_thumb_mov_reg_local_addr(as, (reg), (local_num))
#define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_LSL, (reg_dest), (reg_shift))
#define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_ASR, (reg_dest), (reg_shift))
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_ORR, (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_EOR, (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_thumb_format_4((as), ASM_THUMB_FORMAT_4_AND, (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_thumb_add_rlo_rlo_rlo((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_thumb_sub_rlo_rlo_rlo((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD_REG_REG_OFFSET(as, reg_dest, reg_base, word_offset) asm_thumb_ldr_rlo_rlo_i5((as), (reg_dest), (reg_base), (word_offset))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrb_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_thumb_ldrh_rlo_rlo_i5((as), (reg_dest), (reg_base), 0)
#define ASM_STORE_REG_REG(as, reg_src, reg_base) asm_thumb_str_rlo_rlo_i5((as), (reg_src), (reg_base), 0)
#define ASM_STORE_REG_REG_OFFSET(as, reg_src, reg_base, word_offset) asm_thumb_str_rlo_rlo_i5((as), (reg_src), (reg_base), (word_offset))
#define ASM_STORE8_REG_REG(as, reg_src, reg_base) asm_thumb_strb_rlo_rlo_i5((as), (reg_src), (reg_base), 0)
#define ASM_STORE16_REG_REG(as, reg_src, reg_base) asm_thumb_strh_rlo_rlo_i5((as), (reg_src), (reg_base), 0)
#elif N_ARM
// ARM specific stuff
#include "py/asmarm.h"
#define EXPORT_FUN(name) emit_native_arm_##name
#define REG_RET ASM_ARM_REG_R0
#define REG_ARG_1 ASM_ARM_REG_R0
#define REG_ARG_2 ASM_ARM_REG_R1
#define REG_ARG_3 ASM_ARM_REG_R2
#define REG_ARG_4 ASM_ARM_REG_R3
#define REG_TEMP0 ASM_ARM_REG_R0
#define REG_TEMP1 ASM_ARM_REG_R1
#define REG_TEMP2 ASM_ARM_REG_R2
#define REG_LOCAL_1 ASM_ARM_REG_R4
#define REG_LOCAL_2 ASM_ARM_REG_R5
#define REG_LOCAL_3 ASM_ARM_REG_R6
#define REG_LOCAL_NUM (3)
#define ASM_PASS_COMPUTE ASM_ARM_PASS_COMPUTE
#define ASM_PASS_EMIT ASM_ARM_PASS_EMIT
#define ASM_T asm_arm_t
#define ASM_NEW asm_arm_new
#define ASM_FREE asm_arm_free
#define ASM_GET_CODE asm_arm_get_code
#define ASM_GET_CODE_SIZE asm_arm_get_code_size
#define ASM_START_PASS asm_arm_start_pass
#define ASM_END_PASS asm_arm_end_pass
#define ASM_ENTRY asm_arm_entry
#define ASM_EXIT asm_arm_exit
#define ASM_LABEL_ASSIGN asm_arm_label_assign
#define ASM_JUMP asm_arm_b_label
#define ASM_JUMP_IF_REG_ZERO(as, reg, label) \
do { \
asm_arm_cmp_reg_i8(as, reg, 0); \
asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \
} while (0)
#define ASM_JUMP_IF_REG_NONZERO(as, reg, label) \
do { \
asm_arm_cmp_reg_i8(as, reg, 0); \
asm_arm_bcc_label(as, ASM_ARM_CC_NE, label); \
} while (0)
#define ASM_JUMP_IF_REG_EQ(as, reg1, reg2, label) \
do { \
asm_arm_cmp_reg_reg(as, reg1, reg2); \
asm_arm_bcc_label(as, ASM_ARM_CC_EQ, label); \
} while (0)
#define ASM_CALL_IND(as, ptr, idx) asm_arm_bl_ind(as, ptr, idx, ASM_ARM_REG_R3)
#define ASM_MOV_REG_TO_LOCAL(as, reg, local_num) asm_arm_mov_local_reg(as, (local_num), (reg))
#define ASM_MOV_IMM_TO_REG(as, imm, reg) asm_arm_mov_reg_i32(as, (reg), (imm))
#define ASM_MOV_ALIGNED_IMM_TO_REG(as, imm, reg) asm_arm_mov_reg_i32(as, (reg), (imm))
#define ASM_MOV_IMM_TO_LOCAL_USING(as, imm, local_num, reg_temp) \
do { \
asm_arm_mov_reg_i32(as, (reg_temp), (imm)); \
asm_arm_mov_local_reg(as, (local_num), (reg_temp)); \
} while (false)
#define ASM_MOV_LOCAL_TO_REG(as, local_num, reg) asm_arm_mov_reg_local(as, (reg), (local_num))
#define ASM_MOV_REG_REG(as, reg_dest, reg_src) asm_arm_mov_reg_reg((as), (reg_dest), (reg_src))
#define ASM_MOV_LOCAL_ADDR_TO_REG(as, local_num, reg) asm_arm_mov_reg_local_addr(as, (reg), (local_num))
#define ASM_LSL_REG_REG(as, reg_dest, reg_shift) asm_arm_lsl_reg_reg((as), (reg_dest), (reg_shift))
#define ASM_ASR_REG_REG(as, reg_dest, reg_shift) asm_arm_asr_reg_reg((as), (reg_dest), (reg_shift))
#define ASM_OR_REG_REG(as, reg_dest, reg_src) asm_arm_orr_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_XOR_REG_REG(as, reg_dest, reg_src) asm_arm_eor_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_AND_REG_REG(as, reg_dest, reg_src) asm_arm_and_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_ADD_REG_REG(as, reg_dest, reg_src) asm_arm_add_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_SUB_REG_REG(as, reg_dest, reg_src) asm_arm_sub_reg_reg_reg((as), (reg_dest), (reg_dest), (reg_src))
#define ASM_LOAD_REG_REG(as, reg_dest, reg_base) asm_arm_ldr_reg_reg((as), (reg_dest), (reg_base))
#define ASM_LOAD8_REG_REG(as, reg_dest, reg_base) asm_arm_ldrb_reg_reg((as), (reg_dest), (reg_base))
#define ASM_LOAD16_REG_REG(as, reg_dest, reg_base) asm_arm_ldrh_reg_reg((as), (reg_dest), (reg_base))
#define ASM_STORE_REG_REG(as, reg_value, reg_base) asm_arm_str_reg_reg((as), (reg_value), (reg_base))
#define ASM_STORE8_REG_REG(as, reg_value, reg_base) asm_arm_strb_reg_reg((as), (reg_value), (reg_base))
#define ASM_STORE16_REG_REG(as, reg_value, reg_base) asm_arm_strh_reg_reg((as), (reg_value), (reg_base))
#else
#error unknown native emitter
#endif
#define EMIT_NATIVE_VIPER_TYPE_ERROR(emit, ...) do { \
*emit->error_slot = mp_obj_new_exception_msg_varg(&mp_type_ViperTypeError, __VA_ARGS__); \
} while (0)
typedef enum {
STACK_VALUE,
STACK_REG,
STACK_IMM,
} stack_info_kind_t;
// these enums must be distinct and the bottom 2 bits
// must correspond to the correct MP_NATIVE_TYPE_xxx value
typedef enum {
VTYPE_PYOBJ = 0x00 | MP_NATIVE_TYPE_OBJ,
VTYPE_BOOL = 0x00 | MP_NATIVE_TYPE_BOOL,
VTYPE_INT = 0x00 | MP_NATIVE_TYPE_INT,
VTYPE_UINT = 0x00 | MP_NATIVE_TYPE_UINT,
VTYPE_PTR = 0x10 | MP_NATIVE_TYPE_UINT, // pointer to word sized entity
VTYPE_PTR8 = 0x20 | MP_NATIVE_TYPE_UINT,
VTYPE_PTR16 = 0x30 | MP_NATIVE_TYPE_UINT,
VTYPE_PTR_NONE = 0x40 | MP_NATIVE_TYPE_UINT,
VTYPE_UNBOUND = 0x50 | MP_NATIVE_TYPE_OBJ,
VTYPE_BUILTIN_CAST = 0x60 | MP_NATIVE_TYPE_OBJ,
} vtype_kind_t;
STATIC qstr vtype_to_qstr(vtype_kind_t vtype) {
switch (vtype) {
case VTYPE_PYOBJ: return MP_QSTR_object;
case VTYPE_BOOL: return MP_QSTR_bool;
case VTYPE_INT: return MP_QSTR_int;
case VTYPE_UINT: return MP_QSTR_uint;
case VTYPE_PTR: return MP_QSTR_ptr;
case VTYPE_PTR8: return MP_QSTR_ptr8;
case VTYPE_PTR16: return MP_QSTR_ptr16;
case VTYPE_PTR_NONE: default: return MP_QSTR_None;
}
}
typedef struct _stack_info_t {
vtype_kind_t vtype;
stack_info_kind_t kind;
union {
int u_reg;
mp_int_t u_imm;
} data;
} stack_info_t;
struct _emit_t {
mp_obj_t *error_slot;
int pass;
bool do_viper_types;
vtype_kind_t return_vtype;
mp_uint_t local_vtype_alloc;
vtype_kind_t *local_vtype;
mp_uint_t stack_info_alloc;
stack_info_t *stack_info;
vtype_kind_t saved_stack_vtype;
int code_info_size;
int code_info_offset;
int prelude_offset;
int n_state;
int stack_start;
int stack_size;
bool last_emit_was_return_value;
scope_t *scope;
ASM_T *as;
};
emit_t *EXPORT_FUN(new)(mp_obj_t *error_slot, mp_uint_t max_num_labels) {
emit_t *emit = m_new0(emit_t, 1);
emit->error_slot = error_slot;
emit->as = ASM_NEW(max_num_labels);
return emit;
}
void EXPORT_FUN(free)(emit_t *emit) {
ASM_FREE(emit->as, false);
m_del(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc);
m_del(stack_info_t, emit->stack_info, emit->stack_info_alloc);
m_del_obj(emit_t, emit);
}
STATIC void emit_native_set_native_type(emit_t *emit, mp_uint_t op, mp_uint_t arg1, qstr arg2) {
switch (op) {
case MP_EMIT_NATIVE_TYPE_ENABLE:
emit->do_viper_types = arg1;
break;
default: {
vtype_kind_t type;
switch (arg2) {
case MP_QSTR_object: type = VTYPE_PYOBJ; break;
case MP_QSTR_bool: type = VTYPE_BOOL; break;
case MP_QSTR_int: type = VTYPE_INT; break;
case MP_QSTR_uint: type = VTYPE_UINT; break;
case MP_QSTR_ptr: type = VTYPE_PTR; break;
case MP_QSTR_ptr8: type = VTYPE_PTR8; break;
case MP_QSTR_ptr16: type = VTYPE_PTR16; break;
default: EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "unknown type '%q'", arg2); return;
}
if (op == MP_EMIT_NATIVE_TYPE_RETURN) {
emit->return_vtype = type;
} else {
assert(arg1 < emit->local_vtype_alloc);
emit->local_vtype[arg1] = type;
}
break;
}
}
}
STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest);
STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg);
STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num);
STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num);
#define STATE_START (sizeof(mp_code_state) / sizeof(mp_uint_t))
STATIC void emit_native_start_pass(emit_t *emit, pass_kind_t pass, scope_t *scope) {
DEBUG_printf("start_pass(pass=%u, scope=%p)\n", pass, scope);
emit->pass = pass;
emit->stack_start = 0;
emit->stack_size = 0;
emit->last_emit_was_return_value = false;
emit->scope = scope;
// allocate memory for keeping track of the types of locals
if (emit->local_vtype_alloc < scope->num_locals) {
emit->local_vtype = m_renew(vtype_kind_t, emit->local_vtype, emit->local_vtype_alloc, scope->num_locals);
emit->local_vtype_alloc = scope->num_locals;
}
// allocate memory for keeping track of the objects on the stack
// XXX don't know stack size on entry, and it should be maximum over all scopes
// XXX this is such a big hack and really needs to be fixed
if (emit->stack_info == NULL) {
emit->stack_info_alloc = scope->stack_size + 200;
emit->stack_info = m_new(stack_info_t, emit->stack_info_alloc);
}
// set default type for return
emit->return_vtype = VTYPE_PYOBJ;
// set default type for arguments
mp_uint_t num_args = emit->scope->num_pos_args + emit->scope->num_kwonly_args;
if (scope->scope_flags & MP_SCOPE_FLAG_VARARGS) {
num_args += 1;
}
if (scope->scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) {
num_args += 1;
}
for (mp_uint_t i = 0; i < num_args; i++) {
emit->local_vtype[i] = VTYPE_PYOBJ;
}
// local variables begin unbound, and have unknown type
for (mp_uint_t i = num_args; i < emit->local_vtype_alloc; i++) {
emit->local_vtype[i] = VTYPE_UNBOUND;
}
// values on stack begin unbound
for (mp_uint_t i = 0; i < emit->stack_info_alloc; i++) {
emit->stack_info[i].kind = STACK_VALUE;
emit->stack_info[i].vtype = VTYPE_UNBOUND;
}
ASM_START_PASS(emit->as, pass == MP_PASS_EMIT ? ASM_PASS_EMIT : ASM_PASS_COMPUTE);
// generate code for entry to function
if (emit->do_viper_types) {
// entry to function
int num_locals = 0;
if (pass > MP_PASS_SCOPE) {
num_locals = scope->num_locals - REG_LOCAL_NUM;
if (num_locals < 0) {
num_locals = 0;
}
emit->stack_start = num_locals;
num_locals += scope->stack_size;
}
ASM_ENTRY(emit->as, num_locals);
#if N_X86
for (int i = 0; i < scope->num_pos_args; i++) {
if (i == 0) {
asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_1);
} else if (i == 1) {
asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_2);
} else if (i == 2) {
asm_x86_mov_arg_to_r32(emit->as, i, REG_LOCAL_3);
} else {
asm_x86_mov_arg_to_r32(emit->as, i, REG_TEMP0);
asm_x86_mov_r32_to_local(emit->as, REG_TEMP0, i - REG_LOCAL_NUM);
}
}
#else
for (int i = 0; i < scope->num_pos_args; i++) {
if (i == 0) {
ASM_MOV_REG_REG(emit->as, REG_LOCAL_1, REG_ARG_1);
} else if (i == 1) {
ASM_MOV_REG_REG(emit->as, REG_LOCAL_2, REG_ARG_2);
} else if (i == 2) {
ASM_MOV_REG_REG(emit->as, REG_LOCAL_3, REG_ARG_3);
} else if (i == 3) {
ASM_MOV_REG_TO_LOCAL(emit->as, REG_ARG_4, i - REG_LOCAL_NUM);
} else {
// TODO not implemented
assert(0);
}
}
#endif
} else {
// work out size of state (locals plus stack)
emit->n_state = scope->num_locals + scope->stack_size;
// allocate space on C-stack for code_state structure, which includes state
ASM_ENTRY(emit->as, STATE_START + emit->n_state);
// prepare incoming arguments for call to mp_setup_code_state
#if N_X86
asm_x86_mov_arg_to_r32(emit->as, 0, REG_ARG_2);
asm_x86_mov_arg_to_r32(emit->as, 1, REG_ARG_3);
asm_x86_mov_arg_to_r32(emit->as, 2, REG_ARG_4);
asm_x86_mov_arg_to_r32(emit->as, 3, REG_ARG_5);
#else
#if N_THUMB
ASM_MOV_REG_REG(emit->as, ASM_THUMB_REG_R4, REG_ARG_4);
#else
ASM_MOV_REG_REG(emit->as, REG_ARG_5, REG_ARG_4);
#endif
ASM_MOV_REG_REG(emit->as, REG_ARG_4, REG_ARG_3);
ASM_MOV_REG_REG(emit->as, REG_ARG_3, REG_ARG_2);
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_ARG_1);
#endif
// set code_state.code_info (offset from start of this function to code_info data)
// XXX this encoding may change size
ASM_MOV_IMM_TO_LOCAL_USING(emit->as, emit->code_info_offset, offsetof(mp_code_state, code_info) / sizeof(mp_uint_t), REG_ARG_1);
// set code_state.ip (offset from start of this function to prelude info)
// XXX this encoding may change size
ASM_MOV_IMM_TO_LOCAL_USING(emit->as, emit->prelude_offset, offsetof(mp_code_state, ip) / sizeof(mp_uint_t), REG_ARG_1);
// set code_state.n_state
ASM_MOV_IMM_TO_LOCAL_USING(emit->as, emit->n_state, offsetof(mp_code_state, n_state) / sizeof(mp_uint_t), REG_ARG_1);
// put address of code_state into first arg
ASM_MOV_LOCAL_ADDR_TO_REG(emit->as, 0, REG_ARG_1);
// call mp_setup_code_state to prepare code_state structure
#if N_THUMB
asm_thumb_op16(emit->as, 0xb400 | (1 << ASM_THUMB_REG_R4)); // push 5th arg
asm_thumb_bl_ind(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE, ASM_THUMB_REG_R4);
asm_thumb_op16(emit->as, 0xbc00 | (1 << REG_RET)); // pop dummy (was 5th arg)
#else
ASM_CALL_IND(emit->as, mp_fun_table[MP_F_SETUP_CODE_STATE], MP_F_SETUP_CODE_STATE);
#endif
// cache some locals in registers
if (scope->num_locals > 0) {
ASM_MOV_LOCAL_TO_REG(emit->as, STATE_START + emit->n_state - 1 - 0, REG_LOCAL_1);
if (scope->num_locals > 1) {
ASM_MOV_LOCAL_TO_REG(emit->as, STATE_START + emit->n_state - 1 - 1, REG_LOCAL_2);
if (scope->num_locals > 2) {
ASM_MOV_LOCAL_TO_REG(emit->as, STATE_START + emit->n_state - 1 - 2, REG_LOCAL_3);
}
}
}
// set the type of closed over variables
for (mp_uint_t i = 0; i < scope->id_info_len; i++) {
id_info_t *id = &scope->id_info[i];
if (id->kind == ID_INFO_KIND_CELL) {
emit->local_vtype[id->local_num] = VTYPE_PYOBJ;
}
}
}
#if N_THUMB
// TODO don't load r7 if we don't need it
asm_thumb_mov_reg_i32(emit->as, ASM_THUMB_REG_R7, (mp_uint_t)mp_fun_table);
#endif
#if N_ARM
// TODO don't load r7 if we don't need it
asm_arm_mov_reg_i32(emit->as, ASM_ARM_REG_R7, (mp_uint_t)mp_fun_table);
#endif
}
STATIC void emit_native_end_pass(emit_t *emit) {
if (!emit->last_emit_was_return_value) {
ASM_EXIT(emit->as);
}
if (!emit->do_viper_types) {
// write dummy code info (for mp_setup_code_state to parse) and arg names
emit->code_info_offset = ASM_GET_CODE_POS(emit->as);
ASM_DATA(emit->as, 1, emit->code_info_size);
ASM_ALIGN(emit->as, ASM_WORD_SIZE);
emit->code_info_size = ASM_GET_CODE_POS(emit->as) - emit->code_info_offset;
for (int i = 0; i < emit->scope->num_pos_args + emit->scope->num_kwonly_args; i++) {
ASM_DATA(emit->as, ASM_WORD_SIZE, (mp_uint_t)MP_OBJ_NEW_QSTR(emit->scope->id_info[i].qst));
}
// bytecode prelude: initialise closed over variables
emit->prelude_offset = ASM_GET_CODE_POS(emit->as);
for (int i = 0; i < emit->scope->id_info_len; i++) {
id_info_t *id = &emit->scope->id_info[i];
if (id->kind == ID_INFO_KIND_CELL) {
assert(id->local_num < 255);
ASM_DATA(emit->as, 1, id->local_num); // write the local which should be converted to a cell
}
}
ASM_DATA(emit->as, 1, 255); // end of list sentinel
}
ASM_END_PASS(emit->as);
// check stack is back to zero size
if (emit->stack_size != 0) {
mp_printf(&mp_plat_print, "ERROR: stack size not back to zero; got %d\n", emit->stack_size);
}
if (emit->pass == MP_PASS_EMIT) {
void *f = ASM_GET_CODE(emit->as);
mp_uint_t f_len = ASM_GET_CODE_SIZE(emit->as);
// compute type signature
// note that the lower 2 bits of a vtype are tho correct MP_NATIVE_TYPE_xxx
mp_uint_t type_sig = emit->return_vtype & 3;
for (mp_uint_t i = 0; i < emit->scope->num_pos_args; i++) {
type_sig |= (emit->local_vtype[i] & 3) << (i * 2 + 2);
}
mp_emit_glue_assign_native(emit->scope->raw_code,
emit->do_viper_types ? MP_CODE_NATIVE_VIPER : MP_CODE_NATIVE_PY,
f, f_len, emit->scope->num_pos_args, emit->scope->num_kwonly_args,
emit->scope->scope_flags, type_sig);
}
}
STATIC bool emit_native_last_emit_was_return_value(emit_t *emit) {
return emit->last_emit_was_return_value;
}
STATIC void adjust_stack(emit_t *emit, mp_int_t stack_size_delta) {
assert((mp_int_t)emit->stack_size + stack_size_delta >= 0);
emit->stack_size += stack_size_delta;
if (emit->pass > MP_PASS_SCOPE && emit->stack_size > emit->scope->stack_size) {
emit->scope->stack_size = emit->stack_size;
}
#ifdef DEBUG_PRINT
DEBUG_printf(" adjust_stack; stack_size=%d+%d; stack now:", emit->stack_size - stack_size_delta, stack_size_delta);
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
DEBUG_printf(" (v=%d k=%d %d)", si->vtype, si->kind, si->data.u_reg);
}
DEBUG_printf("\n");
#endif
}
STATIC void emit_native_adjust_stack_size(emit_t *emit, mp_int_t delta) {
DEBUG_printf("adjust_stack_size(" INT_FMT ")\n", delta);
// If we are adjusting the stack in a positive direction (pushing) then we
// need to fill in values for the stack kind and vtype of the newly-pushed
// entries. These should be set to "value" (ie not reg or imm) because we
// should only need to adjust the stack due to a jump to this part in the
// code (and hence we have settled the stack before the jump).
for (mp_int_t i = 0; i < delta; i++) {
stack_info_t *si = &emit->stack_info[emit->stack_size + i];
si->kind = STACK_VALUE;
// TODO we don't know the vtype to use here. At the moment this is a
// hack to get the case of multi comparison working.
if (delta == 1) {
si->vtype = emit->saved_stack_vtype;
} else {
si->vtype = VTYPE_PYOBJ;
}
}
adjust_stack(emit, delta);
}
STATIC void emit_native_set_source_line(emit_t *emit, mp_uint_t source_line) {
(void)emit;
(void)source_line;
}
/*
STATIC void emit_pre_raw(emit_t *emit, int stack_size_delta) {
adjust_stack(emit, stack_size_delta);
emit->last_emit_was_return_value = false;
}
*/
// this must be called at start of emit functions
STATIC void emit_native_pre(emit_t *emit) {
emit->last_emit_was_return_value = false;
// settle the stack
/*
if (regs_needed != 0) {
for (int i = 0; i < emit->stack_size; i++) {
switch (emit->stack_info[i].kind) {
case STACK_VALUE:
break;
case STACK_REG:
// TODO only push reg if in regs_needed
emit->stack_info[i].kind = STACK_VALUE;
ASM_MOV_REG_TO_LOCAL(emit->as, emit->stack_info[i].data.u_reg, emit->stack_start + i);
break;
case STACK_IMM:
// don't think we ever need to push imms for settling
//ASM_MOV_IMM_TO_LOCAL(emit->last_imm, emit->stack_start + i);
break;
}
}
}
*/
}
// depth==0 is top, depth==1 is before top, etc
STATIC stack_info_t *peek_stack(emit_t *emit, mp_uint_t depth) {
return &emit->stack_info[emit->stack_size - 1 - depth];
}
// depth==0 is top, depth==1 is before top, etc
STATIC vtype_kind_t peek_vtype(emit_t *emit, mp_uint_t depth) {
return peek_stack(emit, depth)->vtype;
}
// pos=1 is TOS, pos=2 is next, etc
// use pos=0 for no skipping
STATIC void need_reg_single(emit_t *emit, int reg_needed, int skip_stack_pos) {
skip_stack_pos = emit->stack_size - skip_stack_pos;
for (int i = 0; i < emit->stack_size; i++) {
if (i != skip_stack_pos) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_REG && si->data.u_reg == reg_needed) {
si->kind = STACK_VALUE;
ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i);
}
}
}
}
STATIC void need_reg_all(emit_t *emit) {
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_REG) {
si->kind = STACK_VALUE;
ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i);
}
}
}
STATIC void need_stack_settled(emit_t *emit) {
DEBUG_printf(" need_stack_settled; stack_size=%d\n", emit->stack_size);
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_REG) {
DEBUG_printf(" reg(%u) to local(%u)\n", si->data.u_reg, emit->stack_start + i);
si->kind = STACK_VALUE;
ASM_MOV_REG_TO_LOCAL(emit->as, si->data.u_reg, emit->stack_start + i);
}
}
for (int i = 0; i < emit->stack_size; i++) {
stack_info_t *si = &emit->stack_info[i];
if (si->kind == STACK_IMM) {
DEBUG_printf(" imm(" INT_FMT ") to local(%u)\n", si->data.u_imm, emit->stack_start + i);
si->kind = STACK_VALUE;
ASM_MOV_IMM_TO_LOCAL_USING(emit->as, si->data.u_imm, emit->stack_start + i, REG_TEMP0);
}
}
}
// pos=1 is TOS, pos=2 is next, etc
STATIC void emit_access_stack(emit_t *emit, int pos, vtype_kind_t *vtype, int reg_dest) {
need_reg_single(emit, reg_dest, pos);
stack_info_t *si = &emit->stack_info[emit->stack_size - pos];
*vtype = si->vtype;
switch (si->kind) {
case STACK_VALUE:
ASM_MOV_LOCAL_TO_REG(emit->as, emit->stack_start + emit->stack_size - pos, reg_dest);
break;
case STACK_REG:
if (si->data.u_reg != reg_dest) {
ASM_MOV_REG_REG(emit->as, reg_dest, si->data.u_reg);
}
break;
case STACK_IMM:
ASM_MOV_IMM_TO_REG(emit->as, si->data.u_imm, reg_dest);
break;
}
}
// does an efficient X=pop(); discard(); push(X)
// needs a (non-temp) register in case the poped element was stored in the stack
STATIC void emit_fold_stack_top(emit_t *emit, int reg_dest) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 2];
si[0] = si[1];
if (si->kind == STACK_VALUE) {
// if folded element was on the stack we need to put it in a register
ASM_MOV_LOCAL_TO_REG(emit->as, emit->stack_start + emit->stack_size - 1, reg_dest);
si->kind = STACK_REG;
si->data.u_reg = reg_dest;
}
adjust_stack(emit, -1);
}
// If stacked value is in a register and the register is not r1 or r2, then
// *reg_dest is set to that register. Otherwise the value is put in *reg_dest.
STATIC void emit_pre_pop_reg_flexible(emit_t *emit, vtype_kind_t *vtype, int *reg_dest, int not_r1, int not_r2) {
emit->last_emit_was_return_value = false;
stack_info_t *si = peek_stack(emit, 0);
if (si->kind == STACK_REG && si->data.u_reg != not_r1 && si->data.u_reg != not_r2) {
*vtype = si->vtype;
*reg_dest = si->data.u_reg;
need_reg_single(emit, *reg_dest, 1);
} else {
emit_access_stack(emit, 1, vtype, *reg_dest);
}
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_discard(emit_t *emit) {
emit->last_emit_was_return_value = false;
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_reg(emit_t *emit, vtype_kind_t *vtype, int reg_dest) {
emit->last_emit_was_return_value = false;
emit_access_stack(emit, 1, vtype, reg_dest);
adjust_stack(emit, -1);
}
STATIC void emit_pre_pop_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb) {
emit_pre_pop_reg(emit, vtypea, rega);
emit_pre_pop_reg(emit, vtypeb, regb);
}
STATIC void emit_pre_pop_reg_reg_reg(emit_t *emit, vtype_kind_t *vtypea, int rega, vtype_kind_t *vtypeb, int regb, vtype_kind_t *vtypec, int regc) {
emit_pre_pop_reg(emit, vtypea, rega);
emit_pre_pop_reg(emit, vtypeb, regb);
emit_pre_pop_reg(emit, vtypec, regc);
}
STATIC void emit_post(emit_t *emit) {
(void)emit;
}
STATIC void emit_post_top_set_vtype(emit_t *emit, vtype_kind_t new_vtype) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 1];
si->vtype = new_vtype;
}
STATIC void emit_post_push_reg(emit_t *emit, vtype_kind_t vtype, int reg) {
stack_info_t *si = &emit->stack_info[emit->stack_size];
si->vtype = vtype;
si->kind = STACK_REG;
si->data.u_reg = reg;
adjust_stack(emit, 1);
}
STATIC void emit_post_push_imm(emit_t *emit, vtype_kind_t vtype, mp_int_t imm) {
stack_info_t *si = &emit->stack_info[emit->stack_size];
si->vtype = vtype;
si->kind = STACK_IMM;
si->data.u_imm = imm;
adjust_stack(emit, 1);
}
STATIC void emit_post_push_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
}
STATIC void emit_post_push_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
emit_post_push_reg(emit, vtypec, regc);
}
STATIC void emit_post_push_reg_reg_reg_reg(emit_t *emit, vtype_kind_t vtypea, int rega, vtype_kind_t vtypeb, int regb, vtype_kind_t vtypec, int regc, vtype_kind_t vtyped, int regd) {
emit_post_push_reg(emit, vtypea, rega);
emit_post_push_reg(emit, vtypeb, regb);
emit_post_push_reg(emit, vtypec, regc);
emit_post_push_reg(emit, vtyped, regd);
}
STATIC void emit_call(emit_t *emit, mp_fun_kind_t fun_kind) {
need_reg_all(emit);
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}
STATIC void emit_call_with_imm_arg(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
need_reg_all(emit);
ASM_MOV_IMM_TO_REG(emit->as, arg_val, arg_reg);
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}
// the first arg is stored in the code aligned on a mp_uint_t boundary
STATIC void emit_call_with_imm_arg_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val, int arg_reg) {
need_reg_all(emit);
ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, arg_val, arg_reg);
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}
STATIC void emit_call_with_2_imm_args(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2) {
need_reg_all(emit);
ASM_MOV_IMM_TO_REG(emit->as, arg_val1, arg_reg1);
ASM_MOV_IMM_TO_REG(emit->as, arg_val2, arg_reg2);
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}
// the first arg is stored in the code aligned on a mp_uint_t boundary
STATIC void emit_call_with_3_imm_args_and_first_aligned(emit_t *emit, mp_fun_kind_t fun_kind, mp_int_t arg_val1, int arg_reg1, mp_int_t arg_val2, int arg_reg2, mp_int_t arg_val3, int arg_reg3) {
need_reg_all(emit);
ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, arg_val1, arg_reg1);
ASM_MOV_IMM_TO_REG(emit->as, arg_val2, arg_reg2);
ASM_MOV_IMM_TO_REG(emit->as, arg_val3, arg_reg3);
ASM_CALL_IND(emit->as, mp_fun_table[fun_kind], fun_kind);
}
// vtype of all n_pop objects is VTYPE_PYOBJ
// Will convert any items that are not VTYPE_PYOBJ to this type and put them back on the stack.
// If any conversions of non-immediate values are needed, then it uses REG_ARG_1, REG_ARG_2 and REG_RET.
// Otherwise, it does not use any temporary registers (but may use reg_dest before loading it with stack pointer).
STATIC void emit_get_stack_pointer_to_reg_for_pop(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_pop) {
need_reg_all(emit);
// First, store any immediate values to their respective place on the stack.
for (mp_uint_t i = 0; i < n_pop; i++) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
// must push any imm's to stack
// must convert them to VTYPE_PYOBJ for viper code
if (si->kind == STACK_IMM) {
si->kind = STACK_VALUE;
switch (si->vtype) {
case VTYPE_PYOBJ:
ASM_MOV_IMM_TO_LOCAL_USING(emit->as, si->data.u_imm, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
break;
case VTYPE_BOOL:
if (si->data.u_imm == 0) {
ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (mp_uint_t)mp_const_false, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
} else {
ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (mp_uint_t)mp_const_true, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
}
si->vtype = VTYPE_PYOBJ;
break;
case VTYPE_INT:
case VTYPE_UINT:
ASM_MOV_IMM_TO_LOCAL_USING(emit->as, (si->data.u_imm << 1) | 1, emit->stack_start + emit->stack_size - 1 - i, reg_dest);
si->vtype = VTYPE_PYOBJ;
break;
default:
// not handled
assert(0);
}
}
// verify that this value is on the stack
assert(si->kind == STACK_VALUE);
}
// Second, convert any non-VTYPE_PYOBJ to that type.
for (mp_uint_t i = 0; i < n_pop; i++) {
stack_info_t *si = &emit->stack_info[emit->stack_size - 1 - i];
if (si->vtype != VTYPE_PYOBJ) {
mp_uint_t local_num = emit->stack_start + emit->stack_size - 1 - i;
ASM_MOV_LOCAL_TO_REG(emit->as, local_num, REG_ARG_1);
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, si->vtype, REG_ARG_2); // arg2 = type
ASM_MOV_REG_TO_LOCAL(emit->as, REG_RET, local_num);
si->vtype = VTYPE_PYOBJ;
DEBUG_printf(" convert_native_to_obj(local_num=" UINT_FMT ")\n", local_num);
}
}
// Adujust the stack for a pop of n_pop items, and load the stack pointer into reg_dest.
adjust_stack(emit, -n_pop);
ASM_MOV_LOCAL_ADDR_TO_REG(emit->as, emit->stack_start + emit->stack_size, reg_dest);
}
// vtype of all n_push objects is VTYPE_PYOBJ
STATIC void emit_get_stack_pointer_to_reg_for_push(emit_t *emit, mp_uint_t reg_dest, mp_uint_t n_push) {
need_reg_all(emit);
for (mp_uint_t i = 0; i < n_push; i++) {
emit->stack_info[emit->stack_size + i].kind = STACK_VALUE;
emit->stack_info[emit->stack_size + i].vtype = VTYPE_PYOBJ;
}
ASM_MOV_LOCAL_ADDR_TO_REG(emit->as, emit->stack_start + emit->stack_size, reg_dest);
adjust_stack(emit, n_push);
}
STATIC void emit_native_label_assign(emit_t *emit, mp_uint_t l) {
DEBUG_printf("label_assign(" UINT_FMT ")\n", l);
emit_native_pre(emit);
// need to commit stack because we can jump here from elsewhere
need_stack_settled(emit);
ASM_LABEL_ASSIGN(emit->as, l);
emit_post(emit);
}
STATIC void emit_native_import_name(emit_t *emit, qstr qst) {
DEBUG_printf("import_name %s\n", qstr_str(qst));
vtype_kind_t vtype_fromlist;
vtype_kind_t vtype_level;
emit_pre_pop_reg_reg(emit, &vtype_fromlist, REG_ARG_2, &vtype_level, REG_ARG_3); // arg2 = fromlist, arg3 = level
assert(vtype_fromlist == VTYPE_PYOBJ);
assert(vtype_level == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_IMPORT_NAME, qst, REG_ARG_1); // arg1 = import name
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_import_from(emit_t *emit, qstr qst) {
DEBUG_printf("import_from %s\n", qstr_str(qst));
emit_native_pre(emit);
vtype_kind_t vtype_module;
emit_access_stack(emit, 1, &vtype_module, REG_ARG_1); // arg1 = module
assert(vtype_module == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_IMPORT_FROM, qst, REG_ARG_2); // arg2 = import name
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_import_star(emit_t *emit) {
DEBUG_printf("import_star\n");
vtype_kind_t vtype_module;
emit_pre_pop_reg(emit, &vtype_module, REG_ARG_1); // arg1 = module
assert(vtype_module == VTYPE_PYOBJ);
emit_call(emit, MP_F_IMPORT_ALL);
emit_post(emit);
}
STATIC void emit_native_load_const_tok(emit_t *emit, mp_token_kind_t tok) {
DEBUG_printf("load_const_tok(tok=%u)\n", tok);
emit_native_pre(emit);
vtype_kind_t vtype;
mp_uint_t val;
if (emit->do_viper_types) {
switch (tok) {
case MP_TOKEN_KW_NONE: vtype = VTYPE_PTR_NONE; val = 0; break;
case MP_TOKEN_KW_FALSE: vtype = VTYPE_BOOL; val = 0; break;
case MP_TOKEN_KW_TRUE: vtype = VTYPE_BOOL; val = 1; break;
no_other_choice1:
case MP_TOKEN_ELLIPSIS: vtype = VTYPE_PYOBJ; val = (mp_uint_t)&mp_const_ellipsis_obj; break;
default: assert(0); goto no_other_choice1; // to help flow control analysis
}
} else {
vtype = VTYPE_PYOBJ;
switch (tok) {
case MP_TOKEN_KW_NONE: val = (mp_uint_t)mp_const_none; break;
case MP_TOKEN_KW_FALSE: val = (mp_uint_t)mp_const_false; break;
case MP_TOKEN_KW_TRUE: val = (mp_uint_t)mp_const_true; break;
no_other_choice2:
case MP_TOKEN_ELLIPSIS: val = (mp_uint_t)&mp_const_ellipsis_obj; break;
default: assert(0); goto no_other_choice2; // to help flow control analysis
}
}
emit_post_push_imm(emit, vtype, val);
}
STATIC void emit_native_load_const_small_int(emit_t *emit, mp_int_t arg) {
DEBUG_printf("load_const_small_int(int=" INT_FMT ")\n", arg);
emit_native_pre(emit);
if (emit->do_viper_types) {
emit_post_push_imm(emit, VTYPE_INT, arg);
} else {
emit_post_push_imm(emit, VTYPE_PYOBJ, (mp_uint_t)MP_OBJ_NEW_SMALL_INT(arg));
}
}
STATIC void emit_native_load_const_str(emit_t *emit, qstr qst, bool bytes) {
emit_native_pre(emit);
// TODO: Eventually we want to be able to work with raw pointers in viper to
// do native array access. For now we just load them as any other object.
/*
if (emit->do_viper_types) {
// not implemented properly
// load a pointer to the asciiz string?
assert(0);
emit_post_push_imm(emit, VTYPE_PTR, (mp_uint_t)qstr_str(qst));
} else
*/
{
if (bytes) {
emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_BYTES, qst, REG_ARG_1);
} else {
emit_call_with_imm_arg(emit, MP_F_LOAD_CONST_STR, qst, REG_ARG_1);
}
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
STATIC void emit_native_load_const_obj(emit_t *emit, void *obj) {
emit_native_pre(emit);
need_reg_single(emit, REG_RET, 0);
ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, (mp_uint_t)obj, REG_RET);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_null(emit_t *emit) {
emit_native_pre(emit);
emit_post_push_imm(emit, VTYPE_PYOBJ, 0);
}
STATIC void emit_native_load_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
DEBUG_printf("load_fast(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
vtype_kind_t vtype = emit->local_vtype[local_num];
if (vtype == VTYPE_UNBOUND) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "local '%q' used before type known", qst);
}
emit_native_pre(emit);
if (local_num == 0) {
emit_post_push_reg(emit, vtype, REG_LOCAL_1);
} else if (local_num == 1) {
emit_post_push_reg(emit, vtype, REG_LOCAL_2);
} else if (local_num == 2) {
emit_post_push_reg(emit, vtype, REG_LOCAL_3);
} else {
need_reg_single(emit, REG_TEMP0, 0);
if (emit->do_viper_types) {
ASM_MOV_LOCAL_TO_REG(emit->as, local_num - REG_LOCAL_NUM, REG_TEMP0);
} else {
ASM_MOV_LOCAL_TO_REG(emit->as, STATE_START + emit->n_state - 1 - local_num, REG_TEMP0);
}
emit_post_push_reg(emit, vtype, REG_TEMP0);
}
}
STATIC void emit_native_load_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
DEBUG_printf("load_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
need_reg_single(emit, REG_RET, 0);
emit_native_load_fast(emit, qst, local_num);
vtype_kind_t vtype;
int reg_base = REG_RET;
emit_pre_pop_reg_flexible(emit, &vtype, &reg_base, -1, -1);
ASM_LOAD_REG_REG_OFFSET(emit->as, REG_RET, reg_base, 1);
// closed over vars are always Python objects
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_name(emit_t *emit, qstr qst) {
DEBUG_printf("load_name(%s)\n", qstr_str(qst));
emit_native_pre(emit);
emit_call_with_imm_arg(emit, MP_F_LOAD_NAME, qst, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_global(emit_t *emit, qstr qst) {
DEBUG_printf("load_global(%s)\n", qstr_str(qst));
emit_native_pre(emit);
// check for builtin casting operators
if (emit->do_viper_types && qst == MP_QSTR_int) {
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_INT);
} else if (emit->do_viper_types && qst == MP_QSTR_uint) {
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_UINT);
} else if (emit->do_viper_types && qst == MP_QSTR_ptr) {
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR);
} else if (emit->do_viper_types && qst == MP_QSTR_ptr8) {
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR8);
} else if (emit->do_viper_types && qst == MP_QSTR_ptr16) {
emit_post_push_imm(emit, VTYPE_BUILTIN_CAST, VTYPE_PTR16);
} else {
emit_call_with_imm_arg(emit, MP_F_LOAD_GLOBAL, qst, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
STATIC void emit_native_load_attr(emit_t *emit, qstr qst) {
// depends on type of subject:
// - integer, function, pointer to integers: error
// - pointer to structure: get member, quite easy
// - Python object: call mp_load_attr, and needs to be typed to convert result
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
assert(vtype_base == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_LOAD_ATTR, qst, REG_ARG_2); // arg2 = attribute name
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_method(emit_t *emit, qstr qst) {
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
assert(vtype_base == VTYPE_PYOBJ);
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, 2); // arg3 = dest ptr
emit_call_with_imm_arg(emit, MP_F_LOAD_METHOD, qst, REG_ARG_2); // arg2 = method name
}
STATIC void emit_native_load_build_class(emit_t *emit) {
emit_native_pre(emit);
emit_call(emit, MP_F_LOAD_BUILD_CLASS);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_load_subscr(emit_t *emit) {
DEBUG_printf("load_subscr\n");
// need to compile: base[index]
// pop: index, base
// optimise case where index is an immediate
vtype_kind_t vtype_base = peek_vtype(emit, 1);
if (vtype_base == VTYPE_PYOBJ) {
// standard Python call
vtype_kind_t vtype_index;
emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1);
assert(vtype_index == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_SENTINEL, REG_ARG_3);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
// viper load
// TODO The different machine architectures have very different
// capabilities and requirements for loads, so probably best to
// write a completely separate load-optimiser for each one.
stack_info_t *top = peek_stack(emit, 0);
if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
// index is an immediate
mp_int_t index_value = top->data.u_imm;
emit_pre_pop_discard(emit); // discard index
int reg_base = REG_ARG_1;
int reg_index = REG_ARG_2;
emit_pre_pop_reg_flexible(emit, &vtype_base, &reg_base, reg_index, reg_index);
switch (vtype_base) {
case VTYPE_PTR8: {
// pointer to 8-bit memory
// TODO optimise to use thumb ldrb r1, [r2, r3]
if (index_value != 0) {
// index is non-zero
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_ldrb_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
break;
}
#endif
ASM_MOV_IMM_TO_REG(emit->as, index_value, reg_index);
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
reg_base = reg_index;
}
ASM_LOAD8_REG_REG(emit->as, REG_RET, reg_base); // load from (base+index)
break;
}
case VTYPE_PTR16: {
// pointer to 16-bit memory
if (index_value != 0) {
// index is a non-zero immediate
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_ldrh_rlo_rlo_i5(emit->as, REG_RET, reg_base, index_value);
break;
}
#endif
ASM_MOV_IMM_TO_REG(emit->as, index_value << 1, reg_index);
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
reg_base = reg_index;
}
ASM_LOAD16_REG_REG(emit->as, REG_RET, reg_base); // load from (base+2*index)
break;
}
default:
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
"can't load from '%q'", vtype_to_qstr(vtype_base));
}
} else {
// index is not an immediate
vtype_kind_t vtype_index;
int reg_index = REG_ARG_2;
emit_pre_pop_reg_flexible(emit, &vtype_index, &reg_index, REG_ARG_1, REG_ARG_1);
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
switch (vtype_base) {
case VTYPE_PTR8: {
// pointer to 8-bit memory
// TODO optimise to use thumb ldrb r1, [r2, r3]
assert(vtype_index == VTYPE_INT);
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_LOAD8_REG_REG(emit->as, REG_RET, REG_ARG_1); // store value to (base+index)
break;
}
case VTYPE_PTR16: {
// pointer to 16-bit memory
assert(vtype_index == VTYPE_INT);
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_LOAD16_REG_REG(emit->as, REG_RET, REG_ARG_1); // load from (base+2*index)
break;
}
default:
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
"can't load from '%q'", vtype_to_qstr(vtype_base));
}
}
emit_post_push_reg(emit, VTYPE_INT, REG_RET);
}
}
STATIC void emit_native_store_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
vtype_kind_t vtype;
if (local_num == 0) {
emit_pre_pop_reg(emit, &vtype, REG_LOCAL_1);
} else if (local_num == 1) {
emit_pre_pop_reg(emit, &vtype, REG_LOCAL_2);
} else if (local_num == 2) {
emit_pre_pop_reg(emit, &vtype, REG_LOCAL_3);
} else {
emit_pre_pop_reg(emit, &vtype, REG_TEMP0);
if (emit->do_viper_types) {
ASM_MOV_REG_TO_LOCAL(emit->as, REG_TEMP0, local_num - REG_LOCAL_NUM);
} else {
ASM_MOV_REG_TO_LOCAL(emit->as, REG_TEMP0, STATE_START + emit->n_state - 1 - local_num);
}
}
emit_post(emit);
// check types
if (emit->local_vtype[local_num] == VTYPE_UNBOUND) {
// first time this local is assigned, so give it a type of the object stored in it
emit->local_vtype[local_num] = vtype;
} else if (emit->local_vtype[local_num] != vtype) {
// type of local is not the same as object stored in it
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
"local '%q' has type '%q' but source is '%q'",
qst, vtype_to_qstr(emit->local_vtype[local_num]), vtype_to_qstr(vtype));
}
}
STATIC void emit_native_store_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
DEBUG_printf("store_deref(%s, " UINT_FMT ")\n", qstr_str(qst), local_num);
need_reg_single(emit, REG_TEMP0, 0);
need_reg_single(emit, REG_TEMP1, 0);
emit_native_load_fast(emit, qst, local_num);
vtype_kind_t vtype;
int reg_base = REG_TEMP0;
emit_pre_pop_reg_flexible(emit, &vtype, &reg_base, -1, -1);
int reg_src = REG_TEMP1;
emit_pre_pop_reg_flexible(emit, &vtype, &reg_src, reg_base, reg_base);
ASM_STORE_REG_REG_OFFSET(emit->as, reg_src, reg_base, 1);
emit_post(emit);
}
STATIC void emit_native_store_name(emit_t *emit, qstr qst) {
// mp_store_name, but needs conversion of object (maybe have mp_viper_store_name(obj, type))
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
assert(vtype == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_STORE_NAME, qst, REG_ARG_1); // arg1 = name
emit_post(emit);
}
STATIC void emit_native_store_global(emit_t *emit, qstr qst) {
vtype_kind_t vtype = peek_vtype(emit, 0);
if (vtype == VTYPE_PYOBJ) {
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
} else {
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
emit_call_with_imm_arg(emit, MP_F_CONVERT_NATIVE_TO_OBJ, vtype, REG_ARG_2); // arg2 = type
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
}
emit_call_with_imm_arg(emit, MP_F_STORE_GLOBAL, qst, REG_ARG_1); // arg1 = name
emit_post(emit);
}
STATIC void emit_native_store_attr(emit_t *emit, qstr qst) {
vtype_kind_t vtype_base, vtype_val;
emit_pre_pop_reg_reg(emit, &vtype_base, REG_ARG_1, &vtype_val, REG_ARG_3); // arg1 = base, arg3 = value
assert(vtype_base == VTYPE_PYOBJ);
assert(vtype_val == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_STORE_ATTR, qst, REG_ARG_2); // arg2 = attribute name
emit_post(emit);
}
STATIC void emit_native_store_subscr(emit_t *emit) {
DEBUG_printf("store_subscr\n");
// need to compile: base[index] = value
// pop: index, base, value
// optimise case where index is an immediate
vtype_kind_t vtype_base = peek_vtype(emit, 1);
if (vtype_base == VTYPE_PYOBJ) {
// standard Python call
vtype_kind_t vtype_index, vtype_value;
emit_pre_pop_reg_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1, &vtype_value, REG_ARG_3);
assert(vtype_index == VTYPE_PYOBJ);
assert(vtype_value == VTYPE_PYOBJ);
emit_call(emit, MP_F_OBJ_SUBSCR);
} else {
// viper store
// TODO The different machine architectures have very different
// capabilities and requirements for stores, so probably best to
// write a completely separate store-optimiser for each one.
stack_info_t *top = peek_stack(emit, 0);
if (top->vtype == VTYPE_INT && top->kind == STACK_IMM) {
// index is an immediate
mp_int_t index_value = top->data.u_imm;
emit_pre_pop_discard(emit); // discard index
vtype_kind_t vtype_value;
int reg_base = REG_ARG_1;
int reg_index = REG_ARG_2;
int reg_value = REG_ARG_3;
emit_pre_pop_reg_flexible(emit, &vtype_base, &reg_base, reg_index, reg_value);
#if N_X86
// special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
emit_pre_pop_reg(emit, &vtype_value, reg_value);
#else
emit_pre_pop_reg_flexible(emit, &vtype_value, &reg_value, reg_base, reg_index);
#endif
switch (vtype_base) {
case VTYPE_PTR8: {
// pointer to 8-bit memory
// TODO optimise to use thumb strb r1, [r2, r3]
if (index_value != 0) {
// index is non-zero
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_strb_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
break;
}
#endif
ASM_MOV_IMM_TO_REG(emit->as, index_value, reg_index);
#if N_ARM
asm_arm_strb_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
return;
#endif
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add index to base
reg_base = reg_index;
}
ASM_STORE8_REG_REG(emit->as, reg_value, reg_base); // store value to (base+index)
break;
}
case VTYPE_PTR16: {
// pointer to 16-bit memory
if (index_value != 0) {
// index is a non-zero immediate
#if N_THUMB
if (index_value > 0 && index_value < 32) {
asm_thumb_strh_rlo_rlo_i5(emit->as, reg_value, reg_base, index_value);
break;
}
#endif
ASM_MOV_IMM_TO_REG(emit->as, index_value << 1, reg_index);
#if N_ARM
asm_arm_strh_reg_reg_reg(emit->as, reg_value, reg_base, reg_index);
return;
#endif
ASM_ADD_REG_REG(emit->as, reg_index, reg_base); // add 2*index to base
reg_base = reg_index;
}
ASM_STORE16_REG_REG(emit->as, reg_value, reg_base); // store value to (base+2*index)
break;
}
default:
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
"can't store to '%q'", vtype_to_qstr(vtype_base));
}
} else {
// index is not an immediate
vtype_kind_t vtype_index, vtype_value;
int reg_index = REG_ARG_2;
int reg_value = REG_ARG_3;
emit_pre_pop_reg_flexible(emit, &vtype_index, &reg_index, REG_ARG_1, reg_value);
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1);
#if N_X86
// special case: x86 needs byte stores to be from lower 4 regs (REG_ARG_3 is EDX)
emit_pre_pop_reg(emit, &vtype_value, reg_value);
#else
emit_pre_pop_reg_flexible(emit, &vtype_value, &reg_value, REG_ARG_1, reg_index);
#endif
switch (vtype_base) {
case VTYPE_PTR8: {
// pointer to 8-bit memory
// TODO optimise to use thumb strb r1, [r2, r3]
assert(vtype_index == VTYPE_INT);
#if N_ARM
asm_arm_strb_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
break;
#endif
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_STORE8_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+index)
break;
}
case VTYPE_PTR16: {
// pointer to 16-bit memory
assert(vtype_index == VTYPE_INT);
#if N_ARM
asm_arm_strh_reg_reg_reg(emit->as, reg_value, REG_ARG_1, reg_index);
break;
#endif
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_ADD_REG_REG(emit->as, REG_ARG_1, reg_index); // add index to base
ASM_STORE16_REG_REG(emit->as, reg_value, REG_ARG_1); // store value to (base+2*index)
break;
}
default:
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
"can't store to '%q'", vtype_to_qstr(vtype_base));
}
}
}
}
STATIC void emit_native_delete_fast(emit_t *emit, qstr qst, mp_uint_t local_num) {
// TODO: This is not compliant implementation. We could use MP_OBJ_SENTINEL
// to mark deleted vars but then every var would need to be checked on
// each access. Very inefficient, so just set value to None to enable GC.
emit_native_load_const_tok(emit, MP_TOKEN_KW_NONE);
emit_native_store_fast(emit, qst, local_num);
}
STATIC void emit_native_delete_deref(emit_t *emit, qstr qst, mp_uint_t local_num) {
// TODO implement me!
(void)emit;
(void)qst;
(void)local_num;
}
STATIC void emit_native_delete_name(emit_t *emit, qstr qst) {
emit_native_pre(emit);
emit_call_with_imm_arg(emit, MP_F_DELETE_NAME, qst, REG_ARG_1);
emit_post(emit);
}
STATIC void emit_native_delete_global(emit_t *emit, qstr qst) {
emit_native_pre(emit);
emit_call_with_imm_arg(emit, MP_F_DELETE_GLOBAL, qst, REG_ARG_1);
emit_post(emit);
}
STATIC void emit_native_delete_attr(emit_t *emit, qstr qst) {
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = base
assert(vtype_base == VTYPE_PYOBJ);
emit_call_with_2_imm_args(emit, MP_F_STORE_ATTR, qst, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3); // arg2 = attribute name, arg3 = value (null for delete)
emit_post(emit);
}
STATIC void emit_native_delete_subscr(emit_t *emit) {
vtype_kind_t vtype_index, vtype_base;
emit_pre_pop_reg_reg(emit, &vtype_index, REG_ARG_2, &vtype_base, REG_ARG_1); // index, base
assert(vtype_index == VTYPE_PYOBJ);
assert(vtype_base == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_OBJ_SUBSCR, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3);
}
STATIC void emit_native_dup_top(emit_t *emit) {
DEBUG_printf("dup_top\n");
vtype_kind_t vtype;
int reg = REG_TEMP0;
emit_pre_pop_reg_flexible(emit, &vtype, &reg, -1, -1);
emit_post_push_reg_reg(emit, vtype, reg, vtype, reg);
}
STATIC void emit_native_dup_top_two(emit_t *emit) {
vtype_kind_t vtype0, vtype1;
emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
emit_post_push_reg_reg_reg_reg(emit, vtype1, REG_TEMP1, vtype0, REG_TEMP0, vtype1, REG_TEMP1, vtype0, REG_TEMP0);
}
STATIC void emit_native_pop_top(emit_t *emit) {
DEBUG_printf("pop_top\n");
emit_pre_pop_discard(emit);
emit_post(emit);
}
STATIC void emit_native_rot_two(emit_t *emit) {
DEBUG_printf("rot_two\n");
vtype_kind_t vtype0, vtype1;
emit_pre_pop_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1);
emit_post_push_reg_reg(emit, vtype0, REG_TEMP0, vtype1, REG_TEMP1);
}
STATIC void emit_native_rot_three(emit_t *emit) {
DEBUG_printf("rot_three\n");
vtype_kind_t vtype0, vtype1, vtype2;
emit_pre_pop_reg_reg_reg(emit, &vtype0, REG_TEMP0, &vtype1, REG_TEMP1, &vtype2, REG_TEMP2);
emit_post_push_reg_reg_reg(emit, vtype0, REG_TEMP0, vtype2, REG_TEMP2, vtype1, REG_TEMP1);
}
STATIC void emit_native_jump(emit_t *emit, mp_uint_t label) {
DEBUG_printf("jump(label=" UINT_FMT ")\n", label);
emit_native_pre(emit);
// need to commit stack because we are jumping elsewhere
need_stack_settled(emit);
ASM_JUMP(emit->as, label);
emit_post(emit);
}
STATIC void emit_native_jump_helper(emit_t *emit, bool pop) {
vtype_kind_t vtype = peek_vtype(emit, 0);
if (vtype == VTYPE_PYOBJ) {
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
if (!pop) {
adjust_stack(emit, 1);
}
emit_call(emit, MP_F_OBJ_IS_TRUE);
} else {
emit_pre_pop_reg(emit, &vtype, REG_RET);
if (!pop) {
adjust_stack(emit, 1);
}
if (!(vtype == VTYPE_BOOL || vtype == VTYPE_INT || vtype == VTYPE_UINT)) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
"can't implicitly convert '%q' to 'bool'", vtype_to_qstr(vtype));
}
}
// For non-pop need to save the vtype so that emit_native_adjust_stack_size
// can use it. This is a bit of a hack.
if (!pop) {
emit->saved_stack_vtype = vtype;
}
// need to commit stack because we may jump elsewhere
need_stack_settled(emit);
}
STATIC void emit_native_pop_jump_if(emit_t *emit, bool cond, mp_uint_t label) {
DEBUG_printf("pop_jump_if(cond=%u, label=" UINT_FMT ")\n", cond, label);
emit_native_jump_helper(emit, true);
if (cond) {
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label);
} else {
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label);
}
emit_post(emit);
}
STATIC void emit_native_jump_if_or_pop(emit_t *emit, bool cond, mp_uint_t label) {
DEBUG_printf("jump_if_or_pop(cond=%u, label=" UINT_FMT ")\n", cond, label);
emit_native_jump_helper(emit, false);
if (cond) {
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label);
} else {
ASM_JUMP_IF_REG_ZERO(emit->as, REG_RET, label);
}
adjust_stack(emit, -1);
emit_post(emit);
}
STATIC void emit_native_break_loop(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
(void)except_depth;
emit_native_jump(emit, label & ~MP_EMIT_BREAK_FROM_FOR); // TODO properly
}
STATIC void emit_native_continue_loop(emit_t *emit, mp_uint_t label, mp_uint_t except_depth) {
(void)except_depth;
emit_native_jump(emit, label); // TODO properly
}
STATIC void emit_native_setup_with(emit_t *emit, mp_uint_t label) {
// not supported, or could be with runtime call
(void)emit;
(void)label;
assert(0);
}
STATIC void emit_native_with_cleanup(emit_t *emit) {
(void)emit;
assert(0);
}
STATIC void emit_native_setup_except(emit_t *emit, mp_uint_t label) {
emit_native_pre(emit);
// need to commit stack because we may jump elsewhere
need_stack_settled(emit);
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_1, sizeof(nlr_buf_t) / sizeof(mp_uint_t)); // arg1 = pointer to nlr buf
emit_call(emit, MP_F_NLR_PUSH);
ASM_JUMP_IF_REG_NONZERO(emit->as, REG_RET, label);
emit_post(emit);
}
STATIC void emit_native_setup_finally(emit_t *emit, mp_uint_t label) {
emit_native_setup_except(emit, label);
}
STATIC void emit_native_end_finally(emit_t *emit) {
// logic:
// exc = pop_stack
// if exc == None: pass
// else: raise exc
// the check if exc is None is done in the MP_F_NATIVE_RAISE stub
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
emit_call(emit, MP_F_NATIVE_RAISE);
emit_post(emit);
}
STATIC void emit_native_get_iter(emit_t *emit) {
// perhaps the difficult one, as we want to rewrite for loops using native code
// in cases where we iterate over a Python object, can we use normal runtime calls?
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
assert(vtype == VTYPE_PYOBJ);
emit_call(emit, MP_F_GETITER);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_for_iter(emit_t *emit, mp_uint_t label) {
emit_native_pre(emit);
vtype_kind_t vtype;
emit_access_stack(emit, 1, &vtype, REG_ARG_1);
assert(vtype == VTYPE_PYOBJ);
emit_call(emit, MP_F_ITERNEXT);
ASM_MOV_IMM_TO_REG(emit->as, (mp_uint_t)MP_OBJ_STOP_ITERATION, REG_TEMP1);
ASM_JUMP_IF_REG_EQ(emit->as, REG_RET, REG_TEMP1, label);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_for_iter_end(emit_t *emit) {
// adjust stack counter (we get here from for_iter ending, which popped the value for us)
emit_native_pre(emit);
adjust_stack(emit, -1);
emit_post(emit);
}
STATIC void emit_native_pop_block(emit_t *emit) {
emit_native_pre(emit);
emit_call(emit, MP_F_NLR_POP);
adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t)));
emit_post(emit);
}
STATIC void emit_native_pop_except(emit_t *emit) {
(void)emit;
/*
emit_native_pre(emit);
emit_call(emit, MP_F_NLR_POP);
adjust_stack(emit, -(mp_int_t)(sizeof(nlr_buf_t) / sizeof(mp_uint_t)));
emit_post(emit);
*/
}
STATIC void emit_native_unary_op(emit_t *emit, mp_unary_op_t op) {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_2);
assert(vtype == VTYPE_PYOBJ);
if (op == MP_UNARY_OP_NOT) {
// we need to synthesise this operation by converting to bool first
emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_BOOL, REG_ARG_1);
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
}
emit_call_with_imm_arg(emit, MP_F_UNARY_OP, op, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_binary_op(emit_t *emit, mp_binary_op_t op) {
DEBUG_printf("binary_op(" UINT_FMT ")\n", op);
vtype_kind_t vtype_lhs = peek_vtype(emit, 1);
vtype_kind_t vtype_rhs = peek_vtype(emit, 0);
if (vtype_lhs == VTYPE_INT && vtype_rhs == VTYPE_INT) {
#if N_X64 || N_X86
// special cases for x86 and shifting
if (op == MP_BINARY_OP_LSHIFT
|| op == MP_BINARY_OP_INPLACE_LSHIFT
|| op == MP_BINARY_OP_RSHIFT
|| op == MP_BINARY_OP_INPLACE_RSHIFT) {
#if N_X64
emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X64_REG_RCX, &vtype_lhs, REG_RET);
#else
emit_pre_pop_reg_reg(emit, &vtype_rhs, ASM_X86_REG_ECX, &vtype_lhs, REG_RET);
#endif
if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) {
ASM_LSL_REG(emit->as, REG_RET);
} else {
ASM_ASR_REG(emit->as, REG_RET);
}
emit_post_push_reg(emit, VTYPE_INT, REG_RET);
return;
}
#endif
int reg_rhs = REG_ARG_3;
emit_pre_pop_reg_flexible(emit, &vtype_rhs, &reg_rhs, REG_RET, REG_ARG_2);
emit_pre_pop_reg(emit, &vtype_lhs, REG_ARG_2);
if (0) {
// dummy
#if !(N_X64 || N_X86)
} else if (op == MP_BINARY_OP_LSHIFT || op == MP_BINARY_OP_INPLACE_LSHIFT) {
ASM_LSL_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
} else if (op == MP_BINARY_OP_RSHIFT || op == MP_BINARY_OP_INPLACE_RSHIFT) {
ASM_ASR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
#endif
} else if (op == MP_BINARY_OP_OR || op == MP_BINARY_OP_INPLACE_OR) {
ASM_OR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
} else if (op == MP_BINARY_OP_XOR || op == MP_BINARY_OP_INPLACE_XOR) {
ASM_XOR_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
} else if (op == MP_BINARY_OP_AND || op == MP_BINARY_OP_INPLACE_AND) {
ASM_AND_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
} else if (op == MP_BINARY_OP_ADD || op == MP_BINARY_OP_INPLACE_ADD) {
ASM_ADD_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
} else if (op == MP_BINARY_OP_SUBTRACT || op == MP_BINARY_OP_INPLACE_SUBTRACT) {
ASM_SUB_REG_REG(emit->as, REG_ARG_2, reg_rhs);
emit_post_push_reg(emit, VTYPE_INT, REG_ARG_2);
} else if (MP_BINARY_OP_LESS <= op && op <= MP_BINARY_OP_NOT_EQUAL) {
// comparison ops are (in enum order):
// MP_BINARY_OP_LESS
// MP_BINARY_OP_MORE
// MP_BINARY_OP_EQUAL
// MP_BINARY_OP_LESS_EQUAL
// MP_BINARY_OP_MORE_EQUAL
// MP_BINARY_OP_NOT_EQUAL
need_reg_single(emit, REG_RET, 0);
#if N_X64
asm_x64_xor_r64_r64(emit->as, REG_RET, REG_RET);
asm_x64_cmp_r64_with_r64(emit->as, reg_rhs, REG_ARG_2);
static byte ops[6] = {
ASM_X64_CC_JL,
ASM_X64_CC_JG,
ASM_X64_CC_JE,
ASM_X64_CC_JLE,
ASM_X64_CC_JGE,
ASM_X64_CC_JNE,
};
asm_x64_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET);
#elif N_X86
asm_x86_xor_r32_r32(emit->as, REG_RET, REG_RET);
asm_x86_cmp_r32_with_r32(emit->as, reg_rhs, REG_ARG_2);
static byte ops[6] = {
ASM_X86_CC_JL,
ASM_X86_CC_JG,
ASM_X86_CC_JE,
ASM_X86_CC_JLE,
ASM_X86_CC_JGE,
ASM_X86_CC_JNE,
};
asm_x86_setcc_r8(emit->as, ops[op - MP_BINARY_OP_LESS], REG_RET);
#elif N_THUMB
asm_thumb_cmp_rlo_rlo(emit->as, REG_ARG_2, reg_rhs);
static uint16_t ops[6] = {
ASM_THUMB_OP_ITE_GE,
ASM_THUMB_OP_ITE_GT,
ASM_THUMB_OP_ITE_EQ,
ASM_THUMB_OP_ITE_GT,
ASM_THUMB_OP_ITE_GE,
ASM_THUMB_OP_ITE_EQ,
};
static byte ret[6] = { 0, 1, 1, 0, 1, 0, };
asm_thumb_op16(emit->as, ops[op - MP_BINARY_OP_LESS]);
asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS]);
asm_thumb_mov_rlo_i8(emit->as, REG_RET, ret[op - MP_BINARY_OP_LESS] ^ 1);
#elif N_ARM
asm_arm_cmp_reg_reg(emit->as, REG_ARG_2, reg_rhs);
static uint ccs[6] = {
ASM_ARM_CC_LT,
ASM_ARM_CC_GT,
ASM_ARM_CC_EQ,
ASM_ARM_CC_LE,
ASM_ARM_CC_GE,
ASM_ARM_CC_NE,
};
asm_arm_setcc_reg(emit->as, REG_RET, ccs[op - MP_BINARY_OP_LESS]);
#else
#error not implemented
#endif
emit_post_push_reg(emit, VTYPE_BOOL, REG_RET);
} else {
// TODO other ops not yet implemented
assert(0);
}
} else if (vtype_lhs == VTYPE_PYOBJ && vtype_rhs == VTYPE_PYOBJ) {
emit_pre_pop_reg_reg(emit, &vtype_rhs, REG_ARG_3, &vtype_lhs, REG_ARG_2);
bool invert = false;
if (op == MP_BINARY_OP_NOT_IN) {
invert = true;
op = MP_BINARY_OP_IN;
} else if (op == MP_BINARY_OP_IS_NOT) {
invert = true;
op = MP_BINARY_OP_IS;
}
emit_call_with_imm_arg(emit, MP_F_BINARY_OP, op, REG_ARG_1);
if (invert) {
ASM_MOV_REG_REG(emit->as, REG_ARG_2, REG_RET);
emit_call_with_imm_arg(emit, MP_F_UNARY_OP, MP_UNARY_OP_NOT, REG_ARG_1);
}
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
"can't do binary op between '%q' and '%q'",
vtype_to_qstr(vtype_lhs), vtype_to_qstr(vtype_rhs));
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
STATIC void emit_native_build_tuple(emit_t *emit, mp_uint_t n_args) {
// for viper: call runtime, with types of args
// if wrapped in byte_array, or something, allocates memory and fills it
emit_native_pre(emit);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
emit_call_with_imm_arg(emit, MP_F_BUILD_TUPLE, n_args, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new tuple
}
STATIC void emit_native_build_list(emit_t *emit, mp_uint_t n_args) {
emit_native_pre(emit);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
emit_call_with_imm_arg(emit, MP_F_BUILD_LIST, n_args, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new list
}
STATIC void emit_native_list_append(emit_t *emit, mp_uint_t list_index) {
// only used in list comprehension
vtype_kind_t vtype_list, vtype_item;
emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
emit_access_stack(emit, list_index, &vtype_list, REG_ARG_1);
assert(vtype_list == VTYPE_PYOBJ);
assert(vtype_item == VTYPE_PYOBJ);
emit_call(emit, MP_F_LIST_APPEND);
emit_post(emit);
}
STATIC void emit_native_build_map(emit_t *emit, mp_uint_t n_args) {
emit_native_pre(emit);
emit_call_with_imm_arg(emit, MP_F_BUILD_MAP, n_args, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new map
}
STATIC void emit_native_store_map(emit_t *emit) {
vtype_kind_t vtype_key, vtype_value, vtype_map;
emit_pre_pop_reg_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3, &vtype_map, REG_ARG_1); // key, value, map
assert(vtype_key == VTYPE_PYOBJ);
assert(vtype_value == VTYPE_PYOBJ);
assert(vtype_map == VTYPE_PYOBJ);
emit_call(emit, MP_F_STORE_MAP);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // map
}
STATIC void emit_native_map_add(emit_t *emit, mp_uint_t map_index) {
// only used in list comprehension
vtype_kind_t vtype_map, vtype_key, vtype_value;
emit_pre_pop_reg_reg(emit, &vtype_key, REG_ARG_2, &vtype_value, REG_ARG_3);
emit_access_stack(emit, map_index, &vtype_map, REG_ARG_1);
assert(vtype_map == VTYPE_PYOBJ);
assert(vtype_key == VTYPE_PYOBJ);
assert(vtype_value == VTYPE_PYOBJ);
emit_call(emit, MP_F_STORE_MAP);
emit_post(emit);
}
#if MICROPY_PY_BUILTINS_SET
STATIC void emit_native_build_set(emit_t *emit, mp_uint_t n_args) {
emit_native_pre(emit);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_2, n_args); // pointer to items
emit_call_with_imm_arg(emit, MP_F_BUILD_SET, n_args, REG_ARG_1);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET); // new set
}
STATIC void emit_native_set_add(emit_t *emit, mp_uint_t set_index) {
// only used in set comprehension
vtype_kind_t vtype_set, vtype_item;
emit_pre_pop_reg(emit, &vtype_item, REG_ARG_2);
emit_access_stack(emit, set_index, &vtype_set, REG_ARG_1);
assert(vtype_set == VTYPE_PYOBJ);
assert(vtype_item == VTYPE_PYOBJ);
emit_call(emit, MP_F_STORE_SET);
emit_post(emit);
}
#endif
#if MICROPY_PY_BUILTINS_SLICE
STATIC void emit_native_build_slice(emit_t *emit, mp_uint_t n_args) {
DEBUG_printf("build_slice %d\n", n_args);
if (n_args == 2) {
vtype_kind_t vtype_start, vtype_stop;
emit_pre_pop_reg_reg(emit, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop
assert(vtype_start == VTYPE_PYOBJ);
assert(vtype_stop == VTYPE_PYOBJ);
emit_call_with_imm_arg(emit, MP_F_NEW_SLICE, (mp_uint_t)mp_const_none, REG_ARG_3); // arg3 = step
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
assert(n_args == 3);
vtype_kind_t vtype_start, vtype_stop, vtype_step;
emit_pre_pop_reg_reg_reg(emit, &vtype_step, REG_ARG_3, &vtype_stop, REG_ARG_2, &vtype_start, REG_ARG_1); // arg1 = start, arg2 = stop, arg3 = step
assert(vtype_start == VTYPE_PYOBJ);
assert(vtype_stop == VTYPE_PYOBJ);
assert(vtype_step == VTYPE_PYOBJ);
emit_call(emit, MP_F_NEW_SLICE);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
#endif
STATIC void emit_native_unpack_sequence(emit_t *emit, mp_uint_t n_args) {
DEBUG_printf("unpack_sequence %d\n", n_args);
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
assert(vtype_base == VTYPE_PYOBJ);
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_args); // arg3 = dest ptr
emit_call_with_imm_arg(emit, MP_F_UNPACK_SEQUENCE, n_args, REG_ARG_2); // arg2 = n_args
}
STATIC void emit_native_unpack_ex(emit_t *emit, mp_uint_t n_left, mp_uint_t n_right) {
DEBUG_printf("unpack_ex %d %d\n", n_left, n_right);
vtype_kind_t vtype_base;
emit_pre_pop_reg(emit, &vtype_base, REG_ARG_1); // arg1 = seq
assert(vtype_base == VTYPE_PYOBJ);
emit_get_stack_pointer_to_reg_for_push(emit, REG_ARG_3, n_left + n_right + 1); // arg3 = dest ptr
emit_call_with_imm_arg(emit, MP_F_UNPACK_EX, n_left | (n_right << 8), REG_ARG_2); // arg2 = n_left + n_right
}
STATIC void emit_native_make_function(emit_t *emit, scope_t *scope, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
// call runtime, with type info for args, or don't support dict/default params, or only support Python objects for them
emit_native_pre(emit);
if (n_pos_defaults == 0 && n_kw_defaults == 0) {
emit_call_with_3_imm_args_and_first_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1, (mp_uint_t)MP_OBJ_NULL, REG_ARG_2, (mp_uint_t)MP_OBJ_NULL, REG_ARG_3);
} else {
vtype_kind_t vtype_def_tuple, vtype_def_dict;
emit_pre_pop_reg_reg(emit, &vtype_def_dict, REG_ARG_3, &vtype_def_tuple, REG_ARG_2);
assert(vtype_def_tuple == VTYPE_PYOBJ);
assert(vtype_def_dict == VTYPE_PYOBJ);
emit_call_with_imm_arg_aligned(emit, MP_F_MAKE_FUNCTION_FROM_RAW_CODE, (mp_uint_t)scope->raw_code, REG_ARG_1);
}
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_make_closure(emit_t *emit, scope_t *scope, mp_uint_t n_closed_over, mp_uint_t n_pos_defaults, mp_uint_t n_kw_defaults) {
emit_native_pre(emit);
if (n_pos_defaults == 0 && n_kw_defaults == 0) {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over);
ASM_MOV_IMM_TO_REG(emit->as, n_closed_over, REG_ARG_2);
} else {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_closed_over + 2);
ASM_MOV_IMM_TO_REG(emit->as, 0x100 | n_closed_over, REG_ARG_2);
}
ASM_MOV_ALIGNED_IMM_TO_REG(emit->as, (mp_uint_t)scope->raw_code, REG_ARG_1);
ASM_CALL_IND(emit->as, mp_fun_table[MP_F_MAKE_CLOSURE_FROM_RAW_CODE], MP_F_MAKE_CLOSURE_FROM_RAW_CODE);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
STATIC void emit_native_call_function(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
DEBUG_printf("call_function(n_pos=" UINT_FMT ", n_kw=" UINT_FMT ", star_flags=" UINT_FMT ")\n", n_positional, n_keyword, star_flags);
// TODO: in viper mode, call special runtime routine with type info for args,
// and wanted type info for return, to remove need for boxing/unboxing
emit_native_pre(emit);
vtype_kind_t vtype_fun = peek_vtype(emit, n_positional + 2 * n_keyword);
if (vtype_fun == VTYPE_BUILTIN_CAST) {
// casting operator
assert(n_positional == 1 && n_keyword == 0);
assert(!star_flags);
DEBUG_printf(" cast to %d\n", vtype_fun);
vtype_kind_t vtype_cast = peek_stack(emit, 1)->data.u_imm;
switch (peek_vtype(emit, 0)) {
case VTYPE_PYOBJ: {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_ARG_1);
emit_pre_pop_discard(emit);
emit_call_with_imm_arg(emit, MP_F_CONVERT_OBJ_TO_NATIVE, MP_NATIVE_TYPE_UINT, REG_ARG_2); // arg2 = type
emit_post_push_reg(emit, vtype_cast, REG_RET);
break;
}
case VTYPE_BOOL:
case VTYPE_INT:
case VTYPE_UINT:
case VTYPE_PTR:
case VTYPE_PTR8:
case VTYPE_PTR16:
case VTYPE_PTR_NONE:
emit_fold_stack_top(emit, REG_ARG_1);
emit_post_top_set_vtype(emit, vtype_cast);
break;
default:
assert(!"TODO: convert obj to int");
}
} else {
assert(vtype_fun == VTYPE_PYOBJ);
if (star_flags) {
if (!(star_flags & MP_EMIT_STAR_FLAG_SINGLE)) {
// load dummy entry for non-existent pos_seq
emit_native_load_null(emit);
emit_native_rot_two(emit);
} else if (!(star_flags & MP_EMIT_STAR_FLAG_DOUBLE)) {
// load dummy entry for non-existent kw_dict
emit_native_load_null(emit);
}
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 3); // pointer to args
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 0, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
if (n_positional != 0 || n_keyword != 0) {
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword); // pointer to args
}
emit_pre_pop_reg(emit, &vtype_fun, REG_ARG_1); // the function
emit_call_with_imm_arg(emit, MP_F_NATIVE_CALL_FUNCTION_N_KW, n_positional | (n_keyword << 8), REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
}
STATIC void emit_native_call_method(emit_t *emit, mp_uint_t n_positional, mp_uint_t n_keyword, mp_uint_t star_flags) {
if (star_flags) {
if (!(star_flags & MP_EMIT_STAR_FLAG_SINGLE)) {
// load dummy entry for non-existent pos_seq
emit_native_load_null(emit);
emit_native_rot_two(emit);
} else if (!(star_flags & MP_EMIT_STAR_FLAG_DOUBLE)) {
// load dummy entry for non-existent kw_dict
emit_native_load_null(emit);
}
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, n_positional + 2 * n_keyword + 4); // pointer to args
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW_VAR, 1, REG_ARG_1, n_positional | (n_keyword << 8), REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
} else {
emit_native_pre(emit);
emit_get_stack_pointer_to_reg_for_pop(emit, REG_ARG_3, 2 + n_positional + 2 * n_keyword); // pointer to items, including meth and self
emit_call_with_2_imm_args(emit, MP_F_CALL_METHOD_N_KW, n_positional, REG_ARG_1, n_keyword, REG_ARG_2);
emit_post_push_reg(emit, VTYPE_PYOBJ, REG_RET);
}
}
STATIC void emit_native_return_value(emit_t *emit) {
DEBUG_printf("return_value\n");
if (emit->do_viper_types) {
if (peek_vtype(emit, 0) == VTYPE_PTR_NONE) {
emit_pre_pop_discard(emit);
if (emit->return_vtype == VTYPE_PYOBJ) {
ASM_MOV_IMM_TO_REG(emit->as, (mp_uint_t)mp_const_none, REG_RET);
} else {
ASM_MOV_IMM_TO_REG(emit->as, 0, REG_RET);
}
} else {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_RET);
if (vtype != emit->return_vtype) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit,
"return expected '%q' but got '%q'",
vtype_to_qstr(emit->return_vtype), vtype_to_qstr(vtype));
}
}
} else {
vtype_kind_t vtype;
emit_pre_pop_reg(emit, &vtype, REG_RET);
assert(vtype == VTYPE_PYOBJ);
}
emit->last_emit_was_return_value = true;
//ASM_BREAK_POINT(emit->as); // to insert a break-point for debugging
ASM_EXIT(emit->as);
}
STATIC void emit_native_raise_varargs(emit_t *emit, mp_uint_t n_args) {
assert(n_args == 1);
vtype_kind_t vtype_exc;
emit_pre_pop_reg(emit, &vtype_exc, REG_ARG_1); // arg1 = object to raise
if (vtype_exc != VTYPE_PYOBJ) {
EMIT_NATIVE_VIPER_TYPE_ERROR(emit, "must raise an object");
}
// TODO probably make this 1 call to the runtime (which could even call convert, native_raise(obj, type))
emit_call(emit, MP_F_NATIVE_RAISE);
}
STATIC void emit_native_yield_value(emit_t *emit) {
// not supported (for now)
(void)emit;
assert(0);
}
STATIC void emit_native_yield_from(emit_t *emit) {
// not supported (for now)
(void)emit;
assert(0);
}
STATIC void emit_native_start_except_handler(emit_t *emit) {
// This instruction follows an nlr_pop, so the stack counter is back to zero, when really
// it should be up by a whole nlr_buf_t. We then want to pop the nlr_buf_t here, but save
// the first 2 elements, so we can get the thrown value.
adjust_stack(emit, 2);
vtype_kind_t vtype_nlr;
emit_pre_pop_reg(emit, &vtype_nlr, REG_ARG_1); // get the thrown value
emit_pre_pop_discard(emit); // discard the linked-list pointer in the nlr_buf
emit_post_push_reg_reg_reg(emit, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1, VTYPE_PYOBJ, REG_ARG_1); // push the 3 exception items
}
STATIC void emit_native_end_except_handler(emit_t *emit) {
adjust_stack(emit, -2);
}
const emit_method_table_t EXPORT_FUN(method_table) = {
emit_native_set_native_type,
emit_native_start_pass,
emit_native_end_pass,
emit_native_last_emit_was_return_value,
emit_native_adjust_stack_size,
emit_native_set_source_line,
{
emit_native_load_fast,
emit_native_load_deref,
emit_native_load_name,
emit_native_load_global,
},
{
emit_native_store_fast,
emit_native_store_deref,
emit_native_store_name,
emit_native_store_global,
},
{
emit_native_delete_fast,
emit_native_delete_deref,
emit_native_delete_name,
emit_native_delete_global,
},
emit_native_label_assign,
emit_native_import_name,
emit_native_import_from,
emit_native_import_star,
emit_native_load_const_tok,
emit_native_load_const_small_int,
emit_native_load_const_str,
emit_native_load_const_obj,
emit_native_load_null,
emit_native_load_attr,
emit_native_load_method,
emit_native_load_build_class,
emit_native_load_subscr,
emit_native_store_attr,
emit_native_store_subscr,
emit_native_delete_attr,
emit_native_delete_subscr,
emit_native_dup_top,
emit_native_dup_top_two,
emit_native_pop_top,
emit_native_rot_two,
emit_native_rot_three,
emit_native_jump,
emit_native_pop_jump_if,
emit_native_jump_if_or_pop,
emit_native_break_loop,
emit_native_continue_loop,
emit_native_setup_with,
emit_native_with_cleanup,
emit_native_setup_except,
emit_native_setup_finally,
emit_native_end_finally,
emit_native_get_iter,
emit_native_for_iter,
emit_native_for_iter_end,
emit_native_pop_block,
emit_native_pop_except,
emit_native_unary_op,
emit_native_binary_op,
emit_native_build_tuple,
emit_native_build_list,
emit_native_list_append,
emit_native_build_map,
emit_native_store_map,
emit_native_map_add,
#if MICROPY_PY_BUILTINS_SET
emit_native_build_set,
emit_native_set_add,
#endif
#if MICROPY_PY_BUILTINS_SLICE
emit_native_build_slice,
#endif
emit_native_unpack_sequence,
emit_native_unpack_ex,
emit_native_make_function,
emit_native_make_closure,
emit_native_call_function,
emit_native_call_method,
emit_native_return_value,
emit_native_raise_varargs,
emit_native_yield_value,
emit_native_yield_from,
emit_native_start_except_handler,
emit_native_end_except_handler,
};
#endif