micropython/ports/renesas-ra/led.c

191 lines
5.7 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2016 Damien P. George
* Copyright (c) 2021,2022 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include "py/runtime.h"
#include "py/mphal.h"
#include "timer.h"
#include "led.h"
#include "pin.h"
#if defined(MICROPY_HW_LED1)
/// \moduleref pyb
/// \class LED - LED object
///
/// The LED object controls an individual LED (Light Emitting Diode).
// the default is that LEDs are not inverted, and pin driven high turns them on
#ifndef MICROPY_HW_LED_INVERTED
#define MICROPY_HW_LED_INVERTED (0)
#endif
typedef struct _ra_led_obj_t {
mp_obj_base_t base;
mp_uint_t led_id;
const machine_pin_obj_t *led_pin;
} ra_led_obj_t;
STATIC const ra_led_obj_t ra_led_obj[] = {
{{&ra_led_type}, 1, MICROPY_HW_LED1},
#if defined(MICROPY_HW_LED2)
{{&ra_led_type}, 2, MICROPY_HW_LED2},
#if defined(MICROPY_HW_LED3)
{{&ra_led_type}, 3, MICROPY_HW_LED3},
#if defined(MICROPY_HW_LED4)
{{&ra_led_type}, 4, MICROPY_HW_LED4},
#endif
#endif
#endif
};
#define NUM_LEDS MP_ARRAY_SIZE(ra_led_obj)
void led_init(void) {
/* Turn off LEDs and initialize */
for (int led = 0; led < NUM_LEDS; led++) {
const machine_pin_obj_t *led_pin = ra_led_obj[led].led_pin;
MICROPY_HW_LED_OFF(led_pin);
mp_hal_pin_output(led_pin);
}
}
void led_state(ra_led_t led, int state) {
if (led < 1 || led > NUM_LEDS) {
return;
}
const machine_pin_obj_t *led_pin = ra_led_obj[led - 1].led_pin;
// printf("led_state(%d,%d)\n", led, state);
if (state == 0) {
// turn LED off
MICROPY_HW_LED_OFF(led_pin);
} else {
// turn LED on
MICROPY_HW_LED_ON(led_pin);
}
}
void led_toggle(ra_led_t led) {
if (led < 1 || led > NUM_LEDS) {
return;
}
const machine_pin_obj_t *led_pin = ra_led_obj[led - 1].led_pin;
MICROPY_HW_LED_TOGGLE(led_pin);
}
void led_debug(int n, int delay) {
led_state(1, n & 1);
led_state(2, n & 2);
led_state(3, n & 4);
led_state(4, n & 8);
mp_hal_delay_ms(delay);
}
/******************************************************************************/
/* MicroPython bindings */
void led_obj_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
ra_led_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "LED(%u)", self->led_id);
}
/// \classmethod \constructor(id)
/// Create an LED object associated with the given LED:
///
/// - `id` is the LED number, 1-4.
STATIC mp_obj_t led_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, 1, false);
// get led number
mp_int_t led_id = mp_obj_get_int(args[0]);
// check led number
if (!(1 <= led_id && led_id <= NUM_LEDS)) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("LED(%d) doesn't exist"), led_id);
}
// return static led object
return MP_OBJ_FROM_PTR(&ra_led_obj[led_id - 1]);
}
/// \method on()
/// Turn the LED on.
mp_obj_t led_obj_on(mp_obj_t self_in) {
ra_led_obj_t *self = MP_OBJ_TO_PTR(self_in);
led_state(self->led_id, 1);
return mp_const_none;
}
/// \method off()
/// Turn the LED off.
mp_obj_t led_obj_off(mp_obj_t self_in) {
ra_led_obj_t *self = MP_OBJ_TO_PTR(self_in);
led_state(self->led_id, 0);
return mp_const_none;
}
/// \method toggle()
/// Toggle the LED between on and off.
mp_obj_t led_obj_toggle(mp_obj_t self_in) {
ra_led_obj_t *self = MP_OBJ_TO_PTR(self_in);
led_toggle(self->led_id);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_on_obj, led_obj_on);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_off_obj, led_obj_off);
STATIC MP_DEFINE_CONST_FUN_OBJ_1(led_obj_toggle_obj, led_obj_toggle);
STATIC const mp_rom_map_elem_t led_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_on), MP_ROM_PTR(&led_obj_on_obj) },
{ MP_ROM_QSTR(MP_QSTR_off), MP_ROM_PTR(&led_obj_off_obj) },
{ MP_ROM_QSTR(MP_QSTR_toggle), MP_ROM_PTR(&led_obj_toggle_obj) },
};
STATIC MP_DEFINE_CONST_DICT(led_locals_dict, led_locals_dict_table);
const mp_obj_type_t ra_led_type = {
{ &mp_type_type },
.name = MP_QSTR_LED,
.print = led_obj_print,
.make_new = led_obj_make_new,
.locals_dict = (mp_obj_dict_t *)&led_locals_dict,
};
#else
// For boards with no LEDs, we leave an empty function here so that we don't
// have to put conditionals everywhere.
void led_init(void) {
}
void led_state(ra_led_t led, int state) {
}
void led_toggle(ra_led_t led) {
}
#endif // defined(MICROPY_HW_LED1)