This change: - Has a small code size reduction. - Should slightly improve overall performance. The old hook code seemed to use between 0.1% and 1.6% of the total CPU time doing no-op calls even when no USB work was required. - USB performance is mostly the same, there is a small increase in latency for some workloads that seems to because sometimes the hook usbd_task() is called at the right time to line up with the next USB host request. This only happened semi-randomly due to the timing of the hook. Improving the wakeup latency by switching rp2 to tickless WFE allows the usbd_task() to run in time for the next USB host request almost always, improving performance and more than offsetting this impact. This work was funded through GitHub Sponsors. Signed-off-by: Angus Gratton <angus@redyak.com.au> |
||
---|---|---|
.. | ||
boards | ||
btstack_inc | ||
lwip_inc | ||
mbedtls | ||
modules | ||
CMakeLists.txt | ||
Makefile | ||
README.md | ||
cyw43_configport.h | ||
fatfs_port.c | ||
help.c | ||
machine_adc.c | ||
machine_bitstream.c | ||
machine_i2c.c | ||
machine_i2s.c | ||
machine_pin.c | ||
machine_pin.h | ||
machine_pin_cyw43.c | ||
machine_pwm.c | ||
machine_rtc.c | ||
machine_spi.c | ||
machine_timer.c | ||
machine_uart.c | ||
machine_wdt.c | ||
main.c | ||
memmap_mp.ld | ||
modmachine.c | ||
modmachine.h | ||
modos.c | ||
modrp2.c | ||
modrp2.h | ||
modtime.c | ||
mpbthciport.c | ||
mpbthciport.h | ||
mpbtstackport.c | ||
mpconfigport.h | ||
mphalport.c | ||
mphalport.h | ||
mpnetworkport.c | ||
mpnetworkport.h | ||
mpnimbleport.c | ||
mpnimbleport.h | ||
mpthreadport.c | ||
mpthreadport.h | ||
msc_disk.c | ||
pendsv.c | ||
pendsv.h | ||
qstrdefsport.h | ||
rp2_flash.c | ||
rp2_pio.c | ||
uart.c | ||
uart.h | ||
usbd.c |
README.md
The RP2 port
This is a port of MicroPython to the Raspberry Pi RP2 series of microcontrollers. Currently supported features are:
- REPL over USB VCP, and optionally over UART (on GP0/GP1).
- Filesystem on the internal flash, using littlefs2.
- Support for native code generation and inline assembler.
time
module with sleep, time and ticks functions.os
module with VFS support.machine
module with the following classes:Pin
,ADC
,PWM
,I2C
,SPI
,SoftI2C
,SoftSPI
,Timer
,UART
,WDT
.rp2
module with programmable IO (PIO) support.
See the examples/rp2/
directory for some example code.
Building
The MicroPython cross-compiler must be built first, which will be used to pre-compile (freeze) built-in Python code. This cross-compiler is built and run on the host machine using:
$ make -C mpy-cross
This command should be executed from the root directory of this repository. All other commands below should be executed from the ports/rp2/ directory.
Building of the RP2 firmware is done entirely using CMake, although a simple Makefile is also provided as a convenience. To build the firmware run (from this directory):
$ make submodules
$ make clean
$ make
You can also build the standard CMake way. The final firmware is found in
the top-level of the CMake build directory (build
by default) and is
called firmware.uf2
.
If you are using a different board other than a Rasoberry Pi Pico, then you should pass the board name to the build; e.g. for Raspberry Pi Pico W:
$ make BOARD=RPI_PICO_W submodules
$ make BOARD=RPI_PICO_W clean
$ make BOARD=RPI_PICO_W
Deploying firmware to the device
Firmware can be deployed to the device by putting it into bootloader mode
(hold down BOOTSEL while powering on or resetting) and then copying
firmware.uf2
to the USB mass storage device that appears.
If MicroPython is already installed then the bootloader can be entered by
executing import machine; machine.bootloader()
at the REPL.
Sample code
The following samples can be easily run on the board by entering paste mode with Ctrl-E at the REPL, then cut-and-pasting the sample code to the REPL, then executing the code with Ctrl-D.
Blinky
This blinks the on-board LED on the Pico board at 1.25Hz, using a Timer object with a callback.
from machine import Pin, Timer
led = Pin(25, Pin.OUT)
tim = Timer()
def tick(timer):
global led
led.toggle()
tim.init(freq=2.5, mode=Timer.PERIODIC, callback=tick)
PIO blinky
This blinks the on-board LED on the Pico board at 1Hz, using a PIO peripheral and PIO assembler to directly toggle the LED at the required rate.
from machine import Pin
import rp2
@rp2.asm_pio(set_init=rp2.PIO.OUT_LOW)
def blink_1hz():
# Turn on the LED and delay, taking 1000 cycles.
set(pins, 1)
set(x, 31) [6]
label("delay_high")
nop() [29]
jmp(x_dec, "delay_high")
# Turn off the LED and delay, taking 1000 cycles.
set(pins, 0)
set(x, 31) [6]
label("delay_low")
nop() [29]
jmp(x_dec, "delay_low")
# Create StateMachine(0) with the blink_1hz program, outputting on Pin(25).
sm = rp2.StateMachine(0, blink_1hz, freq=2000, set_base=Pin(25))
sm.active(1)
See the examples/rp2/
directory for further example code.