micropython/stmhal/timer.c

1289 lines
52 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stm32f4xx_hal.h>
#include "usbd_cdc_msc_hid.h"
#include "usbd_cdc_interface.h"
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "gc.h"
#include "obj.h"
#include "runtime.h"
#include "timer.h"
#include "servo.h"
#include "pin.h"
/// \moduleref pyb
/// \class Timer - periodically call a function
///
/// Timers can be used for a great variety of tasks. At the moment, only
/// the simplest case is implemented: that of calling a function periodically.
///
/// Each timer consists of a counter that counts up at a certain rate. The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler. When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero. By using the callback method,
/// the timer event can call a Python function.
///
/// Example usage to toggle an LED at a fixed frequency:
///
/// tim = pyb.Timer(4) # create a timer object using timer 4
/// tim.init(freq=2) # trigger at 2Hz
/// tim.callback(lambda t:pyb.LED(1).toggle())
///
/// Further examples:
///
/// tim = pyb.Timer(4, freq=100) # freq in Hz
/// tim = pyb.Timer(4, prescaler=0, period=99)
/// tim.counter() # get counter (can also set)
/// tim.prescaler(2) # set prescaler (can also get)
/// tim.period(199) # set period (can also get)
/// tim.callback(lambda t: ...) # set callback for update interrupt (t=tim instance)
/// tim.callback(None) # clear callback
///
/// *Note:* Timer 3 is reserved for internal use. Timer 5 controls
/// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
/// It is recommended to use the other timers in your programs.
// The timers can be used by multiple drivers, and need a common point for
// the interrupts to be dispatched, so they are all collected here.
//
// TIM3:
// - flash storage controller, to flush the cache
// - USB CDC interface, interval, to check for new data
// - LED 4, PWM to set the LED intensity
//
// TIM5:
// - servo controller, PWM
//
// TIM6:
// - ADC, DAC for read_timed and write_timed
typedef enum {
CHANNEL_MODE_PWM_NORMAL,
CHANNEL_MODE_PWM_INVERTED,
CHANNEL_MODE_OC_TIMING,
CHANNEL_MODE_OC_ACTIVE,
CHANNEL_MODE_OC_INACTIVE,
CHANNEL_MODE_OC_TOGGLE,
CHANNEL_MODE_OC_FORCED_ACTIVE,
CHANNEL_MODE_OC_FORCED_INACTIVE,
CHANNEL_MODE_IC,
} pyb_channel_mode;
STATIC const struct {
qstr name;
uint32_t oc_mode;
} channel_mode_info[] = {
{ MP_QSTR_PWM, TIM_OCMODE_PWM1 },
{ MP_QSTR_PWM_INVERTED, TIM_OCMODE_PWM2 },
{ MP_QSTR_OC_TIMING, TIM_OCMODE_TIMING },
{ MP_QSTR_OC_ACTIVE, TIM_OCMODE_ACTIVE },
{ MP_QSTR_OC_INACTIVE, TIM_OCMODE_INACTIVE },
{ MP_QSTR_OC_TOGGLE, TIM_OCMODE_TOGGLE },
{ MP_QSTR_OC_FORCED_ACTIVE, TIM_OCMODE_FORCED_ACTIVE },
{ MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
{ MP_QSTR_IC, 0 },
};
typedef struct _pyb_timer_channel_obj_t {
mp_obj_base_t base;
struct _pyb_timer_obj_t *timer;
uint8_t channel;
uint8_t mode;
mp_obj_t callback;
struct _pyb_timer_channel_obj_t *next;
} pyb_timer_channel_obj_t;
typedef struct _pyb_timer_obj_t {
mp_obj_base_t base;
uint8_t tim_id;
uint8_t is_32bit;
mp_obj_t callback;
TIM_HandleTypeDef tim;
IRQn_Type irqn;
pyb_timer_channel_obj_t *channel;
} pyb_timer_obj_t;
// The following yields TIM_IT_UPDATE when channel is zero and
// TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
#define TIMER_IRQ_MASK(channel) (1 << (channel))
#define TIMER_CNT_MASK(self) ((self)->is_32bit ? 0xffffffff : 0xffff)
#define TIMER_CHANNEL(self) ((((self)->channel) - 1) << 2)
TIM_HandleTypeDef TIM3_Handle;
TIM_HandleTypeDef TIM5_Handle;
TIM_HandleTypeDef TIM6_Handle;
// Used to divide down TIM3 and periodically call the flash storage IRQ
STATIC uint32_t tim3_counter = 0;
// Used to do callbacks to Python code on interrupt
STATIC pyb_timer_obj_t *pyb_timer_obj_all[14];
#define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(pyb_timer_obj_all)
STATIC uint32_t timer_get_source_freq(uint32_t tim_id);
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
void timer_init0(void) {
tim3_counter = 0;
for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
pyb_timer_obj_all[i] = NULL;
}
}
// unregister all interrupt sources
void timer_deinit(void) {
for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
pyb_timer_obj_t *tim = pyb_timer_obj_all[i];
if (tim != NULL) {
pyb_timer_deinit(tim);
}
}
}
// TIM3 is set-up for the USB CDC interface
void timer_tim3_init(void) {
// set up the timer for USBD CDC
__TIM3_CLK_ENABLE();
TIM3_Handle.Instance = TIM3;
TIM3_Handle.Init.Period = (USBD_CDC_POLLING_INTERVAL*1000) - 1; // TIM3 fires every USBD_CDC_POLLING_INTERVAL ms
TIM3_Handle.Init.Prescaler = timer_get_source_freq(3) / 1000000 - 1; // TIM3 runs at 1MHz
TIM3_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
TIM3_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_Base_Init(&TIM3_Handle);
HAL_NVIC_SetPriority(TIM3_IRQn, 6, 0);
HAL_NVIC_EnableIRQ(TIM3_IRQn);
if (HAL_TIM_Base_Start(&TIM3_Handle) != HAL_OK) {
/* Starting Error */
}
}
/* unused
void timer_tim3_deinit(void) {
// reset TIM3 timer
__TIM3_FORCE_RESET();
__TIM3_RELEASE_RESET();
}
*/
// TIM5 is set-up for the servo controller
// This function inits but does not start the timer
void timer_tim5_init(void) {
// TIM5 clock enable
__TIM5_CLK_ENABLE();
// set up and enable interrupt
HAL_NVIC_SetPriority(TIM5_IRQn, 6, 0);
HAL_NVIC_EnableIRQ(TIM5_IRQn);
// PWM clock configuration
TIM5_Handle.Instance = TIM5;
TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
HAL_TIM_PWM_Init(&TIM5_Handle);
}
// Init TIM6 with a counter-overflow at the given frequency (given in Hz)
// TIM6 is used by the DAC and ADC for auto sampling at a given frequency
// This function inits but does not start the timer
void timer_tim6_init(uint freq) {
// TIM6 clock enable
__TIM6_CLK_ENABLE();
// Timer runs at SystemCoreClock / 2
// Compute the prescaler value so TIM6 triggers at freq-Hz
uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
uint32_t prescaler = 1;
while (period > 0xffff) {
period >>= 1;
prescaler <<= 1;
}
// Time base clock configuration
TIM6_Handle.Instance = TIM6;
TIM6_Handle.Init.Period = period - 1;
TIM6_Handle.Init.Prescaler = prescaler - 1;
TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
HAL_TIM_Base_Init(&TIM6_Handle);
}
// Interrupt dispatch
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
if (htim == &TIM3_Handle) {
USBD_CDC_HAL_TIM_PeriodElapsedCallback();
// Periodically raise a flash IRQ for the flash storage controller
if (tim3_counter++ >= 500 / USBD_CDC_POLLING_INTERVAL) {
tim3_counter = 0;
NVIC->STIR = FLASH_IRQn;
}
} else if (htim == &TIM5_Handle) {
servo_timer_irq_callback();
}
}
// Get the frequency (in Hz) of the source clock for the given timer.
// On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
// If the APB prescaler is 1, then the timer clock is equal to its respective
// APB clock. Otherwise (APB prescaler > 1) the timer clock is twice its
// respective APB clock. See DM00031020 Rev 4, page 115.
STATIC uint32_t timer_get_source_freq(uint32_t tim_id) {
uint32_t source;
if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
// TIM{1,8,9,10,11} are on APB2
source = HAL_RCC_GetPCLK2Freq();
if ((uint32_t)((RCC->CFGR & RCC_CFGR_PPRE2) >> 3) != RCC_HCLK_DIV1) {
source *= 2;
}
} else {
// TIM{2,3,4,5,6,7,12,13,14} are on APB1
source = HAL_RCC_GetPCLK1Freq();
if ((uint32_t)(RCC->CFGR & RCC_CFGR_PPRE1) != RCC_HCLK_DIV1) {
source *= 2;
}
}
return source;
}
/******************************************************************************/
/* Micro Python bindings */
STATIC const mp_obj_type_t pyb_timer_channel_type;
// This is the largest value that we can multiply by 100 and have the result
// fit in a uint32_t.
#define MAX_PERIOD_DIV_100 42949672
// computes prescaler and period so TIM triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
uint32_t source_freq = timer_get_source_freq(self->tim_id);
uint32_t prescaler = 1;
uint32_t period;
if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
} else if (MP_OBJ_IS_TYPE(freq_in, &mp_type_float)) {
float freq = mp_obj_get_float(freq_in);
if (freq <= 0) {
goto bad_freq;
}
while (freq < 1 && prescaler < 6553) {
prescaler *= 10;
freq *= 10;
}
period = (float)source_freq / freq;
#endif
} else {
mp_int_t freq = mp_obj_get_int(freq_in);
if (freq <= 0) {
goto bad_freq;
bad_freq:
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "must have positive freq"));
}
period = source_freq / freq;
}
period = MAX(1, period);
while (period > TIMER_CNT_MASK(self)) {
// if we can divide exactly, do that first
if (period % 5 == 0) {
prescaler *= 5;
period /= 5;
} else if (period % 3 == 0) {
prescaler *= 3;
period /= 3;
} else {
// may not divide exactly, but loses minimal precision
prescaler <<= 1;
period >>= 1;
}
}
*period_out = (period - 1) & TIMER_CNT_MASK(self);
return (prescaler - 1) & 0xffff;
}
// Helper function for determining the period used for calculating percent
STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
// In center mode, compare == period corresponds to 100%
// In edge mode, compare == (period + 1) corresponds to 100%
uint32_t period = (__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
if (period != 0xffffffff) {
if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
// Edge mode
period++;
}
}
return period;
}
// Helper function to compute PWM value from timer period and percent value.
// 'percent_in' can be an int or a float between 0 and 100 (out of range
// values are clamped).
STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
uint32_t cmp;
if (0) {
#if MICROPY_PY_BUILTINS_FLOAT
} else if (MP_OBJ_IS_TYPE(percent_in, &mp_type_float)) {
float percent = mp_obj_get_float(percent_in);
if (percent <= 0.0) {
cmp = 0;
} else if (percent >= 100.0) {
cmp = period;
} else {
cmp = percent / 100.0 * ((float)period);
}
#endif
} else {
// For integer arithmetic, if period is large and 100*period will
// overflow, then divide period before multiplying by cmp. Otherwise
// do it the other way round to retain precision.
mp_int_t percent = mp_obj_get_int(percent_in);
if (percent <= 0) {
cmp = 0;
} else if (percent >= 100) {
cmp = period;
} else if (period > MAX_PERIOD_DIV_100) {
cmp = (uint32_t)percent * (period / 100);
} else {
cmp = ((uint32_t)percent * period) / 100;
}
}
return cmp;
}
// Helper function to compute percentage from timer perion and PWM value.
STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
#if MICROPY_PY_BUILTINS_FLOAT
float percent;
if (cmp >= period) {
percent = 100.0;
} else {
percent = (float)cmp * 100.0 / ((float)period);
}
return mp_obj_new_float(percent);
#else
mp_int_t percent;
if (cmp >= period) {
percent = 100;
} else if (cmp > MAX_PERIOD_DIV_100) {
percent = cmp / (period / 100);
} else {
percent = cmp * 100 / period;
}
return mp_obj_new_int(percent);
#endif
}
// Computes the 8-bit value for the DTG field in the BDTR register.
//
// 1 tick = 1 count of the timer's clock (source_freq) divided by div.
// 0-128 ticks in inrements of 1
// 128-256 ticks in increments of 2
// 256-512 ticks in increments of 8
// 512-1008 ticks in increments of 16
STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
if (ticks <= 0) {
return 0;
}
if (ticks < 128) {
return ticks;
}
if (ticks < 256) {
return 0x80 | ((ticks - 128) / 2);
}
if (ticks < 512) {
return 0xC0 | ((ticks - 256) / 8);
}
if (ticks < 1008) {
return 0xE0 | ((ticks - 512) / 16);
}
return 0xFF;
}
// Given the 8-bit value stored in the DTG field of the BDTR register, compute
// the number of ticks.
STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
if ((dtg & 0x80) == 0) {
return dtg & 0x7F;
}
if ((dtg & 0xC0) == 0x80) {
return 128 + ((dtg & 0x3F) * 2);
}
if ((dtg & 0xE0) == 0xC0) {
return 256 + ((dtg & 0x1F) * 8);
}
return 512 + ((dtg & 0x1F) * 16);
}
STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks) {
TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
deadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
deadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
deadTimeConfig.DeadTime = compute_dtg_from_ticks(ticks);
deadTimeConfig.BreakState = TIM_BREAK_DISABLE;
deadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW;
deadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
}
STATIC void pyb_timer_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_obj_t *self = self_in;
if (self->tim.State == HAL_TIM_STATE_RESET) {
print(env, "Timer(%u)", self->tim_id);
} else {
uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
// for efficiency, we compute and print freq as an int (not a float)
uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
print(env, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
self->tim_id,
freq,
prescaler,
period,
self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ? "UP" :
self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN ? "DOWN" : "CENTER",
self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
print(env, ", deadtime=%u", compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
}
print(env, ")");
}
}
/// \method init(*, freq, prescaler, period)
/// Initialise the timer. Initialisation must be either by frequency (in Hz)
/// or by prescaler and period:
///
/// tim.init(freq=100) # set the timer to trigger at 100Hz
/// tim.init(prescaler=83, period=999) # set the prescaler and period directly
///
/// Keyword arguments:
///
/// - `freq` - specifies the periodic frequency of the timer. You migh also
/// view this as the frequency with which the timer goes through
/// one complete cycle.
///
/// - `prescaler` [0-0xffff] - specifies the value to be loaded into the
/// timer's Prescaler Register (PSC). The timer clock source is divided by
/// (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
/// have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
/// have a clock source of 168 MHz (pyb.freq()[3] * 2).
///
/// - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
/// Specifies the value to be loaded into the timer's AutoReload
/// Register (ARR). This determines the period of the timer (i.e. when the
/// counter cycles). The timer counter will roll-over after `period + 1`
/// timer clock cycles.
///
/// - `mode` can be one of:
/// - `Timer.UP` - configures the timer to count from 0 to ARR (default)
/// - `Timer.DOWN` - configures the timer to count from ARR down to 0.
/// - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
/// then back down to 0.
///
/// - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
/// the sampling clock used by the digital filters.
///
/// - `callback` - as per Timer.callback()
///
/// - `deadtime` - specifies the amount of "dead" or inactive time between
/// transitions on complimentary channels (both channels will be inactive)
/// for this time). `deadtime` may be an integer between 0 and 1008, with
/// the following restrictions: 0-128 in steps of 1. 128-256 in steps of
/// 2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
/// measures ticks of `source_freq` divided by `div` clock ticks.
/// `deadtime` is only available on timers 1 and 8.
///
/// You must either specify freq or both of period and prescaler.
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_prescaler, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
{ MP_QSTR_div, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_deadtime, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// set the TIM configuration values
TIM_Base_InitTypeDef *init = &self->tim.Init;
if (args[0].u_obj != mp_const_none) {
// set prescaler and period from desired frequency
init->Prescaler = compute_prescaler_period_from_freq(self, args[0].u_obj, &init->Period);
} else if (args[1].u_int != 0xffffffff && args[2].u_int != 0xffffffff) {
// set prescaler and period directly
init->Prescaler = args[1].u_int;
init->Period = args[2].u_int;
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "must specify either freq, or prescaler and period"));
}
init->CounterMode = args[3].u_int;
if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", init->CounterMode));
}
init->ClockDivision = args[4].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
args[4].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
TIM_CLOCKDIVISION_DIV1;
init->RepetitionCounter = 0;
// enable TIM clock
switch (self->tim_id) {
case 1: __TIM1_CLK_ENABLE(); break;
case 2: __TIM2_CLK_ENABLE(); break;
case 3: __TIM3_CLK_ENABLE(); break;
case 4: __TIM4_CLK_ENABLE(); break;
case 5: __TIM5_CLK_ENABLE(); break;
case 6: __TIM6_CLK_ENABLE(); break;
case 7: __TIM7_CLK_ENABLE(); break;
case 8: __TIM8_CLK_ENABLE(); break;
case 9: __TIM9_CLK_ENABLE(); break;
case 10: __TIM10_CLK_ENABLE(); break;
case 11: __TIM11_CLK_ENABLE(); break;
case 12: __TIM12_CLK_ENABLE(); break;
case 13: __TIM13_CLK_ENABLE(); break;
case 14: __TIM14_CLK_ENABLE(); break;
}
// set IRQ priority (if not a special timer)
if (self->tim_id != 3 && self->tim_id != 5) {
HAL_NVIC_SetPriority(self->irqn, 0xe, 0xe); // next-to lowest priority
}
// init TIM
HAL_TIM_Base_Init(&self->tim);
if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance)) {
config_deadtime(self, args[6].u_int);
}
if (args[5].u_obj == mp_const_none) {
HAL_TIM_Base_Start(&self->tim);
} else {
pyb_timer_callback(self, args[5].u_obj);
}
return mp_const_none;
}
/// \classmethod \constructor(id, ...)
/// Construct a new timer object of the given id. If additional
/// arguments are given, then the timer is initialised by `init(...)`.
/// `id` can be 1 to 14, excluding 3.
STATIC mp_obj_t pyb_timer_make_new(mp_obj_t type_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// create new Timer object
pyb_timer_obj_t *tim = m_new_obj(pyb_timer_obj_t);
memset(tim, 0, sizeof(*tim));
tim->base.type = &pyb_timer_type;
tim->callback = mp_const_none;
tim->channel = NULL;
// get TIM number
tim->tim_id = mp_obj_get_int(args[0]);
tim->is_32bit = false;
switch (tim->tim_id) {
case 1: tim->tim.Instance = TIM1; tim->irqn = TIM1_UP_TIM10_IRQn; break;
case 2: tim->tim.Instance = TIM2; tim->irqn = TIM2_IRQn; tim->is_32bit = true; break;
case 3: nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Timer 3 is for internal use only")); // TIM3 used for low-level stuff; go via regs if necessary
case 4: tim->tim.Instance = TIM4; tim->irqn = TIM4_IRQn; break;
case 5: tim->tim.Instance = TIM5; tim->irqn = TIM5_IRQn; tim->is_32bit = true; break;
case 6: tim->tim.Instance = TIM6; tim->irqn = TIM6_DAC_IRQn; break;
case 7: tim->tim.Instance = TIM7; tim->irqn = TIM7_IRQn; break;
case 8: tim->tim.Instance = TIM8; tim->irqn = TIM8_UP_TIM13_IRQn; break;
case 9: tim->tim.Instance = TIM9; tim->irqn = TIM1_BRK_TIM9_IRQn; break;
case 10: tim->tim.Instance = TIM10; tim->irqn = TIM1_UP_TIM10_IRQn; break;
case 11: tim->tim.Instance = TIM11; tim->irqn = TIM1_TRG_COM_TIM11_IRQn; break;
case 12: tim->tim.Instance = TIM12; tim->irqn = TIM8_BRK_TIM12_IRQn; break;
case 13: tim->tim.Instance = TIM13; tim->irqn = TIM8_UP_TIM13_IRQn; break;
case 14: tim->tim.Instance = TIM14; tim->irqn = TIM8_TRG_COM_TIM14_IRQn; break;
default: nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "Timer %d does not exist", tim->tim_id));
}
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
}
// set the global variable for interrupt callbacks
if (tim->tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
pyb_timer_obj_all[tim->tim_id - 1] = tim;
}
return (mp_obj_t)tim;
}
STATIC mp_obj_t pyb_timer_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
/// \method deinit()
/// Deinitialises the timer.
///
/// Disables the callback (and the associated irq).
/// Disables any channel callbacks (and the associated irq).
/// Stops the timer, and disables the timer peripheral.
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
pyb_timer_obj_t *self = self_in;
// Disable the base interrupt
pyb_timer_callback(self_in, mp_const_none);
pyb_timer_channel_obj_t *chan = self->channel;
self->channel = NULL;
// Disable the channel interrupts
while (chan != NULL) {
pyb_timer_channel_callback(chan, mp_const_none);
pyb_timer_channel_obj_t *prev_chan = chan;
chan = chan->next;
prev_chan->next = NULL;
}
HAL_TIM_Base_DeInit(&self->tim);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
/// \method channel(channel, mode, ...)
///
/// If only a channel number is passed, then a previously initialized channel
/// object is returned (or `None` if there is no previous channel).
///
/// Othwerwise, a TimerChannel object is initialized and returned.
///
/// Each channel can be configured to perform pwm, output compare, or
/// input capture. All channels share the same underlying timer, which means
/// that they share the same timer clock.
///
/// Keyword arguments:
///
/// - `mode` can be one of:
/// - `Timer.PWM` - configure the timer in PWM mode (active high).
/// - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
/// - `Timer.OC_TIMING` - indicates that no pin is driven.
/// - `Timer.OC_ACTIVE` - the pin will be made active when a compare
/// match occurs (active is determined by polarity)
/// - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
/// match occurs.
/// - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
/// - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
/// - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
/// - `Timer.IC` - configure the timer in Input Capture mode.
///
/// - `callback` - as per TimerChannel.callback()
///
/// - `pin` None (the default) or a Pin object. If specified (and not None)
/// this will cause the alternate function of the the indicated pin
/// to be configured for this timer channel. An error will be raised if
/// the pin doesn't support any alternate functions for this timer channel.
///
/// Keyword arguments for Timer.PWM modes:
///
/// - `pulse_width` - determines the initial pulse width value to use.
/// - `pulse_width_percent` - determines the initial pulse width percentage to use.
///
/// Keyword arguments for Timer.OC modes:
///
/// - `compare` - determines the initial value of the compare register.
///
/// - `polarity` can be one of:
/// - `Timer.HIGH` - output is active high
/// - `Timer.LOW` - output is acive low
///
/// Optional keyword arguments for Timer.IC modes:
///
/// - `polarity` can be one of:
/// - `Timer.RISING` - captures on rising edge.
/// - `Timer.FALLING` - captures on falling edge.
/// - `Timer.BOTH` - captures on both edges.
///
/// Note that capture only works on the primary channel, and not on the
/// complimentary channels.
///
/// PWM Example:
///
/// timer = pyb.Timer(2, freq=1000)
/// ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
/// ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
STATIC mp_obj_t pyb_timer_channel(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_pin, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_pulse_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_compare, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
};
pyb_timer_obj_t *self = pos_args[0];
mp_int_t channel = mp_obj_get_int(pos_args[1]);
if (channel < 1 || channel > 4) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid channel (%d)", channel));
}
pyb_timer_channel_obj_t *chan = self->channel;
pyb_timer_channel_obj_t *prev_chan = NULL;
while (chan != NULL) {
if (chan->channel == channel) {
break;
}
prev_chan = chan;
chan = chan->next;
}
// If only the channel number is given return the previously allocated
// channel (or None if no previous channel).
if (n_args == 2 && kw_args->used == 0) {
if (chan) {
return chan;
}
return mp_const_none;
}
// If there was already a channel, then remove it from the list. Note that
// the order we do things here is important so as to appear atomic to
// the IRQ handler.
if (chan) {
// Turn off any IRQ associated with the channel.
pyb_timer_channel_callback(chan, mp_const_none);
// Unlink the channel from the list.
if (prev_chan) {
prev_chan->next = chan->next;
}
self->channel = chan->next;
chan->next = NULL;
}
// Allocate and initialize a new channel
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
chan = m_new_obj(pyb_timer_channel_obj_t);
memset(chan, 0, sizeof(*chan));
chan->base.type = &pyb_timer_channel_type;
chan->timer = self;
chan->channel = channel;
chan->mode = args[0].u_int;
chan->callback = args[1].u_obj;
mp_obj_t pin_obj = args[2].u_obj;
if (pin_obj != mp_const_none) {
if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "pin argument needs to be be a Pin type"));
}
const pin_obj_t *pin = pin_obj;
const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
if (af == NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s doesn't have an af for TIM%d", qstr_str(pin->name), self->tim_id));
}
// pin.init(mode=AF_PP, af=idx)
const mp_obj_t args2[6] = {
(mp_obj_t)&pin_init_obj,
pin_obj,
MP_OBJ_NEW_QSTR(MP_QSTR_mode), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
MP_OBJ_NEW_QSTR(MP_QSTR_af), MP_OBJ_NEW_SMALL_INT(af->idx)
};
mp_call_method_n_kw(0, 2, args2);
}
// Link the channel to the timer before we turn the channel on.
// Note that this needs to appear atomic to the IRQ handler (the write
// to self->channel is atomic, so we're good, but I thought I'd mention
// in case this was ever changed in the future).
chan->next = self->channel;
self->channel = chan;
switch (chan->mode) {
case CHANNEL_MODE_PWM_NORMAL:
case CHANNEL_MODE_PWM_INVERTED: {
TIM_OC_InitTypeDef oc_config;
oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
if (args[4].u_obj != mp_const_none) {
// pulse width percent given
uint32_t period = compute_period(self);
oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
} else {
// use absolute pulse width value (defaults to 0 if nothing given)
oc_config.Pulse = args[3].u_int;
}
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
HAL_TIM_PWM_Start_IT(&self->tim, TIMER_CHANNEL(chan));
}
// Start the complimentary channel too (if its supported)
if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
}
break;
}
case CHANNEL_MODE_OC_TIMING:
case CHANNEL_MODE_OC_ACTIVE:
case CHANNEL_MODE_OC_INACTIVE:
case CHANNEL_MODE_OC_TOGGLE:
case CHANNEL_MODE_OC_FORCED_ACTIVE:
case CHANNEL_MODE_OC_FORCED_INACTIVE: {
TIM_OC_InitTypeDef oc_config;
oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
oc_config.Pulse = args[5].u_int;
oc_config.OCPolarity = args[6].u_int;
if (oc_config.OCPolarity == 0xffffffff) {
oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
}
if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
} else {
oc_config.OCNPolarity = TIM_OCNPOLARITY_LOW;
}
oc_config.OCFastMode = TIM_OCFAST_DISABLE;
oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", oc_config.OCPolarity));
}
HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
HAL_TIM_OC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
}
// Start the complimentary channel too (if its supported)
if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
}
break;
}
case CHANNEL_MODE_IC: {
TIM_IC_InitTypeDef ic_config;
ic_config.ICPolarity = args[6].u_int;
if (ic_config.ICPolarity == 0xffffffff) {
ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
}
ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
ic_config.ICPrescaler = TIM_ICPSC_DIV1;
ic_config.ICFilter = 0;
if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid polarity (%d)", ic_config.ICPolarity));
}
HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
if (chan->callback == mp_const_none) {
HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
} else {
HAL_TIM_IC_Start_IT(&self->tim, TIMER_CHANNEL(chan));
}
break;
}
default:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid mode (%d)", chan->mode));
}
return chan;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
/// \method counter([value])
/// Get or set the timer counter.
STATIC mp_obj_t pyb_timer_counter(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(self->tim.Instance->CNT);
} else {
// set
__HAL_TIM_SetCounter(&self->tim, mp_obj_get_int(args[1]));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);
/// \method source_freq()
/// Get the frequency of the source of the timer.
STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
pyb_timer_obj_t *self = self_in;
uint32_t source_freq = timer_get_source_freq(self->tim_id);
return mp_obj_new_int(source_freq);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);
/// \method freq([value])
/// Get or set the frequency for the timer (changes prescaler and period if set).
STATIC mp_obj_t pyb_timer_freq(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
uint32_t period = __HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self);
uint32_t source_freq = timer_get_source_freq(self->tim_id);
uint32_t divide = ((prescaler + 1) * (period + 1));
if (source_freq % divide == 0) {
return mp_obj_new_int(source_freq / divide);
} else {
return mp_obj_new_float((float)source_freq / (float)divide);
}
} else {
// set
uint32_t period;
uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
self->tim.Instance->PSC = prescaler;
__HAL_TIM_SetAutoreload(&self->tim, period);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);
/// \method prescaler([value])
/// Get or set the prescaler for the timer.
STATIC mp_obj_t pyb_timer_prescaler(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
} else {
// set
self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);
/// \method period([value])
/// Get or set the period of the timer.
STATIC mp_obj_t pyb_timer_period(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_obj_t *self = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(__HAL_TIM_GetAutoreload(&self->tim) & TIMER_CNT_MASK(self));
} else {
// set
__HAL_TIM_SetAutoreload(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
/// \method callback(fun)
/// Set the function to be called when the timer triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
pyb_timer_obj_t *self = self_in;
if (callback == mp_const_none) {
// stop interrupt (but not timer)
__HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
self->callback = mp_const_none;
} else if (mp_obj_is_callable(callback)) {
self->callback = callback;
HAL_NVIC_EnableIRQ(self->irqn);
// start timer, so that it interrupts on overflow
HAL_TIM_Base_Start_IT(&self->tim);
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);
STATIC const mp_map_elem_t pyb_timer_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pyb_timer_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_deinit), (mp_obj_t)&pyb_timer_deinit_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_channel), (mp_obj_t)&pyb_timer_channel_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_counter), (mp_obj_t)&pyb_timer_counter_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_source_freq), (mp_obj_t)&pyb_timer_source_freq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_timer_freq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_prescaler), (mp_obj_t)&pyb_timer_prescaler_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_period), (mp_obj_t)&pyb_timer_period_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_callback_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_UP), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_UP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_DOWN), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_DOWN) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_CENTER), MP_OBJ_NEW_SMALL_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWM), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_NORMAL) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PWM_INVERTED), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_PWM_INVERTED) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_TIMING), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TIMING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_ACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_ACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_INACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_INACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_TOGGLE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_TOGGLE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_ACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OC_FORCED_INACTIVE), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_IC), MP_OBJ_NEW_SMALL_INT(CHANNEL_MODE_IC) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_HIGH), MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_HIGH) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_LOW), MP_OBJ_NEW_SMALL_INT(TIM_OCPOLARITY_LOW) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_RISING), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_RISING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_FALLING), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_FALLING) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_BOTH), MP_OBJ_NEW_SMALL_INT(TIM_ICPOLARITY_BOTHEDGE) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
const mp_obj_type_t pyb_timer_type = {
{ &mp_type_type },
.name = MP_QSTR_Timer,
.print = pyb_timer_print,
.make_new = pyb_timer_make_new,
.locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};
/// \moduleref pyb
/// \class TimerChannel - setup a channel for a timer.
///
/// Timer channels are used to generate/capture a signal using a timer.
///
/// TimerChannel objects are created using the Timer.channel() method.
STATIC void pyb_timer_channel_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_channel_obj_t *self = self_in;
print(env, "TimerChannel(timer=%u, channel=%u, mode=%s)",
self->timer->tim_id,
self->channel,
qstr_str(channel_mode_info[self->mode].name));
}
/// \method capture([value])
/// Get or set the capture value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// capture is the logical name to use when the channel is in input capture mode.
/// \method compare([value])
/// Get or set the compare value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// compare is the logical name to use when the channel is in output compare mode.
/// \method pulse_width([value])
/// Get or set the pulse width value associated with a channel.
/// capture, compare, and pulse_width are all aliases for the same function.
/// pulse_width is the logical name to use when the channel is in PWM mode.
///
/// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100%
/// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100%
STATIC mp_obj_t pyb_timer_channel_capture_compare(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *self = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(__HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
} else {
// set
__HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);
/// \method pulse_width_percent([value])
/// Get or set the pulse width percentage associated with a channel. The value
/// is a number between 0 and 100 and sets the percentage of the timer period
/// for which the pulse is active. The value can be an integer or
/// floating-point number for more accuracy. For example, a value of 25 gives
/// a duty cycle of 25%.
STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(mp_uint_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *self = args[0];
uint32_t period = compute_period(self->timer);
if (n_args == 1) {
// get
uint32_t cmp = __HAL_TIM_GetCompare(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);
return compute_percent_from_pwm_value(period, cmp);
} else {
// set
uint32_t cmp = compute_pwm_value_from_percent(period, args[1]);
__HAL_TIM_SetCompare(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer));
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent);
/// \method callback(fun)
/// Set the function to be called when the timer channel triggers.
/// `fun` is passed 1 argument, the timer object.
/// If `fun` is `None` then the callback will be disabled.
STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) {
pyb_timer_channel_obj_t *self = self_in;
if (callback == mp_const_none) {
// stop interrupt (but not timer)
__HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
self->callback = mp_const_none;
} else if (mp_obj_is_callable(callback)) {
self->callback = callback;
HAL_NVIC_EnableIRQ(self->timer->irqn);
// start timer, so that it interrupts on overflow
switch (self->mode) {
case CHANNEL_MODE_PWM_NORMAL:
case CHANNEL_MODE_PWM_INVERTED:
HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
case CHANNEL_MODE_OC_TIMING:
case CHANNEL_MODE_OC_ACTIVE:
case CHANNEL_MODE_OC_INACTIVE:
case CHANNEL_MODE_OC_TOGGLE:
case CHANNEL_MODE_OC_FORCED_ACTIVE:
case CHANNEL_MODE_OC_FORCED_INACTIVE:
HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
case CHANNEL_MODE_IC:
HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
break;
}
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "callback must be None or a callable object"));
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback);
STATIC const mp_map_elem_t pyb_timer_channel_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_callback), (mp_obj_t)&pyb_timer_channel_callback_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pulse_width_percent), (mp_obj_t)&pyb_timer_channel_pulse_width_percent_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_capture), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_compare), (mp_obj_t)&pyb_timer_channel_capture_compare_obj },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);
STATIC const mp_obj_type_t pyb_timer_channel_type = {
{ &mp_type_type },
.name = MP_QSTR_TimerChannel,
.print = pyb_timer_channel_print,
.locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};
STATIC void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) {
uint32_t irq_mask = TIMER_IRQ_MASK(channel);
if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) {
if (__HAL_TIM_GET_ITSTATUS(&tim->tim, irq_mask) != RESET) {
// clear the interrupt
__HAL_TIM_CLEAR_IT(&tim->tim, irq_mask);
// execute callback if it's set
if (callback != mp_const_none) {
// When executing code within a handler we must lock the GC to prevent
// any memory allocations. We must also catch any exceptions.
gc_lock();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_call_function_1(callback, tim);
nlr_pop();
} else {
// Uncaught exception; disable the callback so it doesn't run again.
tim->callback = mp_const_none;
__HAL_TIM_DISABLE_IT(&tim->tim, irq_mask);
if (channel == 0) {
printf("uncaught exception in Timer(%u) interrupt handler\n", tim->tim_id);
} else {
printf("uncaught exception in Timer(%u) channel %u interrupt handler\n", tim->tim_id, channel);
}
mp_obj_print_exception((mp_obj_t)nlr.ret_val);
}
gc_unlock();
}
}
}
}
void timer_irq_handler(uint tim_id) {
if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
// get the timer object
pyb_timer_obj_t *tim = pyb_timer_obj_all[tim_id - 1];
if (tim == NULL) {
// Timer object has not been set, so we can't do anything.
// This can happen under normal circumstances for timers like
// 1 & 10 which use the same IRQ.
return;
}
// Check for timer (versus timer channel) interrupt.
timer_handle_irq_channel(tim, 0, tim->callback);
uint32_t handled = TIMER_IRQ_MASK(0);
// Check to see if a timer channel interrupt was pending
pyb_timer_channel_obj_t *chan = tim->channel;
while (chan != NULL) {
timer_handle_irq_channel(tim, chan->channel, chan->callback);
handled |= TIMER_IRQ_MASK(chan->channel);
chan = chan->next;
}
// Finally, clear any remaining interrupt sources. Otherwise we'll
// just get called continuously.
uint32_t unhandled = __HAL_TIM_GET_ITSTATUS(&tim->tim, 0xff & ~handled);
if (unhandled != 0) {
__HAL_TIM_CLEAR_IT(&tim->tim, unhandled);
printf("Unhandled interrupt SR=0x%02lx (now disabled)\n", unhandled);
}
}
}