micropython/stm/main.c

712 lines
20 KiB
C

#include <stdio.h>
#include <string.h>
#include <stm32f4xx.h>
#include <stm32f4xx_rcc.h>
#include <stm32f4xx_syscfg.h>
#include <stm32f4xx_gpio.h>
#include <stm32f4xx_exti.h>
#include <stm32f4xx_tim.h>
#include <stm32f4xx_pwr.h>
#include <stm32f4xx_rtc.h>
#include <stm32f4xx_usart.h>
#include <stm32f4xx_rng.h>
#include <usbd_storage_msd.h>
#include <stm_misc.h>
#include "std.h"
#include "misc.h"
#include "ff.h"
#include "mpconfig.h"
#include "qstr.h"
#include "nlr.h"
#include "misc.h"
#include "lexer.h"
#include "lexerfatfs.h"
#include "parse.h"
#include "obj.h"
#include "parsehelper.h"
#include "compile.h"
#include "runtime0.h"
#include "runtime.h"
#include "gc.h"
#include "gccollect.h"
#include "systick.h"
#include "pendsv.h"
#include "pyexec.h"
#include "led.h"
#include "servo.h"
#include "lcd.h"
#include "storage.h"
#include "sdcard.h"
#include "accel.h"
#include "usart.h"
#include "usb.h"
#include "timer.h"
#include "audio.h"
#include "pybwlan.h"
#include "i2c.h"
#include "usrsw.h"
#include "adc.h"
#include "rtc.h"
#include "file.h"
int errno;
static FATFS fatfs0;
static FATFS fatfs1;
void flash_error(int n) {
for (int i = 0; i < n; i++) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_R2, 0);
sys_tick_delay_ms(250);
led_state(PYB_LED_R1, 0);
led_state(PYB_LED_R2, 1);
sys_tick_delay_ms(250);
}
led_state(PYB_LED_R2, 0);
}
void __fatal_error(const char *msg) {
#if MICROPY_HW_HAS_LCD
lcd_print_strn("\nFATAL ERROR:\n", 14);
lcd_print_strn(msg, strlen(msg));
#endif
for (;;) {
flash_error(1);
}
}
static mp_obj_t pyb_config_source_dir = MP_OBJ_NULL;
static mp_obj_t pyb_config_main = MP_OBJ_NULL;
mp_obj_t pyb_source_dir(mp_obj_t source_dir) {
if (MP_OBJ_IS_STR(source_dir)) {
pyb_config_source_dir = source_dir;
}
return mp_const_none;
}
mp_obj_t pyb_main(mp_obj_t main) {
if (MP_OBJ_IS_STR(main)) {
pyb_config_main = main;
}
return mp_const_none;
}
// sync all file systems
mp_obj_t pyb_sync(void) {
storage_flush();
return mp_const_none;
}
mp_obj_t pyb_delay(mp_obj_t count) {
sys_tick_delay_ms(mp_obj_get_int(count));
return mp_const_none;
}
void fatality(void) {
led_state(PYB_LED_R1, 1);
led_state(PYB_LED_G1, 1);
led_state(PYB_LED_R2, 1);
led_state(PYB_LED_G2, 1);
}
static const char fresh_boot_py[] =
"# boot.py -- run on boot-up\n"
"# can run arbitrary Python, but best to keep it minimal\n"
"\n"
"pyb.source_dir('/src')\n"
"pyb.main('main.py')\n"
"#pyb.usb_usr('VCP')\n"
"#pyb.usb_msd(True, 'dual partition')\n"
"#pyb.flush_cache(False)\n"
"#pyb.error_log('error.txt')\n"
;
static const char fresh_main_py[] =
"# main.py -- put your code here!\n"
;
static const char *help_text =
"Welcome to Micro Python!\n\n"
"This is a *very* early version of Micro Python and has minimal functionality.\n\n"
"Specific commands for the board:\n"
" pyb.info() -- print some general information\n"
" pyb.gc() -- run the garbage collector\n"
" pyb.repl_info(<val>) -- enable/disable printing of info after each command\n"
" pyb.delay(<n>) -- wait for n milliseconds\n"
" pyb.Led(<n>) -- create Led object for LED n (n=1,2)\n"
" Led methods: on(), off()\n"
" pyb.Servo(<n>) -- create Servo object for servo n (n=1,2,3,4)\n"
" Servo methods: angle(<x>)\n"
" pyb.switch() -- return True/False if switch pressed or not\n"
" pyb.accel() -- get accelerometer values\n"
" pyb.rand() -- get a 16-bit random number\n"
" pyb.gpio(<port>) -- get port value (port='A4' for example)\n"
" pyb.gpio(<port>, <val>) -- set port value, True or False, 1 or 0\n"
" pyb.ADC(<port>) -- make an analog port object (port='C0' for example)\n"
" ADC methods: read()\n"
;
// get some help about available functions
static mp_obj_t pyb_help(void) {
printf("%s", help_text);
return mp_const_none;
}
// get lots of info about the board
static mp_obj_t pyb_info(void) {
// get and print unique id; 96 bits
{
byte *id = (byte*)0x1fff7a10;
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
}
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
{
RCC_ClocksTypeDef rcc_clocks;
RCC_GetClocksFreq(&rcc_clocks);
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n", rcc_clocks.SYSCLK_Frequency, rcc_clocks.HCLK_Frequency, rcc_clocks.PCLK1_Frequency, rcc_clocks.PCLK2_Frequency);
}
// to print info about memory
{
printf("_text_end=%p\n", &_text_end);
printf("_data_start_init=%p\n", &_data_start_init);
printf("_data_start=%p\n", &_data_start);
printf("_data_end=%p\n", &_data_end);
printf("_bss_start=%p\n", &_bss_start);
printf("_bss_end=%p\n", &_bss_end);
printf("_stack_end=%p\n", &_stack_end);
printf("_ram_start=%p\n", &_ram_start);
printf("_heap_start=%p\n", &_heap_start);
printf("_heap_end=%p\n", &_heap_end);
printf("_ram_end=%p\n", &_ram_end);
}
// qstr info
{
uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" %lu total\n", info.total);
printf(" %lu : %lu\n", info.used, info.free);
printf(" 1=%lu 2=%lu m=%lu\n", info.num_1block, info.num_2block, info.max_block);
}
// free space on flash
{
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
}
return mp_const_none;
}
static void SYSCLKConfig_STOP(void) {
/* After wake-up from STOP reconfigure the system clock */
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
}
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
}
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while (RCC_GetSYSCLKSource() != 0x08) {
}
}
static mp_obj_t pyb_stop(void) {
PWR_EnterSTANDBYMode();
//PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this
/* Enter Stop Mode */
PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);
/* Configures system clock after wake-up from STOP: enable HSE, PLL and select
* PLL as system clock source (HSE and PLL are disabled in STOP mode) */
SYSCLKConfig_STOP();
//PWR_FlashPowerDownCmd(DISABLE);
return mp_const_none;
}
static mp_obj_t pyb_standby(void) {
PWR_EnterSTANDBYMode();
return mp_const_none;
}
mp_obj_t pyb_gpio(uint n_args, mp_obj_t *args) {
//assert(1 <= n_args && n_args <= 2);
const char *pin_name = mp_obj_str_get_str(args[0]);
GPIO_TypeDef *port;
switch (pin_name[0]) {
case 'A': case 'a': port = GPIOA; break;
case 'B': case 'b': port = GPIOB; break;
case 'C': case 'c': port = GPIOC; break;
default: goto pin_error;
}
uint pin_num = 0;
for (const char *s = pin_name + 1; *s; s++) {
if (!('0' <= *s && *s <= '9')) {
goto pin_error;
}
pin_num = 10 * pin_num + *s - '0';
}
if (!(0 <= pin_num && pin_num <= 15)) {
goto pin_error;
}
if (n_args == 1) {
// get pin
if ((port->IDR & (1 << pin_num)) != (uint32_t)Bit_RESET) {
return MP_OBJ_NEW_SMALL_INT(1);
} else {
return MP_OBJ_NEW_SMALL_INT(0);
}
} else {
// set pin
if (rt_is_true(args[1])) {
// set pin high
port->BSRRL = 1 << pin_num;
} else {
// set pin low
port->BSRRH = 1 << pin_num;
}
return mp_const_none;
}
pin_error:
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin %s does not exist", pin_name));
}
MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_gpio_obj, 1, 2, pyb_gpio);
mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
mp_obj_t *items = mp_obj_get_array_fixed_n(arg, 4);
uint8_t data[4];
data[0] = mp_obj_get_int(items[0]);
data[1] = mp_obj_get_int(items[1]);
data[2] = mp_obj_get_int(items[2]);
data[3] = mp_obj_get_int(items[3]);
usb_hid_send_report(data);
return mp_const_none;
}
mp_obj_t pyb_rng_get(void) {
return mp_obj_new_int(RNG_GetRandomNumber() >> 16);
}
mp_obj_t pyb_millis(void) {
return mp_obj_new_int(sys_tick_counter);
}
int main(void) {
// TODO disable JTAG
// update the SystemCoreClock variable
SystemCoreClockUpdate();
// set interrupt priority config to use all 4 bits for pre-empting
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
// enable the CCM RAM and the GPIO's
RCC->AHB1ENR |= RCC_AHB1ENR_CCMDATARAMEN | RCC_AHB1ENR_GPIOAEN | RCC_AHB1ENR_GPIOBEN | RCC_AHB1ENR_GPIOCEN | RCC_AHB1ENR_GPIODEN;
#if MICROPY_HW_HAS_SDCARD
{
// configure SDIO pins to be high to start with (apparently makes it more robust)
// FIXME this is not making them high, it just makes them outputs...
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11 | GPIO_Pin_12;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init(GPIOC, &GPIO_InitStructure);
// Configure PD.02 CMD line
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_Init(GPIOD, &GPIO_InitStructure);
}
#endif
#if defined(NETDUINO_PLUS_2)
{
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
#if MICROPY_HW_HAS_SDCARD
// Turn on the power enable for the sdcard (PB1)
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
#endif
// Turn on the power for the 5V on the expansion header (PB2)
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
GPIO_Init(GPIOB, &GPIO_InitStructure);
GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
}
#endif
// basic sub-system init
sys_tick_init();
pendsv_init();
led_init();
#if MICROPY_HW_ENABLE_RTC
rtc_init();
#endif
// turn on LED to indicate bootup
led_state(PYB_LED_G1, 1);
// more sub-system init
#if MICROPY_HW_HAS_SWITCH
switch_init();
#endif
#if MICROPY_HW_HAS_SDCARD
sdcard_init();
#endif
storage_init();
// uncomment these 2 lines if you want REPL on USART_6 (or another usart) as well as on USB VCP
//pyb_usart_global_debug = PYB_USART_3;
//usart_init(pyb_usart_global_debug, 115200);
int first_soft_reset = true;
soft_reset:
// GC init
gc_init(&_heap_start, &_heap_end);
// Micro Python init
qstr_init();
rt_init();
#if MICROPY_HW_HAS_LCD
// LCD init (just creates class, init hardware by calling LCD())
lcd_init();
#endif
#if MICROPY_HW_ENABLE_SERVO
// servo
servo_init();
#endif
#if MICROPY_HW_ENABLE_AUDIO
// audio
audio_init();
#endif
#if MICROPY_HW_ENABLE_TIMER
// timer
timer_init();
#endif
#if MICROPY_HW_ENABLE_RNG
// RNG
RCC_AHB2PeriphClockCmd(RCC_AHB2Periph_RNG, ENABLE);
RNG_Cmd(ENABLE);
#endif
// add some functions to the python namespace
{
rt_store_name(MP_QSTR_help, rt_make_function_n(0, pyb_help));
mp_obj_t m = mp_obj_new_module(MP_QSTR_pyb);
rt_store_attr(m, MP_QSTR_info, rt_make_function_n(0, pyb_info));
rt_store_attr(m, MP_QSTR_gc, (mp_obj_t)&pyb_gc_obj);
rt_store_attr(m, qstr_from_str("repl_info"), rt_make_function_n(1, pyb_set_repl_info));
#if MICROPY_HW_HAS_SDCARD
rt_store_attr(m, qstr_from_str("SD"), (mp_obj_t)&pyb_sdcard_obj);
#endif
rt_store_attr(m, MP_QSTR_stop, rt_make_function_n(0, pyb_stop));
rt_store_attr(m, MP_QSTR_standby, rt_make_function_n(0, pyb_standby));
rt_store_attr(m, MP_QSTR_source_dir, rt_make_function_n(1, pyb_source_dir));
rt_store_attr(m, MP_QSTR_main, rt_make_function_n(1, pyb_main));
rt_store_attr(m, MP_QSTR_sync, rt_make_function_n(0, pyb_sync));
rt_store_attr(m, MP_QSTR_delay, rt_make_function_n(1, pyb_delay));
#if MICROPY_HW_HAS_SWITCH
rt_store_attr(m, MP_QSTR_switch, (mp_obj_t)&pyb_switch_obj);
#endif
#if MICROPY_HW_ENABLE_SERVO
rt_store_attr(m, MP_QSTR_servo, rt_make_function_n(2, pyb_servo_set));
#endif
rt_store_attr(m, MP_QSTR_pwm, rt_make_function_n(2, pyb_pwm_set));
#if MICROPY_HW_HAS_MMA7660
rt_store_attr(m, MP_QSTR_accel, (mp_obj_t)&pyb_accel_read_obj);
rt_store_attr(m, MP_QSTR_accel_read, (mp_obj_t)&pyb_accel_read_all_obj);
rt_store_attr(m, MP_QSTR_accel_mode, (mp_obj_t)&pyb_accel_write_mode_obj);
#endif
rt_store_attr(m, MP_QSTR_hid, rt_make_function_n(1, pyb_hid_send_report));
#if MICROPY_HW_ENABLE_RTC
rt_store_attr(m, MP_QSTR_time, rt_make_function_n(0, pyb_rtc_read));
#endif
#if MICROPY_HW_ENABLE_RNG
rt_store_attr(m, MP_QSTR_rand, rt_make_function_n(0, pyb_rng_get));
#endif
rt_store_attr(m, MP_QSTR_Led, (mp_obj_t)&pyb_Led_obj);
#if MICROPY_HW_ENABLE_SERVO
rt_store_attr(m, MP_QSTR_Servo, rt_make_function_n(1, pyb_Servo));
#endif
rt_store_attr(m, MP_QSTR_I2C, rt_make_function_n(2, pyb_I2C));
rt_store_attr(m, MP_QSTR_gpio, (mp_obj_t)&pyb_gpio_obj);
rt_store_attr(m, MP_QSTR_Usart, rt_make_function_n(2, pyb_Usart));
rt_store_attr(m, qstr_from_str("ADC_all"), (mp_obj_t)&pyb_ADC_all_obj);
rt_store_attr(m, MP_QSTR_ADC, (mp_obj_t)&pyb_ADC_obj);
rt_store_attr(m, qstr_from_str("millis"), rt_make_function_n(0, pyb_millis));
rt_store_name(MP_QSTR_pyb, m);
rt_store_name(MP_QSTR_open, rt_make_function_n(2, pyb_io_open));
}
// check if user switch held (initiates reset of filesystem)
bool reset_filesystem = false;
#if MICROPY_HW_HAS_SWITCH
if (switch_get()) {
reset_filesystem = true;
for (int i = 0; i < 50; i++) {
if (!switch_get()) {
reset_filesystem = false;
break;
}
sys_tick_delay_ms(10);
}
}
#endif
// local filesystem init
{
// try to mount the flash
FRESULT res = f_mount(&fatfs0, "0:", 1);
if (!reset_filesystem && res == FR_OK) {
// mount sucessful
} else if (reset_filesystem || res == FR_NO_FILESYSTEM) {
// no filesystem, so create a fresh one
// TODO doesn't seem to work correctly when reset_filesystem is true...
// LED on to indicate creation of LFS
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
res = f_mkfs("0:", 0, 0);
if (res == FR_OK) {
// success creating fresh LFS
} else {
__fatal_error("could not create LFS");
}
// create src directory
res = f_mkdir("0:/src");
// ignore result from mkdir
// create empty main.py
FIL fp;
f_open(&fp, "0:/src/main.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(stc, 200);
led_state(PYB_LED_R2, 0);
} else {
__fatal_error("could not access LFS");
}
}
// make sure we have a /boot.py
{
FILINFO fno;
FRESULT res = f_stat("0:/boot.py", &fno);
if (res == FR_OK) {
if (fno.fattrib & AM_DIR) {
// exists as a directory
// TODO handle this case
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
} else {
// exists as a file, good!
}
} else {
// doesn't exist, create fresh file
// LED on to indicate creation of boot.py
led_state(PYB_LED_R2, 1);
uint32_t stc = sys_tick_counter;
FIL fp;
f_open(&fp, "0:/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
UINT n;
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
// TODO check we could write n bytes
f_close(&fp);
// keep LED on for at least 200ms
sys_tick_wait_at_least(stc, 200);
led_state(PYB_LED_R2, 0);
}
}
// run /boot.py
if (!pyexec_file("0:/boot.py")) {
flash_error(4);
}
if (first_soft_reset) {
#if MICROPY_HW_HAS_MMA7660
// MMA accel: init and reset address to zero
accel_init();
#endif
}
// turn boot-up LED off
led_state(PYB_LED_G1, 0);
#if MICROPY_HW_HAS_SDCARD
// if an SD card is present then mount it on 1:/
if (sdcard_is_present()) {
FRESULT res = f_mount(&fatfs1, "1:", 1);
if (res != FR_OK) {
printf("[SD] could not mount SD card\n");
} else {
if (first_soft_reset) {
// use SD card as medium for the USB MSD
usbd_storage_select_medium(USBD_STORAGE_MEDIUM_SDCARD);
}
}
}
#endif
#ifdef USE_HOST_MODE
// USB host
pyb_usb_host_init();
#elif defined(USE_DEVICE_MODE)
// USB device
pyb_usb_dev_init();
#endif
// run main script
{
vstr_t *vstr = vstr_new();
vstr_add_str(vstr, "0:/");
if (pyb_config_source_dir == MP_OBJ_NULL) {
vstr_add_str(vstr, "src");
} else {
vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_source_dir));
}
vstr_add_char(vstr, '/');
if (pyb_config_main == MP_OBJ_NULL) {
vstr_add_str(vstr, "main.py");
} else {
vstr_add_str(vstr, mp_obj_str_get_str(pyb_config_main));
}
if (!pyexec_file(vstr_str(vstr))) {
flash_error(3);
}
vstr_free(vstr);
}
#if MICROPY_HW_HAS_MMA7660
// HID example
if (0) {
uint8_t data[4];
data[0] = 0;
data[1] = 1;
data[2] = -2;
data[3] = 0;
for (;;) {
#if MICROPY_HW_HAS_SWITCH
if (switch_get()) {
data[0] = 0x01; // 0x04 is middle, 0x02 is right
} else {
data[0] = 0x00;
}
#else
data[0] = 0x00;
#endif
accel_start(0x4c /* ACCEL_ADDR */, 1);
accel_send_byte(0);
accel_restart(0x4c /* ACCEL_ADDR */, 0);
for (int i = 0; i <= 1; i++) {
int v = accel_read_ack() & 0x3f;
if (v & 0x20) {
v |= ~0x1f;
}
data[1 + i] = v;
}
accel_read_nack();
usb_hid_send_report(data);
sys_tick_delay_ms(15);
}
}
#endif
#if MICROPY_HW_HAS_WLAN
// wifi
pyb_wlan_init();
pyb_wlan_start();
#endif
pyexec_repl();
printf("PYB: sync filesystems\n");
pyb_sync();
printf("PYB: soft reboot\n");
first_soft_reset = false;
goto soft_reset;
}
// these 2 functions seem to actually work... no idea why
// replacing with libgcc does not work (probably due to wrong calling conventions)
double __aeabi_f2d(float x) {
// TODO
return 0.0;
}
float __aeabi_d2f(double x) {
// TODO
return 0.0;
}
double sqrt(double x) {
// TODO
return 0.0;
}
machine_float_t machine_sqrt(machine_float_t x) {
// TODO
return x;
}