346 lines
12 KiB
C
346 lines
12 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "py/parsenum.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
|
|
#include <math.h>
|
|
#include "py/formatfloat.h"
|
|
|
|
#if MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_C && MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_D
|
|
|
|
// M_E and M_PI are not part of the math.h standard and may not be defined
|
|
#ifndef M_E
|
|
#define M_E (2.7182818284590452354)
|
|
#endif
|
|
#ifndef M_PI
|
|
#define M_PI (3.14159265358979323846)
|
|
#endif
|
|
|
|
typedef struct _mp_obj_float_t {
|
|
mp_obj_base_t base;
|
|
mp_float_t value;
|
|
} mp_obj_float_t;
|
|
|
|
const mp_obj_float_t mp_const_float_e_obj = {{&mp_type_float}, (mp_float_t)M_E};
|
|
const mp_obj_float_t mp_const_float_pi_obj = {{&mp_type_float}, (mp_float_t)M_PI};
|
|
#if MICROPY_PY_MATH_CONSTANTS
|
|
#ifndef NAN
|
|
#error NAN macro is not defined
|
|
#endif
|
|
const mp_obj_float_t mp_const_float_tau_obj = {{&mp_type_float}, (mp_float_t)(2.0 * M_PI)};
|
|
const mp_obj_float_t mp_const_float_inf_obj = {{&mp_type_float}, (mp_float_t)INFINITY};
|
|
const mp_obj_float_t mp_const_float_nan_obj = {{&mp_type_float}, (mp_float_t)NAN};
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#define MICROPY_FLOAT_ZERO MICROPY_FLOAT_CONST(0.0)
|
|
|
|
#if MICROPY_FLOAT_HIGH_QUALITY_HASH
|
|
// must return actual integer value if it fits in mp_int_t
|
|
mp_int_t mp_float_hash(mp_float_t src) {
|
|
mp_float_union_t u = {.f = src};
|
|
mp_int_t val;
|
|
const int adj_exp = (int)u.p.exp - MP_FLOAT_EXP_BIAS;
|
|
if (adj_exp < 0) {
|
|
// value < 1; must be sure to handle 0.0 correctly (ie return 0)
|
|
val = u.i;
|
|
} else {
|
|
// if adj_exp is max then: u.p.frc==0 indicates inf, else NaN
|
|
// else: 1 <= value
|
|
mp_float_uint_t frc = u.p.frc | ((mp_float_uint_t)1 << MP_FLOAT_FRAC_BITS);
|
|
|
|
if (adj_exp <= MP_FLOAT_FRAC_BITS) {
|
|
// number may have a fraction; xor the integer part with the fractional part
|
|
val = (frc >> (MP_FLOAT_FRAC_BITS - adj_exp))
|
|
^ (frc & (((mp_float_uint_t)1 << (MP_FLOAT_FRAC_BITS - adj_exp)) - 1));
|
|
} else if ((unsigned int)adj_exp < MP_BITS_PER_BYTE * sizeof(mp_int_t) - 1) {
|
|
// the number is a (big) whole integer and will fit in val's signed-width
|
|
val = (mp_int_t)frc << (adj_exp - MP_FLOAT_FRAC_BITS);
|
|
} else {
|
|
// integer part will overflow val's width so just use what bits we can
|
|
val = frc;
|
|
}
|
|
}
|
|
|
|
if (u.p.sgn) {
|
|
val = -(mp_uint_t)val;
|
|
}
|
|
|
|
return val;
|
|
}
|
|
#endif
|
|
|
|
STATIC void float_print(const mp_print_t *print, mp_obj_t o_in, mp_print_kind_t kind) {
|
|
(void)kind;
|
|
mp_float_t o_val = mp_obj_float_get(o_in);
|
|
#if MICROPY_FLOAT_IMPL == MICROPY_FLOAT_IMPL_FLOAT
|
|
char buf[16];
|
|
#if MICROPY_OBJ_REPR == MICROPY_OBJ_REPR_C
|
|
const int precision = 6;
|
|
#else
|
|
const int precision = 7;
|
|
#endif
|
|
#else
|
|
char buf[32];
|
|
const int precision = 16;
|
|
#endif
|
|
mp_format_float(o_val, buf, sizeof(buf), 'g', precision, '\0');
|
|
mp_print_str(print, buf);
|
|
if (strchr(buf, '.') == NULL && strchr(buf, 'e') == NULL && strchr(buf, 'n') == NULL) {
|
|
// Python floats always have decimal point (unless inf or nan)
|
|
mp_print_str(print, ".0");
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t float_make_new(const mp_obj_type_t *type_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
(void)type_in;
|
|
mp_arg_check_num(n_args, n_kw, 0, 1, false);
|
|
|
|
switch (n_args) {
|
|
case 0:
|
|
return mp_obj_new_float(0);
|
|
|
|
case 1:
|
|
default: {
|
|
mp_buffer_info_t bufinfo;
|
|
if (mp_get_buffer(args[0], &bufinfo, MP_BUFFER_READ)) {
|
|
// a textual representation, parse it
|
|
return mp_parse_num_float(bufinfo.buf, bufinfo.len, false, NULL);
|
|
} else if (mp_obj_is_float(args[0])) {
|
|
// a float, just return it
|
|
return args[0];
|
|
} else {
|
|
// something else, try to cast it to a float
|
|
return mp_obj_new_float(mp_obj_get_float(args[0]));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t float_unary_op(mp_unary_op_t op, mp_obj_t o_in) {
|
|
mp_float_t val = mp_obj_float_get(o_in);
|
|
switch (op) {
|
|
case MP_UNARY_OP_BOOL:
|
|
return mp_obj_new_bool(val != 0);
|
|
case MP_UNARY_OP_HASH:
|
|
return MP_OBJ_NEW_SMALL_INT(mp_float_hash(val));
|
|
case MP_UNARY_OP_POSITIVE:
|
|
return o_in;
|
|
case MP_UNARY_OP_NEGATIVE:
|
|
return mp_obj_new_float(-val);
|
|
case MP_UNARY_OP_ABS: {
|
|
if (signbit(val)) {
|
|
return mp_obj_new_float(-val);
|
|
} else {
|
|
return o_in;
|
|
}
|
|
}
|
|
default:
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
}
|
|
|
|
STATIC mp_obj_t float_binary_op(mp_binary_op_t op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
|
|
mp_float_t lhs_val = mp_obj_float_get(lhs_in);
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
if (mp_obj_is_type(rhs_in, &mp_type_complex)) {
|
|
return mp_obj_complex_binary_op(op, lhs_val, 0, rhs_in);
|
|
}
|
|
#endif
|
|
return mp_obj_float_binary_op(op, lhs_val, rhs_in);
|
|
}
|
|
|
|
MP_DEFINE_CONST_OBJ_TYPE(
|
|
mp_type_float, MP_QSTR_float, MP_TYPE_FLAG_EQ_NOT_REFLEXIVE | MP_TYPE_FLAG_EQ_CHECKS_OTHER_TYPE, float_make_new,
|
|
print, float_print,
|
|
unary_op, float_unary_op,
|
|
binary_op, float_binary_op
|
|
);
|
|
|
|
#if MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_C && MICROPY_OBJ_REPR != MICROPY_OBJ_REPR_D
|
|
|
|
mp_obj_t mp_obj_new_float(mp_float_t value) {
|
|
// Don't use mp_obj_malloc here to avoid extra function call overhead.
|
|
mp_obj_float_t *o = m_new_obj(mp_obj_float_t);
|
|
o->base.type = &mp_type_float;
|
|
o->value = value;
|
|
return MP_OBJ_FROM_PTR(o);
|
|
}
|
|
|
|
mp_float_t mp_obj_float_get(mp_obj_t self_in) {
|
|
assert(mp_obj_is_float(self_in));
|
|
mp_obj_float_t *self = MP_OBJ_TO_PTR(self_in);
|
|
return self->value;
|
|
}
|
|
|
|
#endif
|
|
|
|
STATIC void mp_obj_float_divmod(mp_float_t *x, mp_float_t *y) {
|
|
// logic here follows that of CPython
|
|
// https://docs.python.org/3/reference/expressions.html#binary-arithmetic-operations
|
|
// x == (x//y)*y + (x%y)
|
|
// divmod(x, y) == (x//y, x%y)
|
|
mp_float_t mod = MICROPY_FLOAT_C_FUN(fmod)(*x, *y);
|
|
mp_float_t div = (*x - mod) / *y;
|
|
|
|
// Python specs require that mod has same sign as second operand
|
|
if (mod == MICROPY_FLOAT_ZERO) {
|
|
mod = MICROPY_FLOAT_C_FUN(copysign)(MICROPY_FLOAT_ZERO, *y);
|
|
} else {
|
|
if ((mod < MICROPY_FLOAT_ZERO) != (*y < MICROPY_FLOAT_ZERO)) {
|
|
mod += *y;
|
|
div -= MICROPY_FLOAT_CONST(1.0);
|
|
}
|
|
}
|
|
|
|
mp_float_t floordiv;
|
|
if (div == MICROPY_FLOAT_ZERO) {
|
|
// if division is zero, take the correct sign of zero
|
|
floordiv = MICROPY_FLOAT_C_FUN(copysign)(MICROPY_FLOAT_ZERO, *x / *y);
|
|
} else {
|
|
// Python specs require that x == (x//y)*y + (x%y)
|
|
floordiv = MICROPY_FLOAT_C_FUN(floor)(div);
|
|
if (div - floordiv > MICROPY_FLOAT_CONST(0.5)) {
|
|
floordiv += MICROPY_FLOAT_CONST(1.0);
|
|
}
|
|
}
|
|
|
|
// return results
|
|
*x = floordiv;
|
|
*y = mod;
|
|
}
|
|
|
|
mp_obj_t mp_obj_float_binary_op(mp_binary_op_t op, mp_float_t lhs_val, mp_obj_t rhs_in) {
|
|
mp_float_t rhs_val;
|
|
if (!mp_obj_get_float_maybe(rhs_in, &rhs_val)) {
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
|
|
switch (op) {
|
|
case MP_BINARY_OP_ADD:
|
|
case MP_BINARY_OP_INPLACE_ADD:
|
|
lhs_val += rhs_val;
|
|
break;
|
|
case MP_BINARY_OP_SUBTRACT:
|
|
case MP_BINARY_OP_INPLACE_SUBTRACT:
|
|
lhs_val -= rhs_val;
|
|
break;
|
|
case MP_BINARY_OP_MULTIPLY:
|
|
case MP_BINARY_OP_INPLACE_MULTIPLY:
|
|
lhs_val *= rhs_val;
|
|
break;
|
|
case MP_BINARY_OP_FLOOR_DIVIDE:
|
|
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
|
|
if (rhs_val == 0) {
|
|
zero_division_error:
|
|
mp_raise_msg(&mp_type_ZeroDivisionError, MP_ERROR_TEXT("divide by zero"));
|
|
}
|
|
// Python specs require that x == (x//y)*y + (x%y) so we must
|
|
// call divmod to compute the correct floor division, which
|
|
// returns the floor divide in lhs_val.
|
|
mp_obj_float_divmod(&lhs_val, &rhs_val);
|
|
break;
|
|
case MP_BINARY_OP_TRUE_DIVIDE:
|
|
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
|
|
if (rhs_val == 0) {
|
|
goto zero_division_error;
|
|
}
|
|
lhs_val /= rhs_val;
|
|
break;
|
|
case MP_BINARY_OP_MODULO:
|
|
case MP_BINARY_OP_INPLACE_MODULO:
|
|
if (rhs_val == MICROPY_FLOAT_ZERO) {
|
|
goto zero_division_error;
|
|
}
|
|
lhs_val = MICROPY_FLOAT_C_FUN(fmod)(lhs_val, rhs_val);
|
|
// Python specs require that mod has same sign as second operand
|
|
if (lhs_val == MICROPY_FLOAT_ZERO) {
|
|
lhs_val = MICROPY_FLOAT_C_FUN(copysign)(0.0, rhs_val);
|
|
} else {
|
|
if ((lhs_val < MICROPY_FLOAT_ZERO) != (rhs_val < MICROPY_FLOAT_ZERO)) {
|
|
lhs_val += rhs_val;
|
|
}
|
|
}
|
|
break;
|
|
case MP_BINARY_OP_POWER:
|
|
case MP_BINARY_OP_INPLACE_POWER:
|
|
if (lhs_val == 0 && rhs_val < 0 && !isinf(rhs_val)) {
|
|
goto zero_division_error;
|
|
}
|
|
if (lhs_val < 0 && rhs_val != MICROPY_FLOAT_C_FUN(floor)(rhs_val) && !isnan(rhs_val)) {
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
return mp_obj_complex_binary_op(MP_BINARY_OP_POWER, lhs_val, 0, rhs_in);
|
|
#else
|
|
mp_raise_ValueError(MP_ERROR_TEXT("complex values not supported"));
|
|
#endif
|
|
}
|
|
#if MICROPY_PY_MATH_POW_FIX_NAN // Also see modmath.c.
|
|
if (lhs_val == MICROPY_FLOAT_CONST(1.0) || rhs_val == MICROPY_FLOAT_CONST(0.0)) {
|
|
lhs_val = MICROPY_FLOAT_CONST(1.0);
|
|
break;
|
|
}
|
|
#endif
|
|
lhs_val = MICROPY_FLOAT_C_FUN(pow)(lhs_val, rhs_val);
|
|
break;
|
|
case MP_BINARY_OP_DIVMOD: {
|
|
if (rhs_val == 0) {
|
|
goto zero_division_error;
|
|
}
|
|
mp_obj_float_divmod(&lhs_val, &rhs_val);
|
|
mp_obj_t tuple[2] = {
|
|
mp_obj_new_float(lhs_val),
|
|
mp_obj_new_float(rhs_val),
|
|
};
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
case MP_BINARY_OP_LESS:
|
|
return mp_obj_new_bool(lhs_val < rhs_val);
|
|
case MP_BINARY_OP_MORE:
|
|
return mp_obj_new_bool(lhs_val > rhs_val);
|
|
case MP_BINARY_OP_EQUAL:
|
|
return mp_obj_new_bool(lhs_val == rhs_val);
|
|
case MP_BINARY_OP_LESS_EQUAL:
|
|
return mp_obj_new_bool(lhs_val <= rhs_val);
|
|
case MP_BINARY_OP_MORE_EQUAL:
|
|
return mp_obj_new_bool(lhs_val >= rhs_val);
|
|
|
|
default:
|
|
return MP_OBJ_NULL; // op not supported
|
|
}
|
|
return mp_obj_new_float(lhs_val);
|
|
}
|
|
|
|
#endif // MICROPY_PY_BUILTINS_FLOAT
|