micropython/py/runtime.c

1526 lines
58 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2014-2018 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdarg.h>
#include <stdio.h>
#include <string.h>
#include <assert.h>
#include "py/parsenum.h"
#include "py/compile.h"
#include "py/objstr.h"
#include "py/objtuple.h"
#include "py/objlist.h"
#include "py/objtype.h"
#include "py/objmodule.h"
#include "py/objgenerator.h"
#include "py/smallint.h"
#include "py/runtime.h"
#include "py/builtin.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#if MICROPY_DEBUG_VERBOSE // print debugging info
#define DEBUG_PRINT (1)
#define DEBUG_printf DEBUG_printf
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#define DEBUG_OP_printf(...) (void)0
#endif
const mp_obj_module_t mp_module___main__ = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&MP_STATE_VM(dict_main),
};
void mp_init(void) {
qstr_init();
// no pending exceptions to start with
MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL;
#if MICROPY_ENABLE_SCHEDULER
MP_STATE_VM(sched_state) = MP_SCHED_IDLE;
MP_STATE_VM(sched_idx) = 0;
MP_STATE_VM(sched_len) = 0;
#endif
#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
mp_init_emergency_exception_buf();
#endif
#if MICROPY_KBD_EXCEPTION
// initialise the exception object for raising KeyboardInterrupt
MP_STATE_VM(mp_kbd_exception).base.type = &mp_type_KeyboardInterrupt;
MP_STATE_VM(mp_kbd_exception).traceback_alloc = 0;
MP_STATE_VM(mp_kbd_exception).traceback_len = 0;
MP_STATE_VM(mp_kbd_exception).traceback_data = NULL;
MP_STATE_VM(mp_kbd_exception).args = (mp_obj_tuple_t*)&mp_const_empty_tuple_obj;
#endif
#if MICROPY_ENABLE_COMPILER
// optimization disabled by default
MP_STATE_VM(mp_optimise_value) = 0;
#if MICROPY_EMIT_NATIVE
MP_STATE_VM(default_emit_opt) = MP_EMIT_OPT_NONE;
#endif
#endif
// init global module dict
mp_obj_dict_init(&MP_STATE_VM(mp_loaded_modules_dict), 3);
// initialise the __main__ module
mp_obj_dict_init(&MP_STATE_VM(dict_main), 1);
mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
mp_locals_set(&MP_STATE_VM(dict_main));
mp_globals_set(&MP_STATE_VM(dict_main));
#if MICROPY_CAN_OVERRIDE_BUILTINS
// start with no extensions to builtins
MP_STATE_VM(mp_module_builtins_override_dict) = NULL;
#endif
#if MICROPY_PY_OS_DUPTERM
for (size_t i = 0; i < MICROPY_PY_OS_DUPTERM; ++i) {
MP_STATE_VM(dupterm_objs[i]) = MP_OBJ_NULL;
}
#endif
#if MICROPY_VFS
// initialise the VFS sub-system
MP_STATE_VM(vfs_cur) = NULL;
MP_STATE_VM(vfs_mount_table) = NULL;
#endif
#if MICROPY_PY_SYS_ATEXIT
MP_STATE_VM(sys_exitfunc) = mp_const_none;
#endif
#if MICROPY_PY_SYS_SETTRACE
MP_STATE_THREAD(prof_trace_callback) = MP_OBJ_NULL;
MP_STATE_THREAD(prof_callback_is_executing) = false;
MP_STATE_THREAD(current_code_state) = NULL;
#endif
#if MICROPY_PY_BLUETOOTH
MP_STATE_VM(bluetooth) = MP_OBJ_NULL;
#endif
#if MICROPY_PY_THREAD_GIL
mp_thread_mutex_init(&MP_STATE_VM(gil_mutex));
#endif
// call port specific initialization if any
#ifdef MICROPY_PORT_INIT_FUNC
MICROPY_PORT_INIT_FUNC;
#endif
MP_THREAD_GIL_ENTER();
}
void mp_deinit(void) {
MP_THREAD_GIL_EXIT();
// call port specific deinitialization if any
#ifdef MICROPY_PORT_DEINIT_FUNC
MICROPY_PORT_DEINIT_FUNC;
#endif
//mp_obj_dict_free(&dict_main);
//mp_map_deinit(&MP_STATE_VM(mp_loaded_modules_map));
}
mp_obj_t mp_load_name(qstr qst) {
// logic: search locals, globals, builtins
DEBUG_OP_printf("load name %s\n", qstr_str(qst));
// If we're at the outer scope (locals == globals), dispatch to load_global right away
if (mp_locals_get() != mp_globals_get()) {
mp_map_elem_t *elem = mp_map_lookup(&mp_locals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
return mp_load_global(qst);
}
mp_obj_t mp_load_global(qstr qst) {
// logic: search globals, builtins
DEBUG_OP_printf("load global %s\n", qstr_str(qst));
mp_map_elem_t *elem = mp_map_lookup(&mp_globals_get()->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
if (elem == NULL) {
#if MICROPY_CAN_OVERRIDE_BUILTINS
if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
// lookup in additional dynamic table of builtins first
elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
#endif
elem = mp_map_lookup((mp_map_t*)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
if (elem == NULL) {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_msg(&mp_type_NameError, "name not defined");
} else {
mp_raise_msg_varg(&mp_type_NameError, "name '%q' isn't defined", qst);
}
}
}
return elem->value;
}
mp_obj_t mp_load_build_class(void) {
DEBUG_OP_printf("load_build_class\n");
#if MICROPY_CAN_OVERRIDE_BUILTINS
if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
// lookup in additional dynamic table of builtins first
mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
}
#endif
return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj);
}
void mp_store_name(qstr qst, mp_obj_t obj) {
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj);
mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst), obj);
}
void mp_delete_name(qstr qst) {
DEBUG_OP_printf("delete name %s\n", qstr_str(qst));
// TODO convert KeyError to NameError if qst not found
mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_locals_get()), MP_OBJ_NEW_QSTR(qst));
}
void mp_store_global(qstr qst, mp_obj_t obj) {
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj);
mp_obj_dict_store(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst), obj);
}
void mp_delete_global(qstr qst) {
DEBUG_OP_printf("delete global %s\n", qstr_str(qst));
// TODO convert KeyError to NameError if qst not found
mp_obj_dict_delete(MP_OBJ_FROM_PTR(mp_globals_get()), MP_OBJ_NEW_QSTR(qst));
}
mp_obj_t mp_unary_op(mp_unary_op_t op, mp_obj_t arg) {
DEBUG_OP_printf("unary " UINT_FMT " %q %p\n", op, mp_unary_op_method_name[op], arg);
if (op == MP_UNARY_OP_NOT) {
// "not x" is the negative of whether "x" is true per Python semantics
return mp_obj_new_bool(mp_obj_is_true(arg) == 0);
} else if (mp_obj_is_small_int(arg)) {
mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
switch (op) {
case MP_UNARY_OP_BOOL:
return mp_obj_new_bool(val != 0);
case MP_UNARY_OP_HASH:
return arg;
case MP_UNARY_OP_POSITIVE:
case MP_UNARY_OP_INT:
return arg;
case MP_UNARY_OP_NEGATIVE:
// check for overflow
if (val == MP_SMALL_INT_MIN) {
return mp_obj_new_int(-val);
} else {
return MP_OBJ_NEW_SMALL_INT(-val);
}
case MP_UNARY_OP_ABS:
if (val >= 0) {
return arg;
} else if (val == MP_SMALL_INT_MIN) {
// check for overflow
return mp_obj_new_int(-val);
} else {
return MP_OBJ_NEW_SMALL_INT(-val);
}
default:
assert(op == MP_UNARY_OP_INVERT);
return MP_OBJ_NEW_SMALL_INT(~val);
}
} else if (op == MP_UNARY_OP_HASH && mp_obj_is_str_or_bytes(arg)) {
// fast path for hashing str/bytes
GET_STR_HASH(arg, h);
if (h == 0) {
GET_STR_DATA_LEN(arg, data, len);
h = qstr_compute_hash(data, len);
}
return MP_OBJ_NEW_SMALL_INT(h);
} else {
const mp_obj_type_t *type = mp_obj_get_type(arg);
if (type->unary_op != NULL) {
mp_obj_t result = type->unary_op(op, arg);
if (result != MP_OBJ_NULL) {
return result;
}
}
// With MP_UNARY_OP_INT, mp_unary_op() becomes a fallback for mp_obj_get_int().
// In this case provide a more focused error message to not confuse, e.g. chr(1.0)
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
if (op == MP_UNARY_OP_INT) {
mp_raise_TypeError("can't convert to int");
} else {
mp_raise_TypeError("unsupported type for operator");
}
} else {
if (op == MP_UNARY_OP_INT) {
mp_raise_msg_varg(&mp_type_TypeError,
"can't convert %s to int", mp_obj_get_type_str(arg));
} else {
mp_raise_msg_varg(&mp_type_TypeError,
"unsupported type for %q: '%s'",
mp_unary_op_method_name[op], mp_obj_get_type_str(arg));
}
}
}
}
mp_obj_t mp_binary_op(mp_binary_op_t op, mp_obj_t lhs, mp_obj_t rhs) {
DEBUG_OP_printf("binary " UINT_FMT " %q %p %p\n", op, mp_binary_op_method_name[op], lhs, rhs);
// TODO correctly distinguish inplace operators for mutable objects
// lookup logic that CPython uses for +=:
// check for implemented +=
// then check for implemented +
// then check for implemented seq.inplace_concat
// then check for implemented seq.concat
// then fail
// note that list does not implement + or +=, so that inplace_concat is reached first for +=
// deal with is
if (op == MP_BINARY_OP_IS) {
return mp_obj_new_bool(lhs == rhs);
}
// deal with == and != for all types
if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
// mp_obj_equal_not_equal supports a bunch of shortcuts
return mp_obj_equal_not_equal(op, lhs, rhs);
}
// deal with exception_match for all types
if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
// rhs must be issubclass(rhs, BaseException)
if (mp_obj_is_exception_type(rhs)) {
if (mp_obj_exception_match(lhs, rhs)) {
return mp_const_true;
} else {
return mp_const_false;
}
} else if (mp_obj_is_type(rhs, &mp_type_tuple)) {
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs);
for (size_t i = 0; i < tuple->len; i++) {
rhs = tuple->items[i];
if (!mp_obj_is_exception_type(rhs)) {
goto unsupported_op;
}
if (mp_obj_exception_match(lhs, rhs)) {
return mp_const_true;
}
}
return mp_const_false;
}
goto unsupported_op;
}
if (mp_obj_is_small_int(lhs)) {
mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
if (mp_obj_is_small_int(rhs)) {
mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
// This is a binary operation: lhs_val op rhs_val
// We need to be careful to handle overflow; see CERT INT32-C
// Operations that can overflow:
// + result always fits in mp_int_t, then handled by SMALL_INT check
// - result always fits in mp_int_t, then handled by SMALL_INT check
// * checked explicitly
// / if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
// % if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
// << checked explicitly
switch (op) {
case MP_BINARY_OP_OR:
case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
case MP_BINARY_OP_XOR:
case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
case MP_BINARY_OP_AND:
case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
case MP_BINARY_OP_LSHIFT:
case MP_BINARY_OP_INPLACE_LSHIFT: {
if (rhs_val < 0) {
// negative shift not allowed
mp_raise_ValueError("negative shift count");
} else if (rhs_val >= (mp_int_t)BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
// left-shift will overflow, so use higher precision integer
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
lhs_val <<= rhs_val;
}
break;
}
case MP_BINARY_OP_RSHIFT:
case MP_BINARY_OP_INPLACE_RSHIFT:
if (rhs_val < 0) {
// negative shift not allowed
mp_raise_ValueError("negative shift count");
} else {
// standard precision is enough for right-shift
if (rhs_val >= (mp_int_t)BITS_PER_WORD) {
// Shifting to big amounts is underfined behavior
// in C and is CPU-dependent; propagate sign bit.
rhs_val = BITS_PER_WORD - 1;
}
lhs_val >>= rhs_val;
}
break;
case MP_BINARY_OP_ADD:
case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
case MP_BINARY_OP_SUBTRACT:
case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
case MP_BINARY_OP_MULTIPLY:
case MP_BINARY_OP_INPLACE_MULTIPLY: {
// If long long type exists and is larger than mp_int_t, then
// we can use the following code to perform overflow-checked multiplication.
// Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
#if 0
// compute result using long long precision
long long res = (long long)lhs_val * (long long)rhs_val;
if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
// result overflowed SMALL_INT, so return higher precision integer
return mp_obj_new_int_from_ll(res);
} else {
// use standard precision
lhs_val = (mp_int_t)res;
}
#endif
if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
// use higher precision
lhs = mp_obj_new_int_from_ll(lhs_val);
goto generic_binary_op;
} else {
// use standard precision
return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
}
}
case MP_BINARY_OP_FLOOR_DIVIDE:
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
if (rhs_val == 0) {
goto zero_division;
}
lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
break;
#if MICROPY_PY_BUILTINS_FLOAT
case MP_BINARY_OP_TRUE_DIVIDE:
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
if (rhs_val == 0) {
goto zero_division;
}
return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
#endif
case MP_BINARY_OP_MODULO:
case MP_BINARY_OP_INPLACE_MODULO: {
if (rhs_val == 0) {
goto zero_division;
}
lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
break;
}
case MP_BINARY_OP_POWER:
case MP_BINARY_OP_INPLACE_POWER:
if (rhs_val < 0) {
#if MICROPY_PY_BUILTINS_FLOAT
return mp_obj_float_binary_op(op, lhs_val, rhs);
#else
mp_raise_ValueError("negative power with no float support");
#endif
} else {
mp_int_t ans = 1;
while (rhs_val > 0) {
if (rhs_val & 1) {
if (mp_small_int_mul_overflow(ans, lhs_val)) {
goto power_overflow;
}
ans *= lhs_val;
}
if (rhs_val == 1) {
break;
}
rhs_val /= 2;
if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
goto power_overflow;
}
lhs_val *= lhs_val;
}
lhs_val = ans;
}
break;
power_overflow:
// use higher precision
lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
goto generic_binary_op;
case MP_BINARY_OP_DIVMOD: {
if (rhs_val == 0) {
goto zero_division;
}
// to reduce stack usage we don't pass a temp array of the 2 items
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val));
tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val));
return MP_OBJ_FROM_PTR(tuple);
}
case MP_BINARY_OP_LESS: return mp_obj_new_bool(lhs_val < rhs_val);
case MP_BINARY_OP_MORE: return mp_obj_new_bool(lhs_val > rhs_val);
case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(lhs_val <= rhs_val);
case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(lhs_val >= rhs_val);
default:
goto unsupported_op;
}
// This is an inlined version of mp_obj_new_int, for speed
if (MP_SMALL_INT_FITS(lhs_val)) {
return MP_OBJ_NEW_SMALL_INT(lhs_val);
} else {
return mp_obj_new_int_from_ll(lhs_val);
}
#if MICROPY_PY_BUILTINS_FLOAT
} else if (mp_obj_is_float(rhs)) {
mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs);
if (res == MP_OBJ_NULL) {
goto unsupported_op;
} else {
return res;
}
#endif
#if MICROPY_PY_BUILTINS_COMPLEX
} else if (mp_obj_is_type(rhs, &mp_type_complex)) {
mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
if (res == MP_OBJ_NULL) {
goto unsupported_op;
} else {
return res;
}
#endif
}
}
// Convert MP_BINARY_OP_IN to MP_BINARY_OP_CONTAINS with swapped args.
if (op == MP_BINARY_OP_IN) {
op = MP_BINARY_OP_CONTAINS;
mp_obj_t temp = lhs;
lhs = rhs;
rhs = temp;
}
// generic binary_op supplied by type
const mp_obj_type_t *type;
generic_binary_op:
type = mp_obj_get_type(lhs);
if (type->binary_op != NULL) {
mp_obj_t result = type->binary_op(op, lhs, rhs);
if (result != MP_OBJ_NULL) {
return result;
}
}
#if MICROPY_PY_REVERSE_SPECIAL_METHODS
if (op >= MP_BINARY_OP_OR && op <= MP_BINARY_OP_POWER) {
mp_obj_t t = rhs;
rhs = lhs;
lhs = t;
op += MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR;
goto generic_binary_op;
} else if (op >= MP_BINARY_OP_REVERSE_OR) {
// Convert __rop__ back to __op__ for error message
mp_obj_t t = rhs;
rhs = lhs;
lhs = t;
op -= MP_BINARY_OP_REVERSE_OR - MP_BINARY_OP_OR;
}
#endif
if (op == MP_BINARY_OP_CONTAINS) {
// If type didn't support containment then explicitly walk the iterator.
// mp_getiter will raise the appropriate exception if lhs is not iterable.
mp_obj_iter_buf_t iter_buf;
mp_obj_t iter = mp_getiter(lhs, &iter_buf);
mp_obj_t next;
while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
if (mp_obj_equal(next, rhs)) {
return mp_const_true;
}
}
return mp_const_false;
}
unsupported_op:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("unsupported type for operator");
} else {
mp_raise_msg_varg(&mp_type_TypeError,
"unsupported types for %q: '%s', '%s'",
mp_binary_op_method_name[op], mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs));
}
zero_division:
mp_raise_msg(&mp_type_ZeroDivisionError, "divide by zero");
}
mp_obj_t mp_call_function_0(mp_obj_t fun) {
return mp_call_function_n_kw(fun, 0, 0, NULL);
}
mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
return mp_call_function_n_kw(fun, 1, 0, &arg);
}
mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
mp_obj_t args[2];
args[0] = arg1;
args[1] = arg2;
return mp_call_function_n_kw(fun, 2, 0, args);
}
// args contains, eg: arg0 arg1 key0 value0 key1 value1
mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// TODO improve this: fun object can specify its type and we parse here the arguments,
// passing to the function arrays of fixed and keyword arguments
DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args);
// get the type
const mp_obj_type_t *type = mp_obj_get_type(fun_in);
// do the call
if (type->call != NULL) {
return type->call(fun_in, n_args, n_kw, args);
}
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("object not callable");
} else {
mp_raise_msg_varg(&mp_type_TypeError,
"'%s' object isn't callable", mp_obj_get_type_str(fun_in));
}
}
// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1)
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
mp_obj_t mp_call_method_n_kw(size_t n_args, size_t n_kw, const mp_obj_t *args) {
DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args);
int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1;
return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
}
// This function only needs to be exposed externally when in stackless mode.
#if !MICROPY_STACKLESS
STATIC
#endif
void mp_call_prepare_args_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) {
mp_obj_t fun = *args++;
mp_obj_t self = MP_OBJ_NULL;
if (have_self) {
self = *args++; // may be MP_OBJ_NULL
}
uint n_args = n_args_n_kw & 0xff;
uint n_kw = (n_args_n_kw >> 8) & 0xff;
mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL
mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL
DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);
// We need to create the following array of objects:
// args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict)
// TODO: optimize one day to avoid constructing new arg array? Will be hard.
// The new args array
mp_obj_t *args2;
uint args2_alloc;
uint args2_len = 0;
// Try to get a hint for the size of the kw_dict
uint kw_dict_len = 0;
if (kw_dict != MP_OBJ_NULL && mp_obj_is_type(kw_dict, &mp_type_dict)) {
kw_dict_len = mp_obj_dict_len(kw_dict);
}
// Extract the pos_seq sequence to the new args array.
// Note that it can be arbitrary iterator.
if (pos_seq == MP_OBJ_NULL) {
// no sequence
// allocate memory for the new array of args
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed pos args
mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
args2_len += n_args;
} else if (mp_obj_is_type(pos_seq, &mp_type_tuple) || mp_obj_is_type(pos_seq, &mp_type_list)) {
// optimise the case of a tuple and list
// get the items
size_t len;
mp_obj_t *items;
mp_obj_get_array(pos_seq, &len, &items);
// allocate memory for the new array of args
args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed and variable position args
mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
args2_len += n_args + len;
} else {
// generic iterator
// allocate memory for the new array of args
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
args2 = mp_nonlocal_alloc(args2_alloc * sizeof(mp_obj_t));
// copy the self
if (self != MP_OBJ_NULL) {
args2[args2_len++] = self;
}
// copy the fixed position args
mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
args2_len += n_args;
// extract the variable position args from the iterator
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(pos_seq, &iter_buf);
mp_obj_t item;
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
if (args2_len >= args2_alloc) {
args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), args2_alloc * 2 * sizeof(mp_obj_t));
args2_alloc *= 2;
}
args2[args2_len++] = item;
}
}
// The size of the args2 array now is the number of positional args.
uint pos_args_len = args2_len;
// Copy the fixed kw args.
mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
args2_len += 2 * n_kw;
// Extract (key,value) pairs from kw_dict dictionary and append to args2.
// Note that it can be arbitrary iterator.
if (kw_dict == MP_OBJ_NULL) {
// pass
} else if (mp_obj_is_type(kw_dict, &mp_type_dict)) {
// dictionary
mp_map_t *map = mp_obj_dict_get_map(kw_dict);
assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
for (size_t i = 0; i < map->alloc; i++) {
if (mp_map_slot_is_filled(map, i)) {
// the key must be a qstr, so intern it if it's a string
mp_obj_t key = map->table[i].key;
if (!mp_obj_is_qstr(key)) {
key = mp_obj_str_intern_checked(key);
}
args2[args2_len++] = key;
args2[args2_len++] = map->table[i].value;
}
}
} else {
// generic mapping:
// - call keys() to get an iterable of all keys in the mapping
// - call __getitem__ for each key to get the corresponding value
// get the keys iterable
mp_obj_t dest[3];
mp_load_method(kw_dict, MP_QSTR_keys, dest);
mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest), NULL);
mp_obj_t key;
while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
// expand size of args array if needed
if (args2_len + 1 >= args2_alloc) {
uint new_alloc = args2_alloc * 2;
if (new_alloc < 4) {
new_alloc = 4;
}
args2 = mp_nonlocal_realloc(args2, args2_alloc * sizeof(mp_obj_t), new_alloc * sizeof(mp_obj_t));
args2_alloc = new_alloc;
}
// the key must be a qstr, so intern it if it's a string
if (!mp_obj_is_qstr(key)) {
key = mp_obj_str_intern_checked(key);
}
// get the value corresponding to the key
mp_load_method(kw_dict, MP_QSTR___getitem__, dest);
dest[2] = key;
mp_obj_t value = mp_call_method_n_kw(1, 0, dest);
// store the key/value pair in the argument array
args2[args2_len++] = key;
args2[args2_len++] = value;
}
}
out_args->fun = fun;
out_args->args = args2;
out_args->n_args = pos_args_len;
out_args->n_kw = (args2_len - pos_args_len) / 2;
out_args->n_alloc = args2_alloc;
}
mp_obj_t mp_call_method_n_kw_var(bool have_self, size_t n_args_n_kw, const mp_obj_t *args) {
mp_call_args_t out_args;
mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args);
mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args);
mp_nonlocal_free(out_args.args, out_args.n_alloc * sizeof(mp_obj_t));
return res;
}
// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_sequence(mp_obj_t seq_in, size_t num, mp_obj_t *items) {
size_t seq_len;
if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) {
mp_obj_t *seq_items;
mp_obj_get_array(seq_in, &seq_len, &seq_items);
if (seq_len < num) {
goto too_short;
} else if (seq_len > num) {
goto too_long;
}
for (size_t i = 0; i < num; i++) {
items[i] = seq_items[num - 1 - i];
}
} else {
mp_obj_iter_buf_t iter_buf;
mp_obj_t iterable = mp_getiter(seq_in, &iter_buf);
for (seq_len = 0; seq_len < num; seq_len++) {
mp_obj_t el = mp_iternext(iterable);
if (el == MP_OBJ_STOP_ITERATION) {
goto too_short;
}
items[num - 1 - seq_len] = el;
}
if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
goto too_long;
}
}
return;
too_short:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_ValueError("wrong number of values to unpack");
} else {
mp_raise_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", (int)seq_len);
}
too_long:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_ValueError("wrong number of values to unpack");
} else {
mp_raise_msg_varg(&mp_type_ValueError, "too many values to unpack (expected %d)", (int)num);
}
}
// unpacked items are stored in reverse order into the array pointed to by items
void mp_unpack_ex(mp_obj_t seq_in, size_t num_in, mp_obj_t *items) {
size_t num_left = num_in & 0xff;
size_t num_right = (num_in >> 8) & 0xff;
DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right);
size_t seq_len;
if (mp_obj_is_type(seq_in, &mp_type_tuple) || mp_obj_is_type(seq_in, &mp_type_list)) {
// Make the seq variable volatile so the compiler keeps a reference to it,
// since if it's a tuple then seq_items points to the interior of the GC cell
// and mp_obj_new_list may trigger a GC which doesn't trace this and reclaims seq.
volatile mp_obj_t seq = seq_in;
mp_obj_t *seq_items;
mp_obj_get_array(seq, &seq_len, &seq_items);
if (seq_len < num_left + num_right) {
goto too_short;
}
for (size_t i = 0; i < num_right; i++) {
items[i] = seq_items[seq_len - 1 - i];
}
items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
for (size_t i = 0; i < num_left; i++) {
items[num_right + 1 + i] = seq_items[num_left - 1 - i];
}
seq = MP_OBJ_NULL;
} else {
// Generic iterable; this gets a bit messy: we unpack known left length to the
// items destination array, then the rest to a dynamically created list. Once the
// iterable is exhausted, we take from this list for the right part of the items.
// TODO Improve to waste less memory in the dynamically created list.
mp_obj_t iterable = mp_getiter(seq_in, NULL);
mp_obj_t item;
for (seq_len = 0; seq_len < num_left; seq_len++) {
item = mp_iternext(iterable);
if (item == MP_OBJ_STOP_ITERATION) {
goto too_short;
}
items[num_left + num_right + 1 - 1 - seq_len] = item;
}
mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL));
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item);
}
if (rest->len < num_right) {
goto too_short;
}
items[num_right] = MP_OBJ_FROM_PTR(rest);
for (size_t i = 0; i < num_right; i++) {
items[num_right - 1 - i] = rest->items[rest->len - num_right + i];
}
mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right);
}
return;
too_short:
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_ValueError("wrong number of values to unpack");
} else {
mp_raise_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", (int)seq_len);
}
}
mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
// use load_method
mp_obj_t dest[2];
mp_load_method(base, attr, dest);
if (dest[1] == MP_OBJ_NULL) {
// load_method returned just a normal attribute
return dest[0];
} else {
// load_method returned a method, so build a bound method object
return mp_obj_new_bound_meth(dest[0], dest[1]);
}
}
#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
// The following "checked fun" type is local to the mp_convert_member_lookup
// function, and serves to check that the first argument to a builtin function
// has the correct type.
typedef struct _mp_obj_checked_fun_t {
mp_obj_base_t base;
const mp_obj_type_t *type;
mp_obj_t fun;
} mp_obj_checked_fun_t;
STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in);
if (n_args > 0) {
const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]);
if (arg0_type != self->type) {
if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) {
mp_raise_TypeError("argument has wrong type");
} else {
mp_raise_msg_varg(&mp_type_TypeError,
"argument should be a '%q' not a '%q'", self->type->name, arg0_type->name);
}
}
}
return mp_call_function_n_kw(self->fun, n_args, n_kw, args);
}
STATIC const mp_obj_type_t mp_type_checked_fun = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = checked_fun_call,
};
STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) {
mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t);
o->base.type = &mp_type_checked_fun;
o->type = type;
o->fun = fun;
return MP_OBJ_FROM_PTR(o);
}
#endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
// Given a member that was extracted from an instance, convert it correctly
// and put the result in the dest[] array for a possible method call.
// Conversion means dealing with static/class methods, callables, and values.
// see http://docs.python.org/3/howto/descriptor.html
void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) {
if (mp_obj_is_type(member, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun;
} else if (mp_obj_is_type(member, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
// this type should be the type of the original instance, not the base
// type (which is what is passed in the 'type' argument to this function)
if (self != MP_OBJ_NULL) {
type = mp_obj_get_type(self);
}
dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun;
dest[1] = MP_OBJ_FROM_PTR(type);
} else if (mp_obj_is_type(member, &mp_type_type)) {
// Don't try to bind types (even though they're callable)
dest[0] = member;
} else if (mp_obj_is_fun(member)
|| (mp_obj_is_obj(member)
&& (((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_closure
|| ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_generator))) {
// only functions, closures and generators objects can be bound to self
#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
const mp_obj_type_t *m_type = ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type;
if (self == MP_OBJ_NULL
&& (m_type == &mp_type_fun_builtin_0
|| m_type == &mp_type_fun_builtin_1
|| m_type == &mp_type_fun_builtin_2
|| m_type == &mp_type_fun_builtin_3
|| m_type == &mp_type_fun_builtin_var)
&& type != &mp_type_object) {
// we extracted a builtin method without a first argument, so we must
// wrap this function in a type checker
// Note that object will do its own checking so shouldn't be wrapped.
dest[0] = mp_obj_new_checked_fun(type, member);
} else
#endif
{
// return a bound method, with self being this object
dest[0] = member;
dest[1] = self;
}
} else {
// class member is a value, so just return that value
dest[0] = member;
}
}
// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
// method attribute found, returns: dest[0] == <method>, dest[1] == <self>
void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) {
// clear output to indicate no attribute/method found yet
dest[0] = MP_OBJ_NULL;
dest[1] = MP_OBJ_NULL;
// get the type
const mp_obj_type_t *type = mp_obj_get_type(obj);
// look for built-in names
#if MICROPY_CPYTHON_COMPAT
if (attr == MP_QSTR___class__) {
// a.__class__ is equivalent to type(a)
dest[0] = MP_OBJ_FROM_PTR(type);
return;
}
#endif
if (attr == MP_QSTR___next__ && type->iternext != NULL) {
dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj);
dest[1] = obj;
} else if (type->attr != NULL) {
// this type can do its own load, so call it
type->attr(obj, attr, dest);
} else if (type->locals_dict != NULL) {
// generic method lookup
// this is a lookup in the object (ie not class or type)
assert(type->locals_dict->base.type == &mp_type_dict); // MicroPython restriction, for now
mp_map_t *locals_map = &type->locals_dict->map;
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
mp_convert_member_lookup(obj, type, elem->value, dest);
}
}
}
void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
mp_load_method_maybe(base, attr, dest);
if (dest[0] == MP_OBJ_NULL) {
// no attribute/method called attr
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_msg(&mp_type_AttributeError, "no such attribute");
} else {
// following CPython, we give a more detailed error message for type objects
if (mp_obj_is_type(base, &mp_type_type)) {
mp_raise_msg_varg(&mp_type_AttributeError,
"type object '%q' has no attribute '%q'",
((mp_obj_type_t*)MP_OBJ_TO_PTR(base))->name, attr);
} else {
mp_raise_msg_varg(&mp_type_AttributeError,
"'%s' object has no attribute '%q'",
mp_obj_get_type_str(base), attr);
}
}
}
}
// Acts like mp_load_method_maybe but catches AttributeError, and all other exceptions if requested
void mp_load_method_protected(mp_obj_t obj, qstr attr, mp_obj_t *dest, bool catch_all_exc) {
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_load_method_maybe(obj, attr, dest);
nlr_pop();
} else {
if (!catch_all_exc
&& !mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t*)nlr.ret_val)->type),
MP_OBJ_FROM_PTR(&mp_type_AttributeError))) {
// Re-raise the exception
nlr_raise(MP_OBJ_FROM_PTR(nlr.ret_val));
}
}
}
void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
const mp_obj_type_t *type = mp_obj_get_type(base);
if (type->attr != NULL) {
mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value};
type->attr(base, attr, dest);
if (dest[0] == MP_OBJ_NULL) {
// success
return;
}
}
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_msg(&mp_type_AttributeError, "no such attribute");
} else {
mp_raise_msg_varg(&mp_type_AttributeError,
"'%s' object has no attribute '%q'",
mp_obj_get_type_str(base), attr);
}
}
mp_obj_t mp_getiter(mp_obj_t o_in, mp_obj_iter_buf_t *iter_buf) {
assert(o_in);
const mp_obj_type_t *type = mp_obj_get_type(o_in);
// Check for native getiter which is the identity. We handle this case explicitly
// so we don't unnecessarily allocate any RAM for the iter_buf, which won't be used.
if (type->getiter == mp_identity_getiter) {
return o_in;
}
// check for native getiter (corresponds to __iter__)
if (type->getiter != NULL) {
if (iter_buf == NULL && type->getiter != mp_obj_instance_getiter) {
// if caller did not provide a buffer then allocate one on the heap
// mp_obj_instance_getiter is special, it will allocate only if needed
iter_buf = m_new_obj(mp_obj_iter_buf_t);
}
mp_obj_t iter = type->getiter(o_in, iter_buf);
if (iter != MP_OBJ_NULL) {
return iter;
}
}
// check for __getitem__
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __getitem__ exists, create and return an iterator
if (iter_buf == NULL) {
// if caller did not provide a buffer then allocate one on the heap
iter_buf = m_new_obj(mp_obj_iter_buf_t);
}
return mp_obj_new_getitem_iter(dest, iter_buf);
}
// object not iterable
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("object not iterable");
} else {
mp_raise_msg_varg(&mp_type_TypeError,
"'%s' object isn't iterable", mp_obj_get_type_str(o_in));
}
}
// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
// may also raise StopIteration()
mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
const mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->iternext != NULL) {
return type->iternext(o_in);
} else {
// check for __next__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __next__ exists, call it and return its result
return mp_call_method_n_kw(0, 0, dest);
} else {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("object not an iterator");
} else {
mp_raise_msg_varg(&mp_type_TypeError,
"'%s' object isn't an iterator", mp_obj_get_type_str(o_in));
}
}
}
}
// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
// may raise other exceptions
mp_obj_t mp_iternext(mp_obj_t o_in) {
MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext
const mp_obj_type_t *type = mp_obj_get_type(o_in);
if (type->iternext != NULL) {
return type->iternext(o_in);
} else {
// check for __next__ method
mp_obj_t dest[2];
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
// __next__ exists, call it and return its result
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
nlr_pop();
return ret;
} else {
if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t*)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
return MP_OBJ_STOP_ITERATION;
} else {
nlr_jump(nlr.ret_val);
}
}
} else {
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
mp_raise_TypeError("object not an iterator");
} else {
mp_raise_msg_varg(&mp_type_TypeError,
"'%s' object isn't an iterator", mp_obj_get_type_str(o_in));
}
}
}
}
// TODO: Unclear what to do with StopIterarion exception here.
mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
const mp_obj_type_t *type = mp_obj_get_type(self_in);
if (type == &mp_type_gen_instance) {
return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
}
if (type->iternext != NULL && send_value == mp_const_none) {
mp_obj_t ret = type->iternext(self_in);
*ret_val = ret;
if (ret != MP_OBJ_STOP_ITERATION) {
return MP_VM_RETURN_YIELD;
} else {
// Emulate raise StopIteration()
// Special case, handled in vm.c
return MP_VM_RETURN_NORMAL;
}
}
mp_obj_t dest[3]; // Reserve slot for send() arg
// Python instance iterator protocol
if (send_value == mp_const_none) {
mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
if (dest[0] != MP_OBJ_NULL) {
*ret_val = mp_call_method_n_kw(0, 0, dest);
return MP_VM_RETURN_YIELD;
}
}
// Either python instance generator protocol, or native object
// generator protocol.
if (send_value != MP_OBJ_NULL) {
mp_load_method(self_in, MP_QSTR_send, dest);
dest[2] = send_value;
*ret_val = mp_call_method_n_kw(1, 0, dest);
return MP_VM_RETURN_YIELD;
}
assert(throw_value != MP_OBJ_NULL);
{
if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) {
mp_load_method_maybe(self_in, MP_QSTR_close, dest);
if (dest[0] != MP_OBJ_NULL) {
// TODO: Exceptions raised in close() are not propagated,
// printed to sys.stderr
*ret_val = mp_call_method_n_kw(0, 0, dest);
// We assume one can't "yield" from close()
return MP_VM_RETURN_NORMAL;
}
} else {
mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
if (dest[0] != MP_OBJ_NULL) {
dest[2] = throw_value;
*ret_val = mp_call_method_n_kw(1, 0, dest);
// If .throw() method returned, we assume it's value to yield
// - any exception would be thrown with nlr_raise().
return MP_VM_RETURN_YIELD;
}
}
// If there's nowhere to throw exception into, then we assume that object
// is just incapable to handle it, so any exception thrown into it
// will be propagated up. This behavior is approved by test_pep380.py
// test_delegation_of_close_to_non_generator(),
// test_delegating_throw_to_non_generator()
if (mp_obj_exception_match(throw_value, MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
// PEP479: if StopIteration is raised inside a generator it is replaced with RuntimeError
*ret_val = mp_obj_new_exception_msg(&mp_type_RuntimeError, "generator raised StopIteration");
} else {
*ret_val = mp_make_raise_obj(throw_value);
}
return MP_VM_RETURN_EXCEPTION;
}
}
mp_obj_t mp_make_raise_obj(mp_obj_t o) {
DEBUG_printf("raise %p\n", o);
if (mp_obj_is_exception_type(o)) {
// o is an exception type (it is derived from BaseException (or is BaseException))
// create and return a new exception instance by calling o
// TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
// could have const instances in ROM which we return here instead
return mp_call_function_n_kw(o, 0, 0, NULL);
} else if (mp_obj_is_exception_instance(o)) {
// o is an instance of an exception, so use it as the exception
return o;
} else {
// o cannot be used as an exception, so return a type error (which will be raised by the caller)
return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
}
}
mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level));
// build args array
mp_obj_t args[5];
args[0] = MP_OBJ_NEW_QSTR(name);
args[1] = mp_const_none; // TODO should be globals
args[2] = mp_const_none; // TODO should be locals
args[3] = fromlist;
args[4] = level;
#if MICROPY_CAN_OVERRIDE_BUILTINS
// Lookup __import__ and call that if it exists
mp_obj_dict_t *bo_dict = MP_STATE_VM(mp_module_builtins_override_dict);
if (bo_dict != NULL) {
mp_map_elem_t *import = mp_map_lookup(&bo_dict->map, MP_OBJ_NEW_QSTR(MP_QSTR___import__), MP_MAP_LOOKUP);
if (import != NULL) {
return mp_call_function_n_kw(import->value, 5, 0, args);
}
}
#endif
return mp_builtin___import__(5, args);
}
mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
DEBUG_printf("import from %p %s\n", module, qstr_str(name));
mp_obj_t dest[2];
mp_load_method_maybe(module, name, dest);
if (dest[1] != MP_OBJ_NULL) {
// Hopefully we can't import bound method from an object
import_error:
mp_raise_msg_varg(&mp_type_ImportError, "cannot import name %q", name);
}
if (dest[0] != MP_OBJ_NULL) {
return dest[0];
}
#if MICROPY_ENABLE_EXTERNAL_IMPORT
// See if it's a package, then can try FS import
if (!mp_obj_is_package(module)) {
goto import_error;
}
mp_load_method_maybe(module, MP_QSTR___name__, dest);
size_t pkg_name_len;
const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);
const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
char *dot_name = mp_local_alloc(dot_name_len);
memcpy(dot_name, pkg_name, pkg_name_len);
dot_name[pkg_name_len] = '.';
memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);
mp_local_free(dot_name);
// For fromlist, pass sentinel "non empty" value to force returning of leaf module
return mp_import_name(dot_name_q, mp_const_true, MP_OBJ_NEW_SMALL_INT(0));
#else
// Package import not supported with external imports disabled
goto import_error;
#endif
}
void mp_import_all(mp_obj_t module) {
DEBUG_printf("import all %p\n", module);
// TODO: Support __all__
mp_map_t *map = &mp_obj_module_get_globals(module)->map;
for (size_t i = 0; i < map->alloc; i++) {
if (mp_map_slot_is_filled(map, i)) {
// Entry in module global scope may be generated programmatically
// (and thus be not a qstr for longer names). Avoid turning it in
// qstr if it has '_' and was used exactly to save memory.
const char *name = mp_obj_str_get_str(map->table[i].key);
if (*name != '_') {
qstr qname = mp_obj_str_get_qstr(map->table[i].key);
mp_store_name(qname, map->table[i].value);
}
}
}
}
#if MICROPY_ENABLE_COMPILER
mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) {
// save context
mp_obj_dict_t *volatile old_globals = mp_globals_get();
mp_obj_dict_t *volatile old_locals = mp_locals_get();
// set new context
mp_globals_set(globals);
mp_locals_set(locals);
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
qstr source_name = lex->source_name;
mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind);
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, false);
mp_obj_t ret;
if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) {
// for compile only, return value is the module function
ret = module_fun;
} else {
// execute module function and get return value
ret = mp_call_function_0(module_fun);
}
// finish nlr block, restore context and return value
nlr_pop();
mp_globals_set(old_globals);
mp_locals_set(old_locals);
return ret;
} else {
// exception; restore context and re-raise same exception
mp_globals_set(old_globals);
mp_locals_set(old_locals);
nlr_jump(nlr.ret_val);
}
}
#endif // MICROPY_ENABLE_COMPILER
NORETURN void m_malloc_fail(size_t num_bytes) {
DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes);
#if MICROPY_ENABLE_GC
if (gc_is_locked()) {
mp_raise_msg(&mp_type_MemoryError, "memory allocation failed, heap is locked");
}
#endif
mp_raise_msg_varg(&mp_type_MemoryError,
"memory allocation failed, allocating %u bytes", (uint)num_bytes);
}
NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, const char *msg) {
if (msg == NULL) {
nlr_raise(mp_obj_new_exception(exc_type));
} else {
nlr_raise(mp_obj_new_exception_msg(exc_type, msg));
}
}
NORETURN void mp_raise_msg_varg(const mp_obj_type_t *exc_type, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
mp_obj_t exc = mp_obj_new_exception_msg_vlist(exc_type, fmt, args);
va_end(args);
nlr_raise(exc);
}
NORETURN void mp_raise_ValueError(const char *msg) {
mp_raise_msg(&mp_type_ValueError, msg);
}
NORETURN void mp_raise_TypeError(const char *msg) {
mp_raise_msg(&mp_type_TypeError, msg);
}
NORETURN void mp_raise_OSError(int errno_) {
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_)));
}
NORETURN void mp_raise_NotImplementedError(const char *msg) {
mp_raise_msg(&mp_type_NotImplementedError, msg);
}
#if MICROPY_STACK_CHECK || MICROPY_ENABLE_PYSTACK
NORETURN void mp_raise_recursion_depth(void) {
nlr_raise(mp_obj_new_exception_arg1(&mp_type_RuntimeError,
MP_OBJ_NEW_QSTR(MP_QSTR_maximum_space_recursion_space_depth_space_exceeded)));
}
#endif