micropython/ports/samd/machine_adc.c

277 lines
11 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Philipp Ebensberger
* Copyright (c) 2022 Robert Hammelrath
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "sam.h"
#include "pin_af.h"
#include "modmachine.h"
typedef struct _machine_adc_obj_t {
mp_obj_base_t base;
adc_config_t adc_config;
uint8_t id;
uint8_t avg;
uint8_t bits;
uint8_t vref;
} machine_adc_obj_t;
#define DEFAULT_ADC_BITS 12
#define DEFAULT_ADC_AVG 16
#if defined(MCU_SAMD21)
static uint8_t adc_vref_table[] = {
ADC_REFCTRL_REFSEL_INT1V_Val, ADC_REFCTRL_REFSEL_INTVCC0_Val,
ADC_REFCTRL_REFSEL_INTVCC1_Val, ADC_REFCTRL_REFSEL_AREFA_Val, ADC_REFCTRL_REFSEL_AREFB_Val
};
#if MICROPY_HW_ADC_VREF
#define DEFAULT_ADC_VREF MICROPY_HW_ADC_VREF
#else
#define DEFAULT_ADC_VREF (3)
#endif
#define ADC_EVSYS_CHANNEL 0
#elif defined(MCU_SAMD51)
static uint8_t adc_vref_table[] = {
ADC_REFCTRL_REFSEL_INTREF_Val, ADC_REFCTRL_REFSEL_INTVCC1_Val,
ADC_REFCTRL_REFSEL_INTVCC0_Val, ADC_REFCTRL_REFSEL_AREFA_Val,
ADC_REFCTRL_REFSEL_AREFB_Val, ADC_REFCTRL_REFSEL_AREFC_Val
};
#if MICROPY_HW_ADC_VREF
#define DEFAULT_ADC_VREF MICROPY_HW_ADC_VREF
#else
#define DEFAULT_ADC_VREF (3)
#endif
#endif // defined(MCU_SAMD21)
Adc *const adc_bases[] = ADC_INSTS;
uint32_t busy_flags = 0;
bool init_flags[2] = {false, false};
static void adc_init(machine_adc_obj_t *self);
static uint8_t resolution[] = {
ADC_CTRLB_RESSEL_8BIT_Val, ADC_CTRLB_RESSEL_10BIT_Val, ADC_CTRLB_RESSEL_12BIT_Val
};
// Calculate the floor value of log2(n)
mp_int_t log2i(mp_int_t num) {
mp_int_t res = 0;
for (; num > 1; num >>= 1) {
res += 1;
}
return res;
}
STATIC void adc_obj_print(const mp_print_t *print, mp_obj_t o, mp_print_kind_t kind) {
(void)kind;
machine_adc_obj_t *self = MP_OBJ_TO_PTR(o);
mp_printf(print, "ADC(%s, device=%u, channel=%u, bits=%u, average=%u, vref=%d)",
pin_name(self->id), self->adc_config.device,
self->adc_config.channel, self->bits, 1 << self->avg, self->vref);
}
STATIC mp_obj_t adc_obj_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
enum { ARG_id, ARG_bits, ARG_average, ARG_vref };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = DEFAULT_ADC_BITS} },
{ MP_QSTR_average, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_ADC_AVG} },
{ MP_QSTR_vref, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_ADC_VREF} },
};
// Parse the arguments.
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// Unpack and check, whether the pin has ADC capability
int id = mp_hal_get_pin_obj(args[ARG_id].u_obj);
adc_config_t adc_config = get_adc_config(id, busy_flags);
// Now that we have a valid device and channel, create and populate the ADC instance
machine_adc_obj_t *self = mp_obj_malloc(machine_adc_obj_t, &machine_adc_type);
self->id = id;
self->adc_config = adc_config;
self->bits = DEFAULT_ADC_BITS;
uint16_t bits = args[ARG_bits].u_int;
if (bits >= 8 && bits <= 12) {
self->bits = bits;
}
uint32_t avg = log2i(args[ARG_average].u_int);
self->avg = (avg <= 10 ? avg : 10);
uint8_t vref = args[ARG_vref].u_int;
if (0 <= vref && vref < sizeof(adc_vref_table)) {
self->vref = vref;
}
// flag the device/channel as being in use.
busy_flags |= (1 << (self->adc_config.device * 16 + self->adc_config.channel));
init_flags[self->adc_config.device] = false;
adc_init(self);
return MP_OBJ_FROM_PTR(self);
}
// read_u16()
STATIC mp_obj_t machine_adc_read_u16(mp_obj_t self_in) {
machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in);
Adc *adc = adc_bases[self->adc_config.device];
// Set the reference voltage. Default: external AREFA.
adc->REFCTRL.reg = adc_vref_table[self->vref];
// Set Input channel and resolution
// Select the pin as positive input and gnd as negative input reference, non-diff mode by default
adc->INPUTCTRL.reg = ADC_INPUTCTRL_MUXNEG_GND | self->adc_config.channel;
// set resolution. Scale 8-16 to 0 - 4 for table access.
adc->CTRLB.bit.RESSEL = resolution[(self->bits - 8) / 2];
// Measure input voltage
adc->SWTRIG.bit.START = 1;
while (adc->INTFLAG.bit.RESRDY == 0) {
}
// Get and return the result
return MP_OBJ_NEW_SMALL_INT(adc->RESULT.reg * (65536 / (1 << self->bits)));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_adc_read_u16_obj, machine_adc_read_u16);
// deinit() : release the ADC channel
STATIC mp_obj_t machine_adc_deinit(mp_obj_t self_in) {
machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in);
busy_flags &= ~((1 << (self->adc_config.device * 16 + self->adc_config.channel)));
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_adc_deinit_obj, machine_adc_deinit);
void adc_deinit_all(void) {
busy_flags = 0;
init_flags[0] = 0;
init_flags[1] = 0;
}
STATIC const mp_rom_map_elem_t adc_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_read_u16), MP_ROM_PTR(&machine_adc_read_u16_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_adc_deinit_obj) },
};
STATIC MP_DEFINE_CONST_DICT(adc_locals_dict, adc_locals_dict_table);
MP_DEFINE_CONST_OBJ_TYPE(
machine_adc_type,
MP_QSTR_ADC,
MP_TYPE_FLAG_NONE,
make_new, adc_obj_make_new,
print, adc_obj_print,
locals_dict, &adc_locals_dict
);
static void adc_init(machine_adc_obj_t *self) {
// ADC & clock init is done only once per ADC
if (init_flags[self->adc_config.device] == false) {
Adc *adc = adc_bases[self->adc_config.device];
init_flags[self->adc_config.device] = true;
#if defined(MCU_SAMD21)
// Configuration SAMD21
// Enable APBD clocks and PCHCTRL clocks; GCLK2 at 48 MHz
PM->APBCMASK.reg |= PM_APBCMASK_ADC;
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | GCLK_CLKCTRL_ID_ADC;
while (GCLK->STATUS.bit.SYNCBUSY) {
}
// Reset ADC registers
adc->CTRLA.bit.SWRST = 1;
while (adc->CTRLA.bit.SWRST) {
}
// Get the calibration data
uint32_t bias = (*((uint32_t *)ADC_FUSES_BIASCAL_ADDR) & ADC_FUSES_BIASCAL_Msk) >> ADC_FUSES_BIASCAL_Pos;
uint32_t linearity = (*((uint32_t *)ADC_FUSES_LINEARITY_0_ADDR) & ADC_FUSES_LINEARITY_0_Msk) >> ADC_FUSES_LINEARITY_0_Pos;
linearity |= ((*((uint32_t *)ADC_FUSES_LINEARITY_1_ADDR) & ADC_FUSES_LINEARITY_1_Msk) >> ADC_FUSES_LINEARITY_1_Pos) << 5;
/* Write the calibration data. */
ADC->CALIB.reg = ADC_CALIB_BIAS_CAL(bias) | ADC_CALIB_LINEARITY_CAL(linearity);
// Divide 48MHz clock by 32 to obtain 1.5 MHz clock to adc
adc->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32;
// Select external AREFA as reference voltage.
adc->REFCTRL.reg = adc_vref_table[self->vref];
// Average: Accumulate samples and scale them down accordingly
adc->AVGCTRL.reg = self->avg | ADC_AVGCTRL_ADJRES(self->avg);
// Enable ADC and wait to be ready
adc->CTRLA.bit.ENABLE = 1;
while (adc->STATUS.bit.SYNCBUSY) {
}
#elif defined(MCU_SAMD51)
// Configuration SAMD51
// Enable APBD clocks and PCHCTRL clocks; GCLK2 at 48 MHz
if (self->adc_config.device == 0) {
GCLK->PCHCTRL[ADC0_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN;
MCLK->APBDMASK.bit.ADC0_ = 1;
} else {
GCLK->PCHCTRL[ADC1_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN;
MCLK->APBDMASK.bit.ADC1_ = 1;
}
// Reset ADC registers
adc->CTRLA.bit.SWRST = 1;
while (adc->CTRLA.bit.SWRST) {
}
// Get the calibration data
uint32_t biascomp;
uint32_t biasr2r;
uint32_t biasrefbuf;
if (self->adc_config.device == 0) {
biascomp = (*((uint32_t *)ADC0_FUSES_BIASCOMP_ADDR) & ADC0_FUSES_BIASCOMP_Msk) >> ADC0_FUSES_BIASCOMP_Pos;
biasr2r = (*((uint32_t *)ADC0_FUSES_BIASR2R_ADDR) & ADC0_FUSES_BIASR2R_Msk) >> ADC0_FUSES_BIASR2R_Pos;
biasrefbuf = (*((uint32_t *)ADC0_FUSES_BIASREFBUF_ADDR) & ADC0_FUSES_BIASREFBUF_Msk) >> ADC0_FUSES_BIASREFBUF_Pos;
} else {
biascomp = (*((uint32_t *)ADC1_FUSES_BIASCOMP_ADDR) & ADC1_FUSES_BIASCOMP_Msk) >> ADC1_FUSES_BIASCOMP_Pos;
biasr2r = (*((uint32_t *)ADC1_FUSES_BIASR2R_ADDR) & ADC1_FUSES_BIASR2R_Msk) >> ADC1_FUSES_BIASR2R_Pos;
biasrefbuf = (*((uint32_t *)ADC1_FUSES_BIASREFBUF_ADDR) & ADC1_FUSES_BIASREFBUF_Msk) >> ADC1_FUSES_BIASREFBUF_Pos;
}
/* Write the calibration data. */
adc->CALIB.reg = ADC_CALIB_BIASCOMP(biascomp) | ADC_CALIB_BIASR2R(biasr2r) | ADC_CALIB_BIASREFBUF(biasrefbuf);
// Divide 48MHz clock by 32 to obtain 1.5 MHz clock to adc
adc->CTRLA.reg = ADC_CTRLA_PRESCALER_DIV32;
// Set the reference voltage. Default: external AREFA.
adc->REFCTRL.reg = adc_vref_table[self->vref];
// Average: Accumulate samples and scale them down accordingly
adc->AVGCTRL.reg = self->avg | ADC_AVGCTRL_ADJRES(self->avg);
// Enable ADC and wait to be ready
adc->CTRLA.bit.ENABLE = 1;
while (adc->SYNCBUSY.bit.ENABLE) {
}
#endif
}
// Set the port as given in self->id as ADC
mp_hal_set_pin_mux(self->id, ALT_FCT_ADC);
}