micropython/py/objfun.c

503 lines
18 KiB
C

#include <stdbool.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "objtuple.h"
#include "runtime0.h"
#include "runtime.h"
#include "bc.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#else // don't print debugging info
#define DEBUG_printf(...) (void)0
#endif
/******************************************************************************/
/* native functions */
// mp_obj_fun_native_t defined in obj.h
STATIC void check_nargs(mp_obj_fun_native_t *self, int n_args, int n_kw) {
mp_check_nargs(n_args, self->n_args_min, self->n_args_max, n_kw, self->is_kw);
}
void mp_check_nargs(int n_args, machine_uint_t n_args_min, machine_uint_t n_args_max, int n_kw, bool is_kw) {
if (n_kw && !is_kw) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError,
"function does not take keyword arguments"));
}
if (n_args_min == n_args_max) {
if (n_args != n_args_min) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function takes %d positional arguments but %d were given",
n_args_min, n_args));
}
} else {
if (n_args < n_args_min) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"<fun name>() missing %d required positional arguments: <list of names of params>",
n_args_min - n_args));
} else if (n_args > n_args_max) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"<fun name> expected at most %d arguments, got %d",
n_args_max, n_args));
}
}
}
STATIC mp_obj_t fun_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
switch (op) {
case MP_BINARY_OP_EQUAL:
// These objects can be equal only if it's the same underlying structure,
// we don't even need to check for 2nd arg type.
return MP_BOOL(lhs_in == rhs_in);
}
return NULL;
}
STATIC mp_obj_t fun_native_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_native));
mp_obj_fun_native_t *self = self_in;
// check number of arguments
check_nargs(self, n_args, n_kw);
if (self->is_kw) {
// function allows keywords
// we create a map directly from the given args array
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
return ((mp_fun_kw_t)self->fun)(n_args, args, &kw_args);
} else if (self->n_args_min <= 3 && self->n_args_min == self->n_args_max) {
// function requires a fixed number of arguments
// dispatch function call
switch (self->n_args_min) {
case 0:
return ((mp_fun_0_t)self->fun)();
case 1:
return ((mp_fun_1_t)self->fun)(args[0]);
case 2:
return ((mp_fun_2_t)self->fun)(args[0], args[1]);
case 3:
return ((mp_fun_3_t)self->fun)(args[0], args[1], args[2]);
default:
assert(0);
return mp_const_none;
}
} else {
// function takes a variable number of arguments, but no keywords
return ((mp_fun_var_t)self->fun)(n_args, args);
}
}
const mp_obj_type_t mp_type_fun_native = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_native_call,
.binary_op = fun_binary_op,
};
// fun must have the correct signature for n_args fixed arguments
mp_obj_t mp_make_function_n(int n_args, void *fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &mp_type_fun_native;
o->is_kw = false;
o->n_args_min = n_args;
o->n_args_max = n_args;
o->fun = fun;
return o;
}
mp_obj_t mp_make_function_var(int n_args_min, mp_fun_var_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &mp_type_fun_native;
o->is_kw = false;
o->n_args_min = n_args_min;
o->n_args_max = MP_OBJ_FUN_ARGS_MAX;
o->fun = fun;
return o;
}
// min and max are inclusive
mp_obj_t mp_make_function_var_between(int n_args_min, int n_args_max, mp_fun_var_t fun) {
mp_obj_fun_native_t *o = m_new_obj(mp_obj_fun_native_t);
o->base.type = &mp_type_fun_native;
o->is_kw = false;
o->n_args_min = n_args_min;
o->n_args_max = n_args_max;
o->fun = fun;
return o;
}
/******************************************************************************/
/* byte code functions */
typedef struct _mp_obj_fun_bc_t {
mp_obj_base_t base;
mp_obj_dict_t *globals; // the context within which this function was defined
machine_uint_t n_args : 15; // number of arguments this function takes
machine_uint_t n_def_args : 15; // number of default arguments
machine_uint_t takes_var_args : 1; // set if this function takes variable args
machine_uint_t takes_kw_args : 1; // set if this function takes keyword args
const byte *bytecode; // bytecode for the function
qstr *args; // argument names (needed to resolve positional args passed as keywords)
mp_obj_t extra_args[]; // values of default args (if any), plus a slot at the end for var args and/or kw args (if it takes them)
} mp_obj_fun_bc_t;
#if DEBUG_PRINT
STATIC void dump_args(const mp_obj_t *a, int sz) {
DEBUG_printf("%p: ", a);
for (int i = 0; i < sz; i++) {
DEBUG_printf("%p ", a[i]);
}
DEBUG_printf("\n");
}
#else
#define dump_args(...) (void)0
#endif
// If it's possible to call a function without allocating new argument array,
// this function returns true, together with pointers to 2 subarrays to be used
// as arguments. Otherwise, it returns false. It is expected that this fucntion
// will be accompanied by another, mp_obj_fun_prepare_full_args(), which will
// instead take pointer to full-length out-array, and will fill it in. Rationale
// being that a caller can try this function and if it succeeds, the function call
// can be made without allocating extra memory. Otherwise, caller can allocate memory
// and try "full" function. These functions are expected to be refactoring of
// code in fun_bc_call() and evenrually replace it.
bool mp_obj_fun_prepare_simple_args(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args,
uint *out_args1_len, const mp_obj_t **out_args1, uint *out_args2_len, const mp_obj_t **out_args2) {
mp_obj_fun_bc_t *self = self_in;
assert(n_kw == 0);
assert(self->takes_var_args == 0);
assert(self->takes_kw_args == 0);
mp_obj_t *extra_args = self->extra_args + self->n_def_args;
uint n_extra_args = 0;
if (n_args > self->n_args) {
goto arg_error;
} else {
extra_args -= self->n_args - n_args;
n_extra_args += self->n_args - n_args;
}
*out_args1 = args;
*out_args1_len = n_args;
*out_args2 = extra_args;
*out_args2_len = n_extra_args;
return true;
arg_error:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args));
}
STATIC mp_obj_t fun_bc_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
DEBUG_printf("Input n_args: %d, n_kw: %d\n", n_args, n_kw);
DEBUG_printf("Input pos args: ");
dump_args(args, n_args);
DEBUG_printf("Input kw args: ");
dump_args(args + n_args, n_kw * 2);
mp_obj_fun_bc_t *self = self_in;
DEBUG_printf("Func n_def_args: %d\n", self->n_def_args);
const mp_obj_t *kwargs = args + n_args;
mp_obj_t *extra_args = self->extra_args + self->n_def_args;
uint n_extra_args = 0;
// check positional arguments
if (n_args > self->n_args) {
// given more than enough arguments
if (!self->takes_var_args) {
goto arg_error;
}
// put extra arguments in varargs tuple
*extra_args = mp_obj_new_tuple(n_args - self->n_args, args + self->n_args);
n_extra_args = 1;
n_args = self->n_args;
} else {
if (self->takes_var_args) {
DEBUG_printf("passing empty tuple as *args\n");
*extra_args = mp_const_empty_tuple;
n_extra_args = 1;
}
// Apply processing and check below only if we don't have kwargs,
// otherwise, kw handling code below has own extensive checks.
if (n_kw == 0) {
if (n_args >= self->n_args - self->n_def_args) {
// given enough arguments, but may need to use some default arguments
extra_args -= self->n_args - n_args;
n_extra_args += self->n_args - n_args;
} else {
goto arg_error;
}
}
}
// check keyword arguments
if (n_kw != 0) {
// We cannot use dynamically-sized array here, because GCC indeed
// deallocates it on leaving defining scope (unlike most static stack allocs).
// So, we have 2 choices: allocate it unconditionally at the top of function
// (wastes stack), or use alloca which is guaranteed to dealloc on func exit.
//mp_obj_t flat_args[self->n_args];
mp_obj_t *flat_args = alloca(self->n_args * sizeof(mp_obj_t));
for (int i = self->n_args - 1; i >= 0; i--) {
flat_args[i] = MP_OBJ_NULL;
}
memcpy(flat_args, args, sizeof(*args) * n_args);
DEBUG_printf("Initial args: ");
dump_args(flat_args, self->n_args);
mp_obj_t dict = MP_OBJ_NULL;
if (self->takes_kw_args) {
dict = mp_obj_new_dict(n_kw); // TODO: better go conservative with 0?
}
for (uint i = 0; i < n_kw; i++) {
qstr arg_name = MP_OBJ_QSTR_VALUE(kwargs[2 * i]);
for (uint j = 0; j < self->n_args; j++) {
if (arg_name == self->args[j]) {
if (flat_args[j] != MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function got multiple values for argument '%s'", qstr_str(arg_name)));
}
flat_args[j] = kwargs[2 * i + 1];
goto continue2;
}
}
// Didn't find name match with positional args
if (!self->takes_kw_args) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
}
mp_obj_dict_store(dict, kwargs[2 * i], kwargs[2 * i + 1]);
continue2:;
}
DEBUG_printf("Args with kws flattened: ");
dump_args(flat_args, self->n_args);
// Now fill in defaults
mp_obj_t *d = &flat_args[self->n_args - 1];
mp_obj_t *s = &self->extra_args[self->n_def_args - 1];
for (int i = self->n_def_args; i > 0; i--, d--, s--) {
if (*d == MP_OBJ_NULL) {
*d = *s;
}
}
DEBUG_printf("Args after filling defaults: ");
dump_args(flat_args, self->n_args);
// Now check that all mandatory args specified
while (d >= flat_args) {
if (*d-- == MP_OBJ_NULL) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
"function missing required positional argument #%d", d - flat_args));
}
}
args = flat_args;
n_args = self->n_args;
if (self->takes_kw_args) {
extra_args[n_extra_args] = dict;
n_extra_args += 1;
}
} else {
// no keyword arguments given
if (self->takes_kw_args) {
extra_args[n_extra_args] = mp_obj_new_dict(0);
n_extra_args += 1;
}
}
mp_obj_dict_t *old_globals = mp_globals_get();
mp_globals_set(self->globals);
mp_obj_t result;
DEBUG_printf("Calling: args=%p, n_args=%d, extra_args=%p, n_extra_args=%d\n", args, n_args, extra_args, n_extra_args);
dump_args(args, n_args);
dump_args(extra_args, n_extra_args);
mp_vm_return_kind_t vm_return_kind = mp_execute_byte_code(self->bytecode, args, n_args, extra_args, n_extra_args, &result);
mp_globals_set(old_globals);
if (vm_return_kind == MP_VM_RETURN_NORMAL) {
return result;
} else { // MP_VM_RETURN_EXCEPTION
nlr_raise(result);
}
arg_error:
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args));
}
const mp_obj_type_t mp_type_fun_bc = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_bc_call,
.binary_op = fun_binary_op,
};
mp_obj_t mp_obj_new_fun_bc(uint scope_flags, qstr *args, uint n_args, mp_obj_t def_args_in, const byte *code) {
uint n_def_args = 0;
uint n_extra_args = 0;
mp_obj_tuple_t *def_args = def_args_in;
if (def_args != MP_OBJ_NULL) {
assert(MP_OBJ_IS_TYPE(def_args, &mp_type_tuple));
n_def_args = def_args->len;
n_extra_args = def_args->len;
}
if ((scope_flags & MP_SCOPE_FLAG_VARARGS) != 0) {
n_extra_args += 1;
}
if ((scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0) {
n_extra_args += 1;
}
mp_obj_fun_bc_t *o = m_new_obj_var(mp_obj_fun_bc_t, mp_obj_t, n_extra_args);
o->base.type = &mp_type_fun_bc;
o->globals = mp_globals_get();
o->args = args;
o->n_args = n_args;
o->n_def_args = n_def_args;
o->takes_var_args = (scope_flags & MP_SCOPE_FLAG_VARARGS) != 0;
o->takes_kw_args = (scope_flags & MP_SCOPE_FLAG_VARKEYWORDS) != 0;
o->bytecode = code;
if (def_args != MP_OBJ_NULL) {
memcpy(o->extra_args, def_args->items, n_def_args * sizeof(mp_obj_t));
}
return o;
}
void mp_obj_fun_bc_get(mp_obj_t self_in, int *n_args, const byte **code) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_type_fun_bc));
mp_obj_fun_bc_t *self = self_in;
*n_args = self->n_args;
*code = self->bytecode;
}
/******************************************************************************/
/* inline assembler functions */
typedef struct _mp_obj_fun_asm_t {
mp_obj_base_t base;
int n_args;
void *fun;
} mp_obj_fun_asm_t;
typedef machine_uint_t (*inline_asm_fun_0_t)();
typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t);
typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t);
typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t);
// convert a Micro Python object to a sensible value for inline asm
STATIC machine_uint_t convert_obj_for_inline_asm(mp_obj_t obj) {
// TODO for byte_array, pass pointer to the array
if (MP_OBJ_IS_SMALL_INT(obj)) {
return MP_OBJ_SMALL_INT_VALUE(obj);
} else if (obj == mp_const_none) {
return 0;
} else if (obj == mp_const_false) {
return 0;
} else if (obj == mp_const_true) {
return 1;
} else if (MP_OBJ_IS_STR(obj)) {
// pointer to the string (it's probably constant though!)
uint l;
return (machine_uint_t)mp_obj_str_get_data(obj, &l);
} else {
mp_obj_type_t *type = mp_obj_get_type(obj);
if (0) {
#if MICROPY_ENABLE_FLOAT
} else if (type == &mp_type_float) {
// convert float to int (could also pass in float registers)
return (machine_int_t)mp_obj_float_get(obj);
#endif
} else if (type == &mp_type_tuple) {
// pointer to start of tuple (could pass length, but then could use len(x) for that)
uint len;
mp_obj_t *items;
mp_obj_tuple_get(obj, &len, &items);
return (machine_uint_t)items;
} else if (type == &mp_type_list) {
// pointer to start of list (could pass length, but then could use len(x) for that)
uint len;
mp_obj_t *items;
mp_obj_list_get(obj, &len, &items);
return (machine_uint_t)items;
} else if (type->buffer_p.get_buffer != NULL) {
// supports the buffer protocol, get a pointer to the data
buffer_info_t bufinfo;
type->buffer_p.get_buffer(obj, &bufinfo, BUFFER_READ);
return (machine_uint_t)bufinfo.buf;
} else {
// just pass along a pointer to the object
return (machine_uint_t)obj;
}
}
}
// convert a return value from inline asm to a sensible Micro Python object
STATIC mp_obj_t convert_val_from_inline_asm(machine_uint_t val) {
return MP_OBJ_NEW_SMALL_INT(val);
}
STATIC mp_obj_t fun_asm_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
mp_obj_fun_asm_t *self = self_in;
if (n_args != self->n_args) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "function takes %d positional arguments but %d were given", self->n_args, n_args));
}
if (n_kw != 0) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_TypeError, "function does not take keyword arguments"));
}
machine_uint_t ret;
if (n_args == 0) {
ret = ((inline_asm_fun_0_t)self->fun)();
} else if (n_args == 1) {
ret = ((inline_asm_fun_1_t)self->fun)(convert_obj_for_inline_asm(args[0]));
} else if (n_args == 2) {
ret = ((inline_asm_fun_2_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]));
} else if (n_args == 3) {
ret = ((inline_asm_fun_3_t)self->fun)(convert_obj_for_inline_asm(args[0]), convert_obj_for_inline_asm(args[1]), convert_obj_for_inline_asm(args[2]));
} else {
assert(0);
ret = 0;
}
return convert_val_from_inline_asm(ret);
}
STATIC const mp_obj_type_t mp_type_fun_asm = {
{ &mp_type_type },
.name = MP_QSTR_function,
.call = fun_asm_call,
.binary_op = fun_binary_op,
};
mp_obj_t mp_obj_new_fun_asm(uint n_args, void *fun) {
mp_obj_fun_asm_t *o = m_new_obj(mp_obj_fun_asm_t);
o->base.type = &mp_type_fun_asm;
o->n_args = n_args;
o->fun = fun;
return o;
}