micropython/ports/stm32/dma.c

1855 lines
70 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2015-2019 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include "py/obj.h"
#include "py/mphal.h"
#include "systick.h"
#include "dma.h"
#include "irq.h"
// When this option is enabled, the DMA will turn off automatically after
// a period of inactivity.
#ifndef MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
#define MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF (1)
#endif
#define DMA_IDLE_ENABLED() (dma_idle.enabled != 0)
#define DMA_SYSTICK_LOG2 (3)
#define DMA_SYSTICK_MASK ((1 << DMA_SYSTICK_LOG2) - 1)
#define DMA_IDLE_TICK_MAX (8) // 8*8 = 64 msec
#define DMA_IDLE_TICK(tick) (((tick) & ~(SYSTICK_DISPATCH_NUM_SLOTS - 1) & DMA_SYSTICK_MASK) == 0)
#define ENABLE_SDIO (MICROPY_HW_ENABLE_SDCARD || MICROPY_HW_ENABLE_MMCARD || MICROPY_PY_NETWORK_CYW43)
// If the CYW43 driver is enabled then SDIO DMA can happen preemptively (on an
// IRQ) and so the SDIO needs exclusive access to its DMA resource.
#define SDIO_NEEDS_EXCLUSIVE_DMA_ACCESS (MICROPY_PY_NETWORK_CYW43 && MICROPY_HW_SDIO_SDMMC == 1)
typedef enum {
dma_id_not_defined=-1,
dma_id_0,
dma_id_1,
dma_id_2,
dma_id_3,
dma_id_4,
dma_id_5,
dma_id_6,
dma_id_7,
dma_id_8,
dma_id_9,
dma_id_10,
dma_id_11,
dma_id_12,
dma_id_13,
dma_id_14,
dma_id_15,
} dma_id_t;
typedef union {
uint16_t enabled; // Used to test if both counters are == 0
uint8_t counter[2];
} dma_idle_count_t;
struct _dma_descr_t {
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
DMA_Stream_TypeDef *instance;
#elif defined(STM32F0) || defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32L0) || defined(STM32L1) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
DMA_Channel_TypeDef *instance;
#else
#error "Unsupported Processor"
#endif
uint32_t sub_instance;
dma_id_t id;
const DMA_InitTypeDef *init;
};
// Default parameters to dma_init() shared by spi and i2c; Channel and Direction
// vary depending on the peripheral instance so they get passed separately
#if defined(STM32H5)
static const DMA_InitTypeDef dma_init_struct_spi_i2c = {
.Request = 0, // set by dma_init_handle
.BlkHWRequest = DMA_BREQ_SINGLE_BURST,
.Direction = 0, // set by dma_init_handle
.SrcInc = 0, // set by dma_init_handle
.DestInc = 0, // set by dma_init_handle
.SrcDataWidth = DMA_SRC_DATAWIDTH_BYTE,
.DestDataWidth = DMA_DEST_DATAWIDTH_BYTE,
.Priority = DMA_LOW_PRIORITY_LOW_WEIGHT,
.SrcBurstLength = 1,
.DestBurstLength = 1,
.TransferAllocatedPort = DMA_SRC_ALLOCATED_PORT0 | DMA_DEST_ALLOCATED_PORT0,
.TransferEventMode = DMA_TCEM_BLOCK_TRANSFER,
.Mode = DMA_NORMAL, // DMA_NORMAL or DMA_PFCTRL (peripheral flow control mode)
};
#else
static const DMA_InitTypeDef dma_init_struct_spi_i2c = {
#if defined(STM32F4) || defined(STM32F7)
.Channel = 0,
#elif defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
.Request = 0,
#endif
.Direction = 0,
.PeriphInc = DMA_PINC_DISABLE,
.MemInc = DMA_MINC_ENABLE,
.PeriphDataAlignment = DMA_PDATAALIGN_BYTE,
.MemDataAlignment = DMA_MDATAALIGN_BYTE,
.Mode = DMA_NORMAL,
.Priority = DMA_PRIORITY_LOW,
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
.FIFOMode = DMA_FIFOMODE_DISABLE,
.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
.MemBurst = DMA_MBURST_INC4,
.PeriphBurst = DMA_PBURST_INC4
#endif
};
#endif
#if MICROPY_HW_ENABLE_I2S
// Default parameters to dma_init() for i2s; Channel and Direction
// vary depending on the peripheral instance so they get passed separately
static const DMA_InitTypeDef dma_init_struct_i2s = {
#if defined(STM32F4) || defined(STM32F7)
.Channel = 0,
#elif defined(STM32G0) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4)
.Request = 0,
#endif
.Direction = DMA_MEMORY_TO_PERIPH,
.PeriphInc = DMA_PINC_DISABLE,
.MemInc = DMA_MINC_ENABLE,
.PeriphDataAlignment = DMA_PDATAALIGN_HALFWORD,
.MemDataAlignment = DMA_MDATAALIGN_HALFWORD,
.Mode = DMA_CIRCULAR,
.Priority = DMA_PRIORITY_LOW,
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
.FIFOMode = DMA_FIFOMODE_DISABLE,
.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
.MemBurst = DMA_MBURST_SINGLE,
.PeriphBurst = DMA_PBURST_SINGLE
#endif
};
#endif
#if ENABLE_SDIO && !defined(STM32H7)
// Parameters to dma_init() for SDIO tx and rx.
static const DMA_InitTypeDef dma_init_struct_sdio = {
#if defined(STM32F4) || defined(STM32F7)
.Channel = 0,
#elif defined(STM32G0) || defined(STM32G4) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
.Request = 0,
#endif
.Direction = 0,
.PeriphInc = DMA_PINC_DISABLE,
.MemInc = DMA_MINC_ENABLE,
.PeriphDataAlignment = DMA_PDATAALIGN_WORD,
.MemDataAlignment = DMA_MDATAALIGN_WORD,
#if defined(STM32F4) || defined(STM32F7)
.Mode = DMA_PFCTRL,
#elif defined(STM32G0) || defined(STM32G4) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
.Mode = DMA_NORMAL,
#endif
.Priority = DMA_PRIORITY_VERY_HIGH,
#if defined(STM32F4) || defined(STM32F7)
.FIFOMode = DMA_FIFOMODE_ENABLE,
.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
.MemBurst = DMA_MBURST_INC4,
.PeriphBurst = DMA_PBURST_INC4,
#endif
};
#endif
#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
#if defined(STM32H5)
// Default parameters to dma_init() for DAC tx
static const DMA_InitTypeDef dma_init_struct_dac = {
.Request = 0, // set by dma_init_handle
.BlkHWRequest = DMA_BREQ_SINGLE_BURST,
.Direction = DMA_MEMORY_TO_PERIPH,
.SrcInc = DMA_SINC_INCREMENTED,
.DestInc = DMA_DINC_FIXED,
.SrcDataWidth = DMA_SRC_DATAWIDTH_BYTE,
.DestDataWidth = DMA_DEST_DATAWIDTH_WORD,
.Priority = DMA_HIGH_PRIORITY,
.SrcBurstLength = 1,
.DestBurstLength = 1,
.TransferAllocatedPort = DMA_SRC_ALLOCATED_PORT0 | DMA_DEST_ALLOCATED_PORT0,
.TransferEventMode = DMA_TCEM_BLOCK_TRANSFER,
.Mode = DMA_NORMAL, // DMA_NORMAL or DMA_PFCTRL (peripheral flow control mode)
};
#else
// Default parameters to dma_init() for DAC tx
static const DMA_InitTypeDef dma_init_struct_dac = {
#if defined(STM32F4) || defined(STM32F7)
.Channel = 0,
#elif defined(STM32G0) || defined(STM32G4) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
.Request = 0,
#endif
.Direction = 0,
.PeriphInc = DMA_PINC_DISABLE,
.MemInc = DMA_MINC_ENABLE,
.PeriphDataAlignment = DMA_PDATAALIGN_BYTE,
.MemDataAlignment = DMA_MDATAALIGN_BYTE,
.Mode = DMA_NORMAL,
.Priority = DMA_PRIORITY_HIGH,
#if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
.FIFOMode = DMA_FIFOMODE_DISABLE,
.FIFOThreshold = DMA_FIFO_THRESHOLD_HALFFULL,
.MemBurst = DMA_MBURST_SINGLE,
.PeriphBurst = DMA_PBURST_SINGLE,
#endif
};
#endif
#endif
#if MICROPY_HW_ENABLE_DCMI
static const DMA_InitTypeDef dma_init_struct_dcmi = {
#if defined(STM32H7)
.Request = DMA_REQUEST_DCMI,
#else
.Channel = DMA_CHANNEL_1,
#endif
.Direction = DMA_PERIPH_TO_MEMORY,
.PeriphInc = DMA_PINC_DISABLE,
.MemInc = DMA_MINC_ENABLE,
.PeriphDataAlignment = DMA_PDATAALIGN_WORD,
.MemDataAlignment = DMA_MDATAALIGN_WORD,
.Mode = DMA_NORMAL,
.Priority = DMA_PRIORITY_HIGH,
.FIFOMode = DMA_FIFOMODE_ENABLE,
.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL,
.MemBurst = DMA_MBURST_INC4,
.PeriphBurst = DMA_PBURST_SINGLE
};
#endif
#if defined(STM32F0)
#define NCONTROLLERS (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) ((dma_channel) >> ((dma_channel >> 28) * 4))
#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1 (7 channels)
#define DMA2_ENABLE_MASK (0x0f80) // Bits in dma_enable_mask corresponding to DMA2 (only 5 channels)
// DMA1 streams
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, HAL_DMA1_CH3_DAC_CH1, dma_id_2, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, HAL_DMA1_CH4_DAC_CH2, dma_id_3, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, HAL_DMA1_CH5_SPI2_TX, dma_id_4, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel6, HAL_DMA1_CH6_SPI2_RX, dma_id_5, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, HAL_DMA2_CH3_SPI1_RX, dma_id_9, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, HAL_DMA2_CH4_SPI1_TX, dma_id_10, &dma_init_struct_spi_i2c};
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Ch1_IRQn,
DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
DMA1_Ch2_3_DMA2_Ch1_2_IRQn,
DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
DMA1_Ch4_7_DMA2_Ch3_5_IRQn,
0,
0,
};
#elif defined(STM32F4) || defined(STM32F7)
#define NCONTROLLERS (2)
#define NSTREAMS_PER_CONTROLLER (8)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (((dma_channel) & DMA_SxCR_CHSEL) >> 25)
#define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2
// These descriptors are ordered by DMAx_Stream number, and within a stream by channel
// number. The duplicate streams are ok as long as they aren't used at the same time.
//
// Currently I2C and SPI are synchronous and they call dma_init/dma_deinit
// around each transfer.
// DMA1 streams
const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_CHANNEL_1, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_CHANNEL_0, dma_id_2, &dma_init_struct_spi_i2c };
#if defined(STM32F7)
const dma_descr_t dma_I2C_4_RX = { DMA1_Stream2, DMA_CHANNEL_2, dma_id_2, &dma_init_struct_spi_i2c };
#endif
const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_CHANNEL_3, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_CHANNEL_7, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_CHANNEL_0, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_CHANNEL_0, dma_id_4, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_I2S
const dma_descr_t dma_I2S_2_RX = { DMA1_Stream3, DMA_CHANNEL_0, dma_id_3, &dma_init_struct_i2s };
const dma_descr_t dma_I2S_2_TX = { DMA1_Stream4, DMA_CHANNEL_0, dma_id_4, &dma_init_struct_i2s };
#endif
const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_CHANNEL_3, dma_id_4, &dma_init_struct_spi_i2c };
#if defined(STM32F7)
const dma_descr_t dma_I2C_4_TX = { DMA1_Stream5, DMA_CHANNEL_2, dma_id_5, &dma_init_struct_spi_i2c };
#endif
#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_CHANNEL_7, dma_id_5, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_CHANNEL_7, dma_id_6, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_CHANNEL_0, dma_id_7, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_CHANNEL_1, dma_id_7, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_CHANNEL_7, dma_id_7, &dma_init_struct_spi_i2c };
/* not preferred streams
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream0, DMA_CHANNEL_0, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream6, DMA_CHANNEL_1, dma_id_6, &dma_init_struct_spi_i2c };
*/
// DMA2 streams
#if defined(STM32F7) && defined(SDMMC2) && ENABLE_SDIO
const dma_descr_t dma_SDMMC_2 = { DMA2_Stream0, DMA_CHANNEL_11, dma_id_8, &dma_init_struct_sdio };
#endif
#if MICROPY_HW_ENABLE_DCMI
const dma_descr_t dma_DCMI_0 = { DMA2_Stream1, DMA_CHANNEL_1, dma_id_9, &dma_init_struct_dcmi };
#endif
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_CHANNEL_3, dma_id_10, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_I2S
const dma_descr_t dma_I2S_1_RX = { DMA2_Stream2, DMA_CHANNEL_3, dma_id_10, &dma_init_struct_i2s };
#endif
#if ENABLE_SDIO
const dma_descr_t dma_SDIO_0 = { DMA2_Stream3, DMA_CHANNEL_4, dma_id_11, &dma_init_struct_sdio };
#endif
#if !SDIO_NEEDS_EXCLUSIVE_DMA_ACCESS
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_CHANNEL_2, dma_id_11, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_CHANNEL_5, dma_id_11, &dma_init_struct_spi_i2c };
#endif
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_CHANNEL_2, dma_id_12, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_CHANNEL_5, dma_id_12, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, DMA_CHANNEL_1, dma_id_13, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_CHANNEL_3, dma_id_13, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_I2S
const dma_descr_t dma_I2S_1_TX = { DMA2_Stream5, DMA_CHANNEL_3, dma_id_13, &dma_init_struct_i2s };
#endif
// #if defined(STM32F7) && defined(SDMMC2) && ENABLE_SDIO
// const dma_descr_t dma_SDMMC_2 = { DMA2_Stream5, DMA_CHANNEL_11, dma_id_13, &dma_init_struct_sdio };
// #endif
const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, DMA_CHANNEL_1, dma_id_14, &dma_init_struct_spi_i2c };
// #if ENABLE_SDIO
// const dma_descr_t dma_SDIO_0 = { DMA2_Stream6, DMA_CHANNEL_4, dma_id_14, &dma_init_struct_sdio };
// #endif
/* not preferred streams
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream3, DMA_CHANNEL_3, dma_id_11, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream0, DMA_CHANNEL_3, dma_id_8, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream0, DMA_CHANNEL_4, dma_id_8, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream1, DMA_CHANNEL_4, dma_id_9, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream5, DMA_CHANNEL_7, dma_id_13, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream6, DMA_CHANNEL_7, dma_id_14, &dma_init_struct_spi_i2c };
*/
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Stream0_IRQn,
DMA1_Stream1_IRQn,
DMA1_Stream2_IRQn,
DMA1_Stream3_IRQn,
DMA1_Stream4_IRQn,
DMA1_Stream5_IRQn,
DMA1_Stream6_IRQn,
DMA1_Stream7_IRQn,
DMA2_Stream0_IRQn,
DMA2_Stream1_IRQn,
DMA2_Stream2_IRQn,
DMA2_Stream3_IRQn,
DMA2_Stream4_IRQn,
DMA2_Stream5_IRQn,
DMA2_Stream6_IRQn,
DMA2_Stream7_IRQn,
};
#elif defined(STM32L0)
#define NCONTROLLERS (1)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)
#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1
// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.
// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_14, dma_id_1, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel2, DMA_REQUEST_9, dma_id_1, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_14, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_2, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_7, dma_id_3, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_15, dma_id_3, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_2, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_7, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_6, dma_id_5, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_6, dma_id_6, &dma_init_struct_spi_i2c };
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Channel1_IRQn,
DMA1_Channel2_3_IRQn,
DMA1_Channel2_3_IRQn,
DMA1_Channel4_5_6_7_IRQn,
DMA1_Channel4_5_6_7_IRQn,
DMA1_Channel4_5_6_7_IRQn,
DMA1_Channel4_5_6_7_IRQn,
};
#elif defined(STM32L1)
#define NCONTROLLERS (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)
#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x0f80) // Bits in dma_enable_mask corresponding to DMA2
// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.
// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, 2, dma_id_1, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel2, 2, dma_id_1, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, 3, dma_id_2, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel3, 3, dma_id_2, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, 4, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, 4, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, 5, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, 5, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, 6, dma_id_5, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, 7, dma_id_6, &dma_init_struct_spi_i2c };
// DMA2 streams
const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, 3, dma_id_7, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_TX = { DMA2_Channel2, 3, dma_id_8, &dma_init_struct_spi_i2c };
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Channel1_IRQn,
DMA1_Channel2_IRQn,
DMA1_Channel3_IRQn,
DMA1_Channel4_IRQn,
DMA1_Channel5_IRQn,
DMA1_Channel6_IRQn,
DMA1_Channel7_IRQn,
DMA2_Channel1_IRQn,
DMA2_Channel2_IRQn,
DMA2_Channel3_IRQn,
DMA2_Channel4_IRQn,
DMA2_Channel5_IRQn,
0,
0
};
#elif defined(STM32L4)
#define NCONTROLLERS (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)
#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x3f80) // Bits in dma_enable_mask corresponding to DMA2
// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.
// DMA1 streams
// const dma_descr_t dma_ADC_1_RX = { DMA1_Channel1, DMA_REQUEST_0, dma_id_0, NULL }; // unused
// const dma_descr_t dma_ADC_2_RX = { DMA1_Channel2, DMA_REQUEST_0, dma_id_1, NULL }; // unused
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel2, DMA_REQUEST_1, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Channel2, DMA_REQUEST_3, dma_id_1, &dma_init_struct_spi_i2c };
// const dma_descr_t dma_ADC_3_RX = { DMA1_Channel3, DMA_REQUEST_0, dma_id_2, NULL }; // unused
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel3, DMA_REQUEST_1, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_3, dma_id_2, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, DMA_REQUEST_6, dma_id_2, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel4, DMA_REQUEST_1, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_3, dma_id_3, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_5, dma_id_3, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_1, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel5, DMA_REQUEST_3, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel6, DMA_REQUEST_3, dma_id_5, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel7, DMA_REQUEST_3, dma_id_6, &dma_init_struct_spi_i2c };
// DMA2 streams
const dma_descr_t dma_I2C_4_RX = { DMA2_Channel1, DMA_REQUEST_0, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, DMA_REQUEST_3, dma_id_7, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_TX = { DMA2_Channel2, DMA_REQUEST_0, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_TX = { DMA2_Channel2, DMA_REQUEST_3, dma_id_8, &dma_init_struct_spi_i2c };
/* not preferred streams
const dma_descr_t dma_ADC_1_RX = { DMA2_Channel3, DMA_REQUEST_0, dma_id_9, NULL };
const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, DMA_REQUEST_4, dma_id_9, &dma_init_struct_spi_i2c };
const dma_descr_t dma_ADC_2_RX = { DMA2_Channel4, DMA_REQUEST_0, dma_id_10, NULL };
const dma_descr_t dma_DAC_1_TX = { DMA2_Channel4, DMA_REQUEST_3, dma_id_10, &dma_init_struct_dac };
const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, DMA_REQUEST_4, dma_id_10, &dma_init_struct_spi_i2c };
*/
#if ENABLE_SDIO
const dma_descr_t dma_SDIO_0 = { DMA2_Channel4, DMA_REQUEST_7, dma_id_10, &dma_init_struct_sdio };
#endif
/* not preferred streams
const dma_descr_t dma_ADC_3_RX = { DMA2_Channel5, DMA_REQUEST_0, dma_id_11, NULL };
const dma_descr_t dma_DAC_2_TX = { DMA2_Channel5, DMA_REQUEST_3, dma_id_11, &dma_init_struct_dac };
const dma_descr_t dma_SDIO_0_TX= { DMA2_Channel5, DMA_REQUEST_7, dma_id_11, &dma_init_struct_sdio };
const dma_descr_t dma_I2C_1_RX = { DMA2_Channel6, DMA_REQUEST_5, dma_id_12, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA2_Channel7, DMA_REQUEST_5, dma_id_13, &dma_init_struct_spi_i2c };
*/
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Channel1_IRQn,
DMA1_Channel2_IRQn,
DMA1_Channel3_IRQn,
DMA1_Channel4_IRQn,
DMA1_Channel5_IRQn,
DMA1_Channel6_IRQn,
DMA1_Channel7_IRQn,
DMA2_Channel1_IRQn,
DMA2_Channel2_IRQn,
DMA2_Channel3_IRQn,
DMA2_Channel4_IRQn,
DMA2_Channel5_IRQn,
DMA2_Channel6_IRQn,
DMA2_Channel7_IRQn,
};
#elif defined(STM32WB) || defined(STM32WL)
#define NCONTROLLERS (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)
#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x3f80) // Bits in dma_enable_mask corresponding to DMA2
// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel1, DMA_REQUEST_SPI1_RX, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel2, DMA_REQUEST_SPI1_TX, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel3, DMA_REQUEST_SPI2_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel4, DMA_REQUEST_SPI2_TX, dma_id_3, &dma_init_struct_spi_i2c };
#if defined(STM32WL)
const dma_descr_t dma_SPI_SUBGHZ_RX = { DMA1_Channel5, DMA_REQUEST_SUBGHZSPI_RX, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_SUBGHZ_TX = { DMA1_Channel6, DMA_REQUEST_SUBGHZSPI_TX, dma_id_5, &dma_init_struct_spi_i2c };
#endif
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Channel1_IRQn,
DMA1_Channel2_IRQn,
DMA1_Channel3_IRQn,
DMA1_Channel4_IRQn,
DMA1_Channel5_IRQn,
DMA1_Channel6_IRQn,
DMA1_Channel7_IRQn,
DMA2_Channel1_IRQn,
DMA2_Channel2_IRQn,
DMA2_Channel3_IRQn,
DMA2_Channel4_IRQn,
DMA2_Channel5_IRQn,
DMA2_Channel6_IRQn,
DMA2_Channel7_IRQn,
};
#elif defined(STM32G0)
#define NCONTROLLERS (2)
#define NSTREAMS_PER_CONTROLLER (7)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)
#define DMA1_ENABLE_MASK (0x007f) // Bits in dma_enable_mask corresponding to DMA1 (7 channels)
#define DMA2_ENABLE_MASK (0x0f80) // Bits in dma_enable_mask corresponding to DMA2 (only 5 channels)
// DMA1 streams
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel3, DMA_REQUEST_DAC1_CH1, dma_id_2, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel4, DMA_REQUEST_DAC1_CH2, dma_id_3, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_3_TX = { DMA1_Channel7, DMA_REQUEST_SPI3_TX, dma_id_6, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_3_RX = { DMA2_Channel1, DMA_REQUEST_SPI3_RX, dma_id_7, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel5, DMA_REQUEST_SPI2_TX, dma_id_4, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel6, DMA_REQUEST_SPI2_RX, dma_id_5, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_RX = { DMA2_Channel3, DMA_REQUEST_SPI1_RX, dma_id_9, &dma_init_struct_spi_i2c};
const dma_descr_t dma_SPI_1_TX = { DMA2_Channel4, DMA_REQUEST_SPI1_TX, dma_id_10, &dma_init_struct_spi_i2c};
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Channel1_IRQn,
DMA1_Channel2_3_IRQn,
DMA1_Channel2_3_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn,
0,
0,
};
#elif defined(STM32G4)
#define NCONTROLLERS (2)
#if defined(STM32G431xx) || defined(STM32G441xx)
#define NSTREAMS_PER_CONTROLLER (6) // Cat 2 devices = 6, Cat 3 = 8
#else
#define NSTREAMS_PER_CONTROLLER (8) // Cat 2 devices = 6, Cat 3 = 8
#endif
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_request) (dma_request)
#if defined(STM32G431xx) || defined(STM32G441xx)
#define DMA1_ENABLE_MASK (0x004f) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0x0fc0) // Bits in dma_enable_mask corresponding to DMA2
#else
#define DMA1_ENABLE_MASK (0x00Ff) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2
#endif
// These descriptors are ordered by DMAx_Channel number, and within a channel by request
// number. The duplicate streams are ok as long as they aren't used at the same time.
// DMA1 streams
const dma_descr_t dma_SPI_1_RX = { DMA1_Channel1, DMA_REQUEST_SPI1_RX, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA1_Channel2, DMA_REQUEST_SPI1_TX, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Channel1, DMA_REQUEST_SPI2_RX, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Channel2, DMA_REQUEST_SPI2_TX, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_RX = { DMA1_Channel3, DMA_REQUEST_I2C1_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Channel4, DMA_REQUEST_I2C1_TX, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Channel3, DMA_REQUEST_I2C2_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Channel4, DMA_REQUEST_I2C2_TX, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Channel3, DMA_REQUEST_I2C3_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Channel4, DMA_REQUEST_I2C3_TX, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_UART_3_RX = { DMA1_Channel3, DMA_REQUEST_USART3_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_UART_3_TX = { DMA1_Channel4, DMA_REQUEST_USART3_TX, dma_id_3, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Channel5, DMA_REQUEST_DAC1_CHANNEL1, dma_id_4, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Channel6, DMA_REQUEST_DAC1_CHANNEL2, dma_id_5, &dma_init_struct_dac };
#endif
#if !defined(STM32G431xx) && !defined(STM32G441xx)
// channel 7 & 8
#endif
// DMA2 streams
const dma_descr_t dma_UART_1_RX = { DMA2_Channel1, DMA_REQUEST_USART1_RX, dma_id_6, &dma_init_struct_spi_i2c };
const dma_descr_t dma_UART_1_TX = { DMA2_Channel2, DMA_REQUEST_USART1_TX, dma_id_7, &dma_init_struct_spi_i2c };
const dma_descr_t dma_LPUART_1_RX = { DMA2_Channel3, DMA_REQUEST_LPUART1_RX, dma_id_8, &dma_init_struct_spi_i2c };
const dma_descr_t dma_LPUART_1_TX = { DMA2_Channel4, DMA_REQUEST_LPUART1_TX, dma_id_9, &dma_init_struct_spi_i2c };
const dma_descr_t dma_ADC_1 = { DMA2_Channel5, DMA_REQUEST_ADC1, dma_id_10, NULL };
const dma_descr_t dma_MEM_2_MEM = { DMA2_Channel6, DMA_REQUEST_MEM2MEM, dma_id_11, NULL };
#if !defined(STM32G431xx) && !defined(STM32G441xx)
// channel 7 & 8
#endif
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Channel1_IRQn,
DMA1_Channel2_IRQn,
DMA1_Channel3_IRQn,
DMA1_Channel4_IRQn,
DMA1_Channel5_IRQn,
DMA1_Channel6_IRQn,
#if !defined(STM32G431xx) && !defined(STM32G441xx)
DMA1_Channel7_IRQn,
DMA1_Channel8_IRQn,
#endif
DMA2_Channel1_IRQn,
DMA2_Channel2_IRQn,
DMA2_Channel3_IRQn,
DMA2_Channel4_IRQn,
DMA2_Channel5_IRQn,
DMA2_Channel6_IRQn,
#if !defined(STM32G431xx) && !defined(STM32G441xx)
DMA2_Channel7_IRQn,
DMA2_Channel8_IRQn,
#endif
};
#elif defined(STM32H5)
#define NCONTROLLERS (2)
#define NSTREAMS_PER_CONTROLLER (8)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (dma_channel)
#define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to GPDMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to GPDMA2
const dma_descr_t dma_SPI_1_RX = { GPDMA1_Channel0, GPDMA1_REQUEST_SPI1_RX, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { GPDMA1_Channel1, GPDMA1_REQUEST_SPI1_TX, dma_id_1, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { GPDMA1_Channel2, GPDMA1_REQUEST_SPI2_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { GPDMA1_Channel3, GPDMA1_REQUEST_SPI2_TX, dma_id_3, &dma_init_struct_spi_i2c };
#if MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { GPDMA1_Channel4, GPDMA1_REQUEST_DAC1_CH1, dma_id_4, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { GPDMA1_Channel5, GPDMA1_REQUEST_DAC1_CH2, dma_id_5, &dma_init_struct_dac };
#endif
static const uint8_t dma_irqn[NSTREAM] = {
GPDMA1_Channel0_IRQn,
GPDMA1_Channel1_IRQn,
GPDMA1_Channel2_IRQn,
GPDMA1_Channel3_IRQn,
GPDMA1_Channel4_IRQn,
GPDMA1_Channel5_IRQn,
GPDMA1_Channel6_IRQn,
GPDMA1_Channel7_IRQn,
GPDMA2_Channel0_IRQn,
GPDMA2_Channel1_IRQn,
GPDMA2_Channel2_IRQn,
GPDMA2_Channel3_IRQn,
GPDMA2_Channel4_IRQn,
GPDMA2_Channel5_IRQn,
GPDMA2_Channel6_IRQn,
GPDMA2_Channel7_IRQn,
};
#elif defined(STM32H7)
#define NCONTROLLERS (2)
#define NSTREAMS_PER_CONTROLLER (8)
#define NSTREAM (NCONTROLLERS * NSTREAMS_PER_CONTROLLER)
#define DMA_SUB_INSTANCE_AS_UINT8(dma_channel) (dma_channel)
#define DMA1_ENABLE_MASK (0x00ff) // Bits in dma_enable_mask corresponding to DMA1
#define DMA2_ENABLE_MASK (0xff00) // Bits in dma_enable_mask corresponding to DMA2
// These descriptors are ordered by DMAx_Stream number, and within a stream by channel
// number. The duplicate streams are ok as long as they aren't used at the same time.
//
// Currently I2C and SPI are synchronous and they call dma_init/dma_deinit
// around each transfer.
// DMA1 streams
const dma_descr_t dma_I2C_1_RX = { DMA1_Stream0, DMA_REQUEST_I2C1_RX, dma_id_0, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_3_RX = { DMA1_Stream2, DMA_REQUEST_SPI3_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_RX = { DMA1_Stream2, BDMA_REQUEST_I2C4_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_RX = { DMA1_Stream2, DMA_REQUEST_I2C3_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_RX = { DMA1_Stream2, DMA_REQUEST_I2C2_RX, dma_id_2, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_RX = { DMA1_Stream3, DMA_REQUEST_SPI2_RX, dma_id_3, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_2_TX = { DMA1_Stream4, DMA_REQUEST_SPI2_TX, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_3_TX = { DMA1_Stream4, DMA_REQUEST_I2C3_TX, dma_id_4, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_4_TX = { DMA1_Stream5, BDMA_REQUEST_I2C4_TX, dma_id_5, &dma_init_struct_spi_i2c };
#if defined(MICROPY_HW_ENABLE_DAC) && MICROPY_HW_ENABLE_DAC
const dma_descr_t dma_DAC_1_TX = { DMA1_Stream5, DMA_REQUEST_DAC1_CH1, dma_id_5, &dma_init_struct_dac };
const dma_descr_t dma_DAC_2_TX = { DMA1_Stream6, DMA_REQUEST_DAC1_CH2, dma_id_6, &dma_init_struct_dac };
#endif
const dma_descr_t dma_SPI_3_TX = { DMA1_Stream7, DMA_REQUEST_SPI3_TX, dma_id_7, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_1_TX = { DMA1_Stream7, DMA_REQUEST_I2C1_TX, dma_id_7, &dma_init_struct_spi_i2c };
const dma_descr_t dma_I2C_2_TX = { DMA1_Stream7, DMA_REQUEST_I2C2_TX, dma_id_7, &dma_init_struct_spi_i2c };
// DMA2 streams
#if MICROPY_HW_ENABLE_DCMI
const dma_descr_t dma_DCMI_0 = { DMA2_Stream1, DMA_REQUEST_DCMI, dma_id_9, &dma_init_struct_dcmi };
#endif
const dma_descr_t dma_SPI_1_RX = { DMA2_Stream2, DMA_REQUEST_SPI1_RX, dma_id_10, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_RX = { DMA2_Stream3, DMA_REQUEST_SPI5_RX, dma_id_11, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_RX = { DMA2_Stream3, DMA_REQUEST_SPI4_RX, dma_id_11, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_5_TX = { DMA2_Stream4, DMA_REQUEST_SPI5_TX, dma_id_12, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_4_TX = { DMA2_Stream4, DMA_REQUEST_SPI4_TX, dma_id_12, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_TX = { DMA2_Stream5, BDMA_REQUEST_SPI6_TX, dma_id_13, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_1_TX = { DMA2_Stream5, DMA_REQUEST_SPI1_TX, dma_id_13, &dma_init_struct_spi_i2c };
const dma_descr_t dma_SPI_6_RX = { DMA2_Stream6, BDMA_REQUEST_SPI6_RX, dma_id_14, &dma_init_struct_spi_i2c };
static const uint8_t dma_irqn[NSTREAM] = {
DMA1_Stream0_IRQn,
DMA1_Stream1_IRQn,
DMA1_Stream2_IRQn,
DMA1_Stream3_IRQn,
DMA1_Stream4_IRQn,
DMA1_Stream5_IRQn,
DMA1_Stream6_IRQn,
DMA1_Stream7_IRQn,
DMA2_Stream0_IRQn,
DMA2_Stream1_IRQn,
DMA2_Stream2_IRQn,
DMA2_Stream3_IRQn,
DMA2_Stream4_IRQn,
DMA2_Stream5_IRQn,
DMA2_Stream6_IRQn,
DMA2_Stream7_IRQn,
};
#endif
static DMA_HandleTypeDef *dma_handle[NSTREAM] = {NULL};
static uint8_t dma_last_sub_instance[NSTREAM];
static volatile uint32_t dma_enable_mask = 0;
#if MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
volatile dma_idle_count_t dma_idle;
#endif
#define DMA_INVALID_CHANNEL 0xff // Value stored in dma_last_channel which means invalid
#if defined(STM32F0) || defined(STM32G0) || defined(STM32L0) || defined(STM32L1)
#define DMA1_IS_CLK_ENABLED() ((RCC->AHBENR & RCC_AHBENR_DMA1EN) != 0)
#if defined(DMA2)
#define DMA2_IS_CLK_ENABLED() ((RCC->AHBENR & RCC_AHBENR_DMA2EN) != 0)
#endif
#elif defined(STM32H5)
#define DMA1_IS_CLK_ENABLED() (__HAL_RCC_GPDMA1_IS_CLK_ENABLED())
#define DMA2_IS_CLK_ENABLED() (__HAL_RCC_GPDMA2_IS_CLK_ENABLED())
#define __HAL_RCC_DMA1_CLK_ENABLE __HAL_RCC_GPDMA1_CLK_ENABLE
#define __HAL_RCC_DMA2_CLK_ENABLE __HAL_RCC_GPDMA2_CLK_ENABLE
#define __HAL_RCC_DMA1_CLK_DISABLE __HAL_RCC_GPDMA1_CLK_DISABLE
#define __HAL_RCC_DMA2_CLK_DISABLE __HAL_RCC_GPDMA2_CLK_DISABLE
#else
#define DMA1_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA1EN) != 0)
#define DMA2_IS_CLK_ENABLED() ((RCC->AHB1ENR & RCC_AHB1ENR_DMA2EN) != 0)
#endif
#if defined(STM32F0)
void DMA1_Ch1_IRQHandler(void) {
IRQ_ENTER(DMA1_Ch1_IRQn);
if (dma_handle[dma_id_0] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
}
}
void DMA1_Ch2_3_DMA2_Ch1_2_IRQHandler(void) {
IRQ_ENTER(DMA1_Ch2_3_DMA2_Ch1_2_IRQn);
if (dma_handle[dma_id_1] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
}
if (dma_handle[dma_id_2] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
}
if (dma_handle[dma_id_7] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
}
if (dma_handle[dma_id_8] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
}
IRQ_EXIT(DMA1_Ch2_3_DMA2_Ch1_2_IRQn);
}
void DMA1_Ch4_7_DMA2_Ch3_5_IRQHandler(void) {
IRQ_ENTER(DMA1_Ch4_7_DMA2_Ch3_5_IRQn);
for (unsigned int i = 0; i < 4; ++i) {
if (dma_handle[dma_id_3 + i] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_3 + i]);
}
// When i==3 this will check an invalid handle, but it will always be NULL
if (dma_handle[dma_id_9 + i] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_9 + i]);
}
}
IRQ_EXIT(DMA1_Ch4_7_DMA2_Ch3_5_IRQn);
}
#elif defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
void DMA1_Stream0_IRQHandler(void) {
IRQ_ENTER(DMA1_Stream0_IRQn);
if (dma_handle[dma_id_0] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
}
IRQ_EXIT(DMA1_Stream0_IRQn);
}
void DMA1_Stream1_IRQHandler(void) {
IRQ_ENTER(DMA1_Stream1_IRQn);
if (dma_handle[dma_id_1] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
}
IRQ_EXIT(DMA1_Stream1_IRQn);
}
void DMA1_Stream2_IRQHandler(void) {
IRQ_ENTER(DMA1_Stream2_IRQn);
if (dma_handle[dma_id_2] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
}
IRQ_EXIT(DMA1_Stream2_IRQn);
}
void DMA1_Stream3_IRQHandler(void) {
IRQ_ENTER(DMA1_Stream3_IRQn);
if (dma_handle[dma_id_3] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
}
IRQ_EXIT(DMA1_Stream3_IRQn);
}
void DMA1_Stream4_IRQHandler(void) {
IRQ_ENTER(DMA1_Stream4_IRQn);
if (dma_handle[dma_id_4] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
}
IRQ_EXIT(DMA1_Stream4_IRQn);
}
void DMA1_Stream5_IRQHandler(void) {
IRQ_ENTER(DMA1_Stream5_IRQn);
if (dma_handle[dma_id_5] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
}
IRQ_EXIT(DMA1_Stream5_IRQn);
}
void DMA1_Stream6_IRQHandler(void) {
IRQ_ENTER(DMA1_Stream6_IRQn);
if (dma_handle[dma_id_6] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
}
IRQ_EXIT(DMA1_Stream6_IRQn);
}
void DMA1_Stream7_IRQHandler(void) {
IRQ_ENTER(DMA1_Stream7_IRQn);
if (dma_handle[dma_id_7] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
}
IRQ_EXIT(DMA1_Stream7_IRQn);
}
void DMA2_Stream0_IRQHandler(void) {
IRQ_ENTER(DMA2_Stream0_IRQn);
if (dma_handle[dma_id_8] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
}
IRQ_EXIT(DMA2_Stream0_IRQn);
}
void DMA2_Stream1_IRQHandler(void) {
IRQ_ENTER(DMA2_Stream1_IRQn);
if (dma_handle[dma_id_9] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
}
IRQ_EXIT(DMA2_Stream1_IRQn);
}
void DMA2_Stream2_IRQHandler(void) {
IRQ_ENTER(DMA2_Stream2_IRQn);
if (dma_handle[dma_id_10] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
}
IRQ_EXIT(DMA2_Stream2_IRQn);
}
void DMA2_Stream3_IRQHandler(void) {
IRQ_ENTER(DMA2_Stream3_IRQn);
if (dma_handle[dma_id_11] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
}
IRQ_EXIT(DMA2_Stream3_IRQn);
}
void DMA2_Stream4_IRQHandler(void) {
IRQ_ENTER(DMA2_Stream4_IRQn);
if (dma_handle[dma_id_12] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_12]);
}
IRQ_EXIT(DMA2_Stream4_IRQn);
}
void DMA2_Stream5_IRQHandler(void) {
IRQ_ENTER(DMA2_Stream5_IRQn);
if (dma_handle[dma_id_13] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_13]);
}
IRQ_EXIT(DMA2_Stream5_IRQn);
}
void DMA2_Stream6_IRQHandler(void) {
IRQ_ENTER(DMA2_Stream6_IRQn);
if (dma_handle[dma_id_14] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_14]);
}
IRQ_EXIT(DMA2_Stream6_IRQn);
}
void DMA2_Stream7_IRQHandler(void) {
IRQ_ENTER(DMA2_Stream7_IRQn);
if (dma_handle[dma_id_15] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_15]);
}
IRQ_EXIT(DMA2_Stream7_IRQn);
}
#elif defined(STM32G0)
void DMA1_Channel1_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel1_IRQn);
if (dma_handle[dma_id_0] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
}
IRQ_EXIT(DMA1_Channel1_IRQn);
}
void DMA1_Channel2_3_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel2_3_IRQn);
if (dma_handle[dma_id_1] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
}
if (dma_handle[dma_id_2] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
}
IRQ_EXIT(DMA1_Channel2_3_IRQn);
}
void DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQHandler(void) {
IRQ_ENTER(DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn);
if (dma_handle[dma_id_3] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
}
if (dma_handle[dma_id_4] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
}
if (dma_handle[dma_id_5] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
}
if (dma_handle[dma_id_6] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
}
if (dma_handle[dma_id_7] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
}
if (dma_handle[dma_id_8] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
}
if (dma_handle[dma_id_9] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
}
if (dma_handle[dma_id_10] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
}
if (dma_handle[dma_id_11] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
}
IRQ_EXIT(DMA1_Ch4_7_DMA2_Ch1_5_DMAMUX1_OVR_IRQn);
}
#elif defined(STM32G4)
void DMA1_Channel1_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel1_IRQn);
if (dma_handle[dma_id_0] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
}
IRQ_EXIT(DMA1_Channel1_IRQn);
}
void DMA1_Channel2_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel2_IRQn);
if (dma_handle[dma_id_1] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
}
IRQ_EXIT(DMA1_Channel2_IRQn);
}
void DMA1_Channel3_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel3_IRQn);
if (dma_handle[dma_id_2] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
}
IRQ_EXIT(DMA1_Channel3_IRQn);
}
void DMA1_Channel4_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel4_IRQn);
if (dma_handle[dma_id_3] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
}
IRQ_EXIT(DMA1_Channel4_IRQn);
}
void DMA1_Channel5_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel5_IRQn);
if (dma_handle[dma_id_4] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
}
IRQ_EXIT(DMA1_Channel5_IRQn);
}
void DMA1_Channel6_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel6_IRQn);
if (dma_handle[dma_id_5] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
}
IRQ_EXIT(DMA1_Channel6_IRQn);
}
#if !(defined(STM32G431xx) || defined(STM32G441xx))
void DMA1_Channel7_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel7_IRQn);
if (dma_handle[dma_id_12] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_12]);
}
IRQ_EXIT(DMA1_Channel7_IRQn);
}
void DMA1_Channel8_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel8_IRQn);
if (dma_handle[dma_id_13] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_13]);
}
IRQ_EXIT(DMA1_Channel8_IRQn);
}
#endif
void DMA2_Channel1_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel1_IRQn);
if (dma_handle[dma_id_6] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
}
IRQ_EXIT(DMA2_Channel1_IRQn);
}
void DMA2_Channel2_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel2_IRQn);
if (dma_handle[dma_id_7] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
}
IRQ_EXIT(DMA2_Channel2_IRQn);
}
void DMA2_Channel3_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel3_IRQn);
if (dma_handle[dma_id_8] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
}
IRQ_EXIT(DMA2_Channel3_IRQn);
}
void DMA2_Channel4_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel4_IRQn);
if (dma_handle[dma_id_9] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
}
IRQ_EXIT(DMA2_Channel4_IRQn);
}
void DMA2_Channel5_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel5_IRQn);
if (dma_handle[dma_id_10] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
}
IRQ_EXIT(DMA2_Channel5_IRQn);
}
void DMA2_Channel6_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel6_IRQn);
if (dma_handle[dma_id_11] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
}
IRQ_EXIT(DMA2_Channel6_IRQn);
}
#if !(defined(STM32G431xx) || defined(STM32G441xx))
void DMA2_Channel7_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel7_IRQn);
if (dma_handle[dma_id_14] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_14]);
}
IRQ_EXIT(DMA2_Channel7_IRQn);
}
void DMA2_Channel8_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel8_IRQn);
if (dma_handle[dma_id_15] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_15]);
}
IRQ_EXIT(DMA2_Channel8_IRQn);
}
#endif
#elif defined(STM32H5)
#define DEFINE_IRQ_HANDLER(periph, channel, id) \
void GPDMA##periph##_Channel##channel##_IRQHandler(void) { \
IRQ_ENTER(GPDMA##periph##_Channel##channel##_IRQn); \
if (dma_handle[id] != NULL) { \
HAL_DMA_IRQHandler(dma_handle[id]); \
} \
IRQ_EXIT(GPDMA##periph##_Channel##channel##_IRQn); \
}
DEFINE_IRQ_HANDLER(1, 0, dma_id_0)
DEFINE_IRQ_HANDLER(1, 1, dma_id_1)
DEFINE_IRQ_HANDLER(1, 2, dma_id_2)
DEFINE_IRQ_HANDLER(1, 3, dma_id_3)
DEFINE_IRQ_HANDLER(1, 4, dma_id_4)
DEFINE_IRQ_HANDLER(1, 5, dma_id_5)
DEFINE_IRQ_HANDLER(1, 6, dma_id_6)
DEFINE_IRQ_HANDLER(1, 7, dma_id_7)
DEFINE_IRQ_HANDLER(2, 0, dma_id_8)
DEFINE_IRQ_HANDLER(2, 1, dma_id_9)
DEFINE_IRQ_HANDLER(2, 2, dma_id_10)
DEFINE_IRQ_HANDLER(2, 3, dma_id_11)
DEFINE_IRQ_HANDLER(2, 4, dma_id_12)
DEFINE_IRQ_HANDLER(2, 5, dma_id_13)
DEFINE_IRQ_HANDLER(2, 6, dma_id_14)
DEFINE_IRQ_HANDLER(2, 7, dma_id_15)
#elif defined(STM32L0)
void DMA1_Channel1_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel1_IRQn);
if (dma_handle[dma_id_0] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
}
IRQ_EXIT(DMA1_Channel1_IRQn);
}
void DMA1_Channel2_3_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel2_3_IRQn);
if (dma_handle[dma_id_1] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
}
if (dma_handle[dma_id_2] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
}
IRQ_EXIT(DMA1_Channel2_3_IRQn);
}
void DMA1_Channel4_5_6_7_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel4_5_6_7_IRQn);
if (dma_handle[dma_id_3] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
}
if (dma_handle[dma_id_4] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
}
if (dma_handle[dma_id_5] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
}
if (dma_handle[dma_id_6] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
}
IRQ_EXIT(DMA1_Channel4_5_6_7_IRQn);
}
#elif defined(STM32L1) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
void DMA1_Channel1_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel1_IRQn);
if (dma_handle[dma_id_0] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_0]);
}
IRQ_EXIT(DMA1_Channel1_IRQn);
}
void DMA1_Channel2_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel2_IRQn);
if (dma_handle[dma_id_1] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_1]);
}
IRQ_EXIT(DMA1_Channel2_IRQn);
}
void DMA1_Channel3_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel3_IRQn);
if (dma_handle[dma_id_2] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_2]);
}
IRQ_EXIT(DMA1_Channel3_IRQn);
}
void DMA1_Channel4_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel4_IRQn);
if (dma_handle[dma_id_3] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_3]);
}
IRQ_EXIT(DMA1_Channel4_IRQn);
}
void DMA1_Channel5_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel5_IRQn);
if (dma_handle[dma_id_4] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_4]);
}
IRQ_EXIT(DMA1_Channel5_IRQn);
}
void DMA1_Channel6_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel6_IRQn);
if (dma_handle[dma_id_5] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_5]);
}
IRQ_EXIT(DMA1_Channel6_IRQn);
}
void DMA1_Channel7_IRQHandler(void) {
IRQ_ENTER(DMA1_Channel7_IRQn);
if (dma_handle[dma_id_6] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_6]);
}
IRQ_EXIT(DMA1_Channel7_IRQn);
}
void DMA2_Channel1_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel1_IRQn);
if (dma_handle[dma_id_7] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_7]);
}
IRQ_EXIT(DMA2_Channel1_IRQn);
}
void DMA2_Channel2_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel2_IRQn);
if (dma_handle[dma_id_8] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_8]);
}
IRQ_EXIT(DMA2_Channel2_IRQn);
}
void DMA2_Channel3_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel3_IRQn);
if (dma_handle[dma_id_9] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_9]);
}
IRQ_EXIT(DMA2_Channel3_IRQn);
}
void DMA2_Channel4_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel4_IRQn);
if (dma_handle[dma_id_10] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_10]);
}
IRQ_EXIT(DMA2_Channel4_IRQn);
}
void DMA2_Channel5_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel5_IRQn);
if (dma_handle[dma_id_11] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_11]);
}
IRQ_EXIT(DMA2_Channel5_IRQn);
}
#if !defined(STM32L1)
void DMA2_Channel6_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel6_IRQn);
if (dma_handle[dma_id_12] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_12]);
}
IRQ_EXIT(DMA2_Channel6_IRQn);
}
void DMA2_Channel7_IRQHandler(void) {
IRQ_ENTER(DMA2_Channel7_IRQn);
if (dma_handle[dma_id_13] != NULL) {
HAL_DMA_IRQHandler(dma_handle[dma_id_13]);
}
IRQ_EXIT(DMA2_Channel7_IRQn);
}
#endif
#endif
#if MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
static void dma_idle_handler(uint32_t tick);
// Resets the idle counter for the DMA controller associated with dma_id.
static void dma_tickle(dma_id_t dma_id) {
dma_idle.counter[(dma_id < NSTREAMS_PER_CONTROLLER) ? 0 : 1] = 1;
systick_enable_dispatch(SYSTICK_DISPATCH_DMA, dma_idle_handler);
}
#endif
static void dma_enable_clock(dma_id_t dma_id) {
// We don't want dma_tick_handler() to turn off the clock right after we
// enable it, so we need to mark the channel in use in an atomic fashion.
mp_uint_t irq_state = MICROPY_BEGIN_ATOMIC_SECTION();
uint32_t old_enable_mask = dma_enable_mask;
dma_enable_mask |= (1 << dma_id);
MICROPY_END_ATOMIC_SECTION(irq_state);
#if defined(STM32G4) || defined(STM32WB) || defined(STM32WL)
if (!__HAL_RCC_DMAMUX1_IS_CLK_ENABLED()) {
// MCU has a DMAMUX peripheral which needs to be enabled to multiplex the channels.
__HAL_RCC_DMAMUX1_CLK_ENABLE();
}
#endif
if (dma_id < NSTREAMS_PER_CONTROLLER) {
if (((old_enable_mask & DMA1_ENABLE_MASK) == 0) && !DMA1_IS_CLK_ENABLED()) {
__HAL_RCC_DMA1_CLK_ENABLE();
// We just turned on the clock. This means that anything stored
// in dma_last_channel (for DMA1) needs to be invalidated.
for (int channel = 0; channel < NSTREAMS_PER_CONTROLLER; channel++) {
dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL;
}
}
}
#if defined(DMA2) || defined(GPDMA2)
else {
if (((old_enable_mask & DMA2_ENABLE_MASK) == 0) && !DMA2_IS_CLK_ENABLED()) {
__HAL_RCC_DMA2_CLK_ENABLE();
// We just turned on the clock. This means that anything stored
// in dma_last_channel (for DMA2) needs to be invalidated.
for (int channel = NSTREAMS_PER_CONTROLLER; channel < NSTREAM; channel++) {
dma_last_sub_instance[channel] = DMA_INVALID_CHANNEL;
}
}
}
#endif
}
static void dma_disable_clock(dma_id_t dma_id) {
// We just mark the clock as disabled here, but we don't actually disable it.
// We wait for the timer to expire first, which means that back-to-back
// transfers don't have to initialize as much.
#if MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
dma_tickle(dma_id);
#endif
dma_enable_mask &= ~(1 << dma_id);
}
void dma_init_handle(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data) {
// initialise parameters
dma->Instance = dma_descr->instance;
dma->Init = *dma_descr->init;
dma->Init.Direction = dir;
#if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L0) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
dma->Init.Request = dma_descr->sub_instance;
#else
#if !defined(STM32F0) && !defined(STM32L1)
dma->Init.Channel = dma_descr->sub_instance;
#endif
#endif
#if defined(STM32H5)
// Configure src/dest settings based on the DMA direction.
if (dir == DMA_MEMORY_TO_PERIPH) {
dma->Init.SrcInc = DMA_SINC_INCREMENTED;
dma->Init.DestInc = DMA_DINC_FIXED;
} else if (dir == DMA_PERIPH_TO_MEMORY) {
dma->Init.SrcInc = DMA_SINC_FIXED;
dma->Init.DestInc = DMA_DINC_INCREMENTED;
}
#endif
// half of __HAL_LINKDMA(data, xxx, *dma)
// caller must implement other half by doing: data->xxx = dma
dma->Parent = data;
}
void dma_init(DMA_HandleTypeDef *dma, const dma_descr_t *dma_descr, uint32_t dir, void *data) {
// Some drivers allocate the DMA_HandleTypeDef from the stack
// (i.e. dac, i2c, spi) and for those cases we need to clear the
// structure so we don't get random values from the stack)
memset(dma, 0, sizeof(*dma));
if (dma_descr != NULL) {
dma_id_t dma_id = dma_descr->id;
dma_init_handle(dma, dma_descr, dir, data);
// set global pointer for IRQ handler
dma_handle[dma_id] = dma;
dma_enable_clock(dma_id);
#if defined(STM32G0) || defined(STM32G4) || defined(STM32H5) || defined(STM32H7) || defined(STM32L0) || defined(STM32L1) || defined(STM32L4) || defined(STM32WB) || defined(STM32WL)
// Always reset and configure the H7 and G0/G4/H7/L0/L4/WB/WL DMA peripheral
// (dma->State is set to HAL_DMA_STATE_RESET by memset above)
// TODO: understand how L0/L4 DMA works so this is not needed
HAL_DMA_DeInit(dma);
dma->Parent = data; // HAL_DMA_DeInit may clear Parent, so set it again
HAL_DMA_Init(dma);
NVIC_SetPriority(IRQn_NONNEG(dma_irqn[dma_id]), IRQ_PRI_DMA);
#else
// if this stream was previously configured for this channel/request and direction then we
// can skip most of the initialisation
uint8_t sub_inst = DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance) | (dir == DMA_PERIPH_TO_MEMORY) << 7;
if (dma_last_sub_instance[dma_id] != sub_inst) {
dma_last_sub_instance[dma_id] = sub_inst;
// reset and configure DMA peripheral
// (dma->State is set to HAL_DMA_STATE_RESET by memset above)
HAL_DMA_DeInit(dma);
HAL_DMA_Init(dma);
NVIC_SetPriority(IRQn_NONNEG(dma_irqn[dma_id]), IRQ_PRI_DMA);
#if defined(STM32F0)
if (dma->Instance < DMA2_Channel1) {
__HAL_DMA1_REMAP(dma_descr->sub_instance);
} else {
__HAL_DMA2_REMAP(dma_descr->sub_instance);
}
#endif
} else {
// only necessary initialization
dma->State = HAL_DMA_STATE_READY;
#if defined(STM32F0)
// These variables are used to access the relevant 4 bits in ISR and IFCR
if (dma_id < NSTREAMS_PER_CONTROLLER) {
dma->DmaBaseAddress = DMA1;
dma->ChannelIndex = dma_id * 4;
} else {
dma->DmaBaseAddress = DMA2;
dma->ChannelIndex = (dma_id - NSTREAMS_PER_CONTROLLER) * 4;
}
#elif defined(STM32F4) || defined(STM32F7)
// calculate DMA base address and bitshift to be used in IRQ handler
extern uint32_t DMA_CalcBaseAndBitshift(DMA_HandleTypeDef *hdma);
DMA_CalcBaseAndBitshift(dma);
#endif
}
#endif
HAL_NVIC_EnableIRQ(dma_irqn[dma_id]);
}
}
void dma_deinit(const dma_descr_t *dma_descr) {
if (dma_descr != NULL) {
#if !defined(STM32F0)
HAL_NVIC_DisableIRQ(dma_irqn[dma_descr->id]);
#endif
dma_handle[dma_descr->id] = NULL;
dma_disable_clock(dma_descr->id);
}
}
void dma_invalidate_channel(const dma_descr_t *dma_descr) {
if (dma_descr != NULL) {
dma_id_t dma_id = dma_descr->id;
// Only compare the sub-instance, not the direction bit (MSB)
if ((dma_last_sub_instance[dma_id] & 0x7f) == DMA_SUB_INSTANCE_AS_UINT8(dma_descr->sub_instance)) {
dma_last_sub_instance[dma_id] = DMA_INVALID_CHANNEL;
}
}
}
#if MICROPY_HW_DMA_ENABLE_AUTO_TURN_OFF
// Called from the SysTick handler
// We use LSB of tick to select which controller to process
static void dma_idle_handler(uint32_t tick) {
if (!DMA_IDLE_ENABLED() || !DMA_IDLE_TICK(tick)) {
return;
}
static const uint32_t controller_mask[] = {
DMA1_ENABLE_MASK,
#if defined(DMA2) || defined(GPDMA2)
DMA2_ENABLE_MASK,
#endif
};
{
int controller = (tick >> DMA_SYSTICK_LOG2) & 1;
if (dma_idle.counter[controller] == 0) {
return;
}
if (++dma_idle.counter[controller] > DMA_IDLE_TICK_MAX) {
if ((dma_enable_mask & controller_mask[controller]) == 0) {
// Nothing is active and we've reached our idle timeout,
// Now we'll really disable the clock.
dma_idle.counter[controller] = 0;
if (controller == 0) {
__HAL_RCC_DMA1_CLK_DISABLE();
#if defined(STM32G4)
#if defined(DMA2) || defined(GPDMA2)
if (__HAL_RCC_DMA2_IS_CLK_DISABLED())
#endif
{
__HAL_RCC_DMAMUX1_CLK_DISABLE();
}
#endif
}
#if defined(DMA2) || defined(GPDMA2)
else {
__HAL_RCC_DMA2_CLK_DISABLE();
#if defined(STM32G4)
if (__HAL_RCC_DMA1_IS_CLK_DISABLED()) {
__HAL_RCC_DMAMUX1_CLK_DISABLE();
}
#endif
}
#endif
} else {
// Something is still active, but the counter never got
// reset, so we'll reset the counter here.
dma_idle.counter[controller] = 1;
}
}
}
}
#endif
#if defined(STM32F0) || defined(STM32G4) || defined(STM32L0) || defined(STM32L1) || defined(STM32L4)
void dma_nohal_init(const dma_descr_t *descr, uint32_t config) {
DMA_Channel_TypeDef *dma = descr->instance;
// Enable the DMA peripheral
dma_enable_clock(descr->id);
// Set main configuration register
dma->CCR =
descr->init->Priority // PL
| descr->init->MemInc // MINC
| descr->init->PeriphInc // PINC
| config // MSIZE | PSIZE | CIRC | DIR
;
// Select channel that the DMA stream uses
#if defined(STM32F0)
if (dma < DMA2_Channel1) {
__HAL_DMA1_REMAP(descr->sub_instance);
} else {
__HAL_DMA2_REMAP(descr->sub_instance);
}
#elif defined(STM32G4)
uint32_t *dmamux_ctrl = (void *)(DMAMUX1_Channel0_BASE + 0x04 * descr->id);
*dmamux_ctrl = (*dmamux_ctrl & ~(0x7f)) | descr->sub_instance;
#elif defined(STM32L1)
#else
DMA_Request_TypeDef *dma_ctrl = (void *)(((uint32_t)dma & ~0xff) + (DMA1_CSELR_BASE - DMA1_BASE)); // DMA1_CSELR or DMA2_CSELR
uint32_t channel_number = (((uint32_t)dma & 0xff) - 0x08) / 20; // 0 through 6
uint32_t channel_pos = channel_number * 4;
dma_ctrl->CSELR = (dma_ctrl->CSELR & ~(0xf << channel_pos)) | (descr->sub_instance << channel_pos);
#endif
}
void dma_nohal_deinit(const dma_descr_t *descr) {
DMA_Channel_TypeDef *dma = descr->instance;
dma->CCR &= ~DMA_CCR_EN;
dma->CCR = 0;
dma->CNDTR = 0;
dma_deinit(descr);
}
void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) {
DMA_Channel_TypeDef *dma = descr->instance;
dma->CNDTR = len;
dma->CPAR = dst_addr;
dma->CMAR = src_addr;
dma->CCR |= DMA_CCR_EN;
}
#elif defined(STM32H5)
// Fully setup GPDMA linked list entry
typedef struct _dma_ll_full_t {
__IO uint32_t CTR1;
__IO uint32_t CTR2;
__IO uint32_t CBR1;
__IO uint32_t CSAR;
__IO uint32_t CDAR;
__IO uint32_t CLLR;
} dma_ll_full_t;
// Align LL entry to 32 bytes to ensure it never crosses a 64 kB boundary
__ALIGNED(32) static __IO dma_ll_full_t lli1;
void dma_nohal_init(const dma_descr_t *descr, uint32_t config) {
DMA_Channel_TypeDef *dma = descr->instance;
const DMA_InitTypeDef *init = descr->init;
// Enable the DMA peripheral
dma_enable_clock(descr->id);
// - LSM = 0, normal linked list mode
// - No interrupts
// - Not suspended, out of reset, disabled
// - Priority as defined by user
dma->CCR = init->Priority;
uint32_t ctr1reg = 0;
ctr1reg |= init->SrcDataWidth;
ctr1reg |= init->SrcInc;
ctr1reg |= (((init->SrcBurstLength - 1) << DMA_CTR1_SBL_1_Pos)) & DMA_CTR1_SBL_1_Msk;
ctr1reg |= init->DestDataWidth;
ctr1reg |= init->DestInc;
ctr1reg |= (((init->DestBurstLength - 1) << DMA_CTR1_DBL_1_Pos)) & DMA_CTR1_DBL_1_Msk;
uint32_t ctr2reg = 0;
ctr2reg |= init->BlkHWRequest;
ctr2reg |= init->Direction;
ctr2reg |= init->Mode;
ctr2reg |= init->TransferEventMode;
ctr2reg |= init->TransferAllocatedPort;
uint32_t reqsel = descr->sub_instance;
ctr2reg |= (reqsel << DMA_CTR2_REQSEL_Pos) & DMA_CTR2_REQSEL_Msk;
dma->CBR1 = 0; // set length to zero, so that GPDMA engine fetches first LL entry immediately
dma->CSAR = 0;
dma->CDAR = 0;
// Attach linked list entry
dma->CLBAR = (uint32_t)(&lli1) & 0xffff0000UL; // upper 16 bits of linked list addresses
uint32_t cllrreg = 0;
cllrreg |= (DMA_CLLR_UT1 | DMA_CLLR_UT2 | DMA_CLLR_UB1 | DMA_CLLR_USA | DMA_CLLR_UDA | DMA_CLLR_ULL);
cllrreg |= (uint32_t)(&lli1) & 0x0000fffcUL; // lower 16 bits of linked list entry address
dma->CLLR = cllrreg;
// Setup linked list control registers. Length and addresses are set in dma_nohal_start()
lli1.CTR1 = ctr1reg;
lli1.CTR2 = ctr2reg;
if ((config & DMA_CIRCULAR) == DMA_CIRCULAR) {
lli1.CLLR = cllrreg; // pointer to itself for circular operation
} else {
lli1.CLLR = 0; // No next node, this is end of linked list chain
}
}
void dma_nohal_deinit(const dma_descr_t *descr) {
DMA_Channel_TypeDef *dma = descr->instance;
if ((dma->CCR & DMA_CCR_EN) == DMA_CCR_EN) {
// Suspend currently running channel. Wait until done, then reset to clear FIFOs.
dma->CCR |= DMA_CCR_SUSP;
uint32_t t0 = mp_hal_ticks_ms();
while ((dma->CSR & DMA_CSR_SUSPF) != DMA_CSR_SUSPF) {
if (mp_hal_ticks_ms() - t0 >= 100) {
// Timeout.. Abort to avoid blocking system forever
break;
}
}
dma->CCR |= DMA_CCR_RESET;
}
dma->CCR &= ~DMA_CCR_EN;
dma->CCR = 0;
dma_deinit(descr);
}
void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) {
DMA_Channel_TypeDef *dma = descr->instance;
lli1.CBR1 = (len << DMA_CBR1_BNDT_Pos) & DMA_CBR1_BNDT_Msk;
lli1.CSAR = src_addr;
lli1.CDAR = dst_addr;
dma->CCR |= DMA_CCR_EN;
}
#elif defined(STM32G0) || defined(STM32WB) || defined(STM32WL)
// These functions are currently not implemented or needed for this MCU.
#else
void dma_nohal_init(const dma_descr_t *descr, uint32_t config) {
DMA_Stream_TypeDef *dma = descr->instance;
// Enable the DMA peripheral
dma_enable_clock(descr->id);
// Set main configuration register
const DMA_InitTypeDef *init = descr->init;
dma->CR =
descr->sub_instance // CHSEL
| init->MemBurst // MBURST
| init->PeriphBurst // PBURST
| init->Priority // PL
| init->MemInc // MINC
| init->PeriphInc // PINC
| config // MSIZE | PSIZE | CIRC | DIR
;
// Set FIFO control register
dma->FCR =
init->FIFOMode // DMDIS
| init->FIFOThreshold // FTH
;
#if defined(STM32H7)
// Configure DMAMUX
uint32_t request = descr->sub_instance & DMAMUX_CxCR_DMAREQ_ID;
if ((dma >= DMA1_Stream0 && dma <= DMA1_Stream7) || (dma >= DMA2_Stream0 && dma <= DMA2_Stream7)) {
// DMA1/2 channels 0 to 7 are hardwired to DMAMUX1 channels 0-15.
uint32_t stream = (((uint32_t)dma & 0xff) - 16) / 24 + ((dma >= DMA2_Stream0) ? 8 : 0);
// Set DMAMUX channel peripheral request.
((DMAMUX_Channel_TypeDef *)(((uint32_t)DMAMUX1_Channel0) + (stream * 4)))->CCR = request;
DMAMUX1_ChannelStatus->CFR = 1 << (stream & 0x1F);
// Configure DMAMUX request generator if needed.
if (request >= DMA_REQUEST_GENERATOR0 && request <= DMA_REQUEST_GENERATOR7) {
((DMAMUX_RequestGen_TypeDef *)(((uint32_t)DMAMUX1_RequestGenerator0) + ((request - 1) * 4)))->RGCR = 0;
DMAMUX1_RequestGenStatus->RGCFR = 1 << (request - 1);
}
#if ENABLE_BDMA // TODO: BDMA is Not currently supported by this driver.
} else if (dma >= BDMA_Channel0 && dma <= BDMA_Channel7) {
// BDMA channels 0 to 7 are hardwired to DMAMUX2 channels 0-7.
uint32_t stream = (((uint32_t)dma & 0xff) - 8) / 20;
// Set DMAMUX channel peripheral request.
((DMAMUX_Channel_TypeDef *)(((uint32_t)DMAMUX2_Channel0) + (stream * 4)))->CCR = request;
DMAMUX2_ChannelStatus->CFR = 1 << (stream & 0x1F);
// Configure DMAMUX request generator if needed.
if (request >= DMA_REQUEST_GENERATOR0 && request <= DMA_REQUEST_GENERATOR7) {
((DMAMUX_RequestGen_TypeDef *)(((uint32_t)DMAMUX2_RequestGenerator0) + ((request - 1) * 4)))->RGCR = 0;
DMAMUX2_RequestGenStatus->RGCFR = 1 << (request - 1);
}
#endif // ENABLE_BDMA
}
#endif // STM32H7
}
void dma_nohal_deinit(const dma_descr_t *descr) {
DMA_Stream_TypeDef *dma = descr->instance;
dma->CR &= ~DMA_SxCR_EN;
uint32_t t0 = mp_hal_ticks_ms();
while ((dma->CR & DMA_SxCR_EN) && mp_hal_ticks_ms() - t0 < 100) {
}
dma->CR = 0;
dma->NDTR = 0;
dma->FCR = 0x21;
dma_deinit(descr);
}
void dma_nohal_start(const dma_descr_t *descr, uint32_t src_addr, uint32_t dst_addr, uint16_t len) {
// Must clear all event flags for this stream before enabling it
DMA_TypeDef *dma_ctrl;
uint32_t ch = descr->id;
if (ch < NSTREAMS_PER_CONTROLLER) {
dma_ctrl = DMA1;
} else {
dma_ctrl = DMA2;
ch -= NSTREAMS_PER_CONTROLLER;
}
__IO uint32_t *ifcr;
if (ch <= 3) {
ifcr = &dma_ctrl->LIFCR;
} else {
ifcr = &dma_ctrl->HIFCR;
ch -= 4;
}
if (ch <= 1) {
ch = ch * 6;
} else {
ch = 4 + ch * 6;
}
*ifcr = 0x3d << ch;
// Configure and enable stream
DMA_Stream_TypeDef *dma = descr->instance;
dma->CR &= ~DMA_SxCR_DBM;
dma->NDTR = len;
dma->PAR = dst_addr;
dma->M0AR = src_addr;
dma->CR |= DMA_SxCR_EN;
}
#endif
#define DMA_ID_FROM_CONTROLLER_STREAM(c, s) ((s) + (c) * NSTREAMS_PER_CONTROLLER)
void dma_external_acquire(uint32_t controller, uint32_t stream) {
dma_enable_clock(DMA_ID_FROM_CONTROLLER_STREAM(controller, stream));
}
void dma_external_release(uint32_t controller, uint32_t stream) {
dma_disable_clock(DMA_ID_FROM_CONTROLLER_STREAM(controller, stream));
}