399 lines
15 KiB
C
399 lines
15 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2017 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "py/builtin.h"
|
|
#include "py/runtime.h"
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|
|
|
|
#include <math.h>
|
|
|
|
// M_PI is not part of the math.h standard and may not be defined
|
|
// And by defining our own we can ensure it uses the correct const format.
|
|
#define MP_PI MICROPY_FLOAT_CONST(3.14159265358979323846)
|
|
|
|
STATIC NORETURN void math_error(void) {
|
|
mp_raise_ValueError("math domain error");
|
|
}
|
|
|
|
STATIC mp_obj_t math_generic_1(mp_obj_t x_obj, mp_float_t (*f)(mp_float_t)) {
|
|
mp_float_t x = mp_obj_get_float(x_obj);
|
|
mp_float_t ans = f(x);
|
|
if ((isnan(ans) && !isnan(x)) || (isinf(ans) && !isinf(x))) {
|
|
math_error();
|
|
}
|
|
return mp_obj_new_float(ans);
|
|
}
|
|
|
|
STATIC mp_obj_t math_generic_2(mp_obj_t x_obj, mp_obj_t y_obj, mp_float_t (*f)(mp_float_t, mp_float_t)) {
|
|
mp_float_t x = mp_obj_get_float(x_obj);
|
|
mp_float_t y = mp_obj_get_float(y_obj);
|
|
mp_float_t ans = f(x, y);
|
|
if ((isnan(ans) && !isnan(x) && !isnan(y)) || (isinf(ans) && !isinf(x))) {
|
|
math_error();
|
|
}
|
|
return mp_obj_new_float(ans);
|
|
}
|
|
|
|
#define MATH_FUN_1(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { \
|
|
return math_generic_1(x_obj, MICROPY_FLOAT_C_FUN(c_name)); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
|
|
|
|
#define MATH_FUN_1_TO_BOOL(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_bool(c_name(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
|
|
|
|
#define MATH_FUN_1_TO_INT(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj) { return mp_obj_new_int_from_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj))); } \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_##py_name##_obj, mp_math_##py_name);
|
|
|
|
#define MATH_FUN_2(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
|
|
return math_generic_2(x_obj, y_obj, MICROPY_FLOAT_C_FUN(c_name)); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name);
|
|
|
|
#define MATH_FUN_2_FLT_INT(py_name, c_name) \
|
|
STATIC mp_obj_t mp_math_##py_name(mp_obj_t x_obj, mp_obj_t y_obj) { \
|
|
return mp_obj_new_float(MICROPY_FLOAT_C_FUN(c_name)(mp_obj_get_float(x_obj), mp_obj_get_int(y_obj))); \
|
|
} \
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_2(mp_math_##py_name##_obj, mp_math_##py_name);
|
|
|
|
#if MP_NEED_LOG2
|
|
#undef log2
|
|
#undef log2f
|
|
// 1.442695040888963407354163704 is 1/_M_LN2
|
|
mp_float_t MICROPY_FLOAT_C_FUN(log2)(mp_float_t x) {
|
|
return MICROPY_FLOAT_C_FUN(log)(x) * MICROPY_FLOAT_CONST(1.442695040888963407354163704);
|
|
}
|
|
#endif
|
|
|
|
// sqrt(x): returns the square root of x
|
|
MATH_FUN_1(sqrt, sqrt)
|
|
// pow(x, y): returns x to the power of y
|
|
MATH_FUN_2(pow, pow)
|
|
// exp(x)
|
|
MATH_FUN_1(exp, exp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
// expm1(x)
|
|
MATH_FUN_1(expm1, expm1)
|
|
// log2(x)
|
|
MATH_FUN_1(log2, log2)
|
|
// log10(x)
|
|
MATH_FUN_1(log10, log10)
|
|
// cosh(x)
|
|
MATH_FUN_1(cosh, cosh)
|
|
// sinh(x)
|
|
MATH_FUN_1(sinh, sinh)
|
|
// tanh(x)
|
|
MATH_FUN_1(tanh, tanh)
|
|
// acosh(x)
|
|
MATH_FUN_1(acosh, acosh)
|
|
// asinh(x)
|
|
MATH_FUN_1(asinh, asinh)
|
|
// atanh(x)
|
|
MATH_FUN_1(atanh, atanh)
|
|
#endif
|
|
// cos(x)
|
|
MATH_FUN_1(cos, cos)
|
|
// sin(x)
|
|
MATH_FUN_1(sin, sin)
|
|
// tan(x)
|
|
MATH_FUN_1(tan, tan)
|
|
// acos(x)
|
|
MATH_FUN_1(acos, acos)
|
|
// asin(x)
|
|
MATH_FUN_1(asin, asin)
|
|
// atan(x)
|
|
MATH_FUN_1(atan, atan)
|
|
// atan2(y, x)
|
|
MATH_FUN_2(atan2, atan2)
|
|
// ceil(x)
|
|
MATH_FUN_1_TO_INT(ceil, ceil)
|
|
// copysign(x, y)
|
|
STATIC mp_float_t MICROPY_FLOAT_C_FUN(copysign_func)(mp_float_t x, mp_float_t y) {
|
|
return MICROPY_FLOAT_C_FUN(copysign)(x, y);
|
|
}
|
|
MATH_FUN_2(copysign, copysign_func)
|
|
// fabs(x)
|
|
STATIC mp_float_t MICROPY_FLOAT_C_FUN(fabs_func)(mp_float_t x) {
|
|
return MICROPY_FLOAT_C_FUN(fabs)(x);
|
|
}
|
|
MATH_FUN_1(fabs, fabs_func)
|
|
// floor(x)
|
|
MATH_FUN_1_TO_INT(floor, floor) //TODO: delegate to x.__floor__() if x is not a float
|
|
// fmod(x, y)
|
|
MATH_FUN_2(fmod, fmod)
|
|
// isfinite(x)
|
|
MATH_FUN_1_TO_BOOL(isfinite, isfinite)
|
|
// isinf(x)
|
|
MATH_FUN_1_TO_BOOL(isinf, isinf)
|
|
// isnan(x)
|
|
MATH_FUN_1_TO_BOOL(isnan, isnan)
|
|
// trunc(x)
|
|
MATH_FUN_1_TO_INT(trunc, trunc)
|
|
// ldexp(x, exp)
|
|
MATH_FUN_2_FLT_INT(ldexp, ldexp)
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
// erf(x): return the error function of x
|
|
MATH_FUN_1(erf, erf)
|
|
// erfc(x): return the complementary error function of x
|
|
MATH_FUN_1(erfc, erfc)
|
|
// gamma(x): return the gamma function of x
|
|
MATH_FUN_1(gamma, tgamma)
|
|
// lgamma(x): return the natural logarithm of the gamma function of x
|
|
MATH_FUN_1(lgamma, lgamma)
|
|
#endif
|
|
//TODO: fsum
|
|
|
|
#if MICROPY_PY_MATH_ISCLOSE
|
|
STATIC mp_obj_t mp_math_isclose(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
enum { ARG_a, ARG_b, ARG_rel_tol, ARG_abs_tol };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ},
|
|
{MP_QSTR_, MP_ARG_REQUIRED | MP_ARG_OBJ},
|
|
{MP_QSTR_rel_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL}},
|
|
{MP_QSTR_abs_tol, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NEW_SMALL_INT(0)}},
|
|
};
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
const mp_float_t a = mp_obj_get_float(args[ARG_a].u_obj);
|
|
const mp_float_t b = mp_obj_get_float(args[ARG_b].u_obj);
|
|
const mp_float_t rel_tol = args[ARG_rel_tol].u_obj == MP_OBJ_NULL
|
|
? (mp_float_t)1e-9 : mp_obj_get_float(args[ARG_rel_tol].u_obj);
|
|
const mp_float_t abs_tol = mp_obj_get_float(args[ARG_abs_tol].u_obj);
|
|
if (rel_tol < (mp_float_t)0.0 || abs_tol < (mp_float_t)0.0) {
|
|
math_error();
|
|
}
|
|
if (a == b) {
|
|
return mp_const_true;
|
|
}
|
|
const mp_float_t difference = MICROPY_FLOAT_C_FUN(fabs)(a - b);
|
|
if (isinf(difference)) { // Either a or b is inf
|
|
return mp_const_false;
|
|
}
|
|
if ((difference <= abs_tol) ||
|
|
(difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * a)) ||
|
|
(difference <= MICROPY_FLOAT_C_FUN(fabs)(rel_tol * b))) {
|
|
return mp_const_true;
|
|
}
|
|
return mp_const_false;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(mp_math_isclose_obj, 2, mp_math_isclose);
|
|
#endif
|
|
|
|
// Function that takes a variable number of arguments
|
|
|
|
// log(x[, base])
|
|
STATIC mp_obj_t mp_math_log(size_t n_args, const mp_obj_t *args) {
|
|
mp_float_t x = mp_obj_get_float(args[0]);
|
|
if (x <= (mp_float_t)0.0) {
|
|
math_error();
|
|
}
|
|
mp_float_t l = MICROPY_FLOAT_C_FUN(log)(x);
|
|
if (n_args == 1) {
|
|
return mp_obj_new_float(l);
|
|
} else {
|
|
mp_float_t base = mp_obj_get_float(args[1]);
|
|
if (base <= (mp_float_t)0.0) {
|
|
math_error();
|
|
} else if (base == (mp_float_t)1.0) {
|
|
mp_raise_msg(&mp_type_ZeroDivisionError, "divide by zero");
|
|
}
|
|
return mp_obj_new_float(l / MICROPY_FLOAT_C_FUN(log)(base));
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mp_math_log_obj, 1, 2, mp_math_log);
|
|
|
|
// Functions that return a tuple
|
|
|
|
// frexp(x): converts a floating-point number to fractional and integral components
|
|
STATIC mp_obj_t mp_math_frexp(mp_obj_t x_obj) {
|
|
int int_exponent = 0;
|
|
mp_float_t significand = MICROPY_FLOAT_C_FUN(frexp)(mp_obj_get_float(x_obj), &int_exponent);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(significand);
|
|
tuple[1] = mp_obj_new_int(int_exponent);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_frexp_obj, mp_math_frexp);
|
|
|
|
// modf(x)
|
|
STATIC mp_obj_t mp_math_modf(mp_obj_t x_obj) {
|
|
mp_float_t int_part = 0.0;
|
|
mp_float_t fractional_part = MICROPY_FLOAT_C_FUN(modf)(mp_obj_get_float(x_obj), &int_part);
|
|
mp_obj_t tuple[2];
|
|
tuple[0] = mp_obj_new_float(fractional_part);
|
|
tuple[1] = mp_obj_new_float(int_part);
|
|
return mp_obj_new_tuple(2, tuple);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_modf_obj, mp_math_modf);
|
|
|
|
// Angular conversions
|
|
|
|
// radians(x)
|
|
STATIC mp_obj_t mp_math_radians(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MP_PI / MICROPY_FLOAT_CONST(180.0)));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_radians_obj, mp_math_radians);
|
|
|
|
// degrees(x)
|
|
STATIC mp_obj_t mp_math_degrees(mp_obj_t x_obj) {
|
|
return mp_obj_new_float(mp_obj_get_float(x_obj) * (MICROPY_FLOAT_CONST(180.0) / MP_PI));
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_degrees_obj, mp_math_degrees);
|
|
|
|
#if MICROPY_PY_MATH_FACTORIAL
|
|
|
|
#if MICROPY_OPT_MATH_FACTORIAL
|
|
|
|
// factorial(x): slightly efficient recursive implementation
|
|
STATIC mp_obj_t mp_math_factorial_inner(mp_uint_t start, mp_uint_t end) {
|
|
if (start == end) {
|
|
return mp_obj_new_int(start);
|
|
} else if (end - start == 1) {
|
|
return mp_binary_op(MP_BINARY_OP_MULTIPLY, MP_OBJ_NEW_SMALL_INT(start), MP_OBJ_NEW_SMALL_INT(end));
|
|
} else if (end - start == 2) {
|
|
mp_obj_t left = MP_OBJ_NEW_SMALL_INT(start);
|
|
mp_obj_t middle = MP_OBJ_NEW_SMALL_INT(start + 1);
|
|
mp_obj_t right = MP_OBJ_NEW_SMALL_INT(end);
|
|
mp_obj_t tmp = mp_binary_op(MP_BINARY_OP_MULTIPLY, left, middle);
|
|
return mp_binary_op(MP_BINARY_OP_MULTIPLY, tmp, right);
|
|
} else {
|
|
mp_uint_t middle = start + ((end - start) >> 1);
|
|
mp_obj_t left = mp_math_factorial_inner(start, middle);
|
|
mp_obj_t right = mp_math_factorial_inner(middle + 1, end);
|
|
return mp_binary_op(MP_BINARY_OP_MULTIPLY, left, right);
|
|
}
|
|
}
|
|
STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
|
|
mp_int_t max = mp_obj_get_int(x_obj);
|
|
if (max < 0) {
|
|
mp_raise_msg(&mp_type_ValueError, "negative factorial");
|
|
} else if (max == 0) {
|
|
return MP_OBJ_NEW_SMALL_INT(1);
|
|
}
|
|
return mp_math_factorial_inner(1, max);
|
|
}
|
|
|
|
#else
|
|
|
|
// factorial(x): squared difference implementation
|
|
// based on http://www.luschny.de/math/factorial/index.html
|
|
STATIC mp_obj_t mp_math_factorial(mp_obj_t x_obj) {
|
|
mp_int_t max = mp_obj_get_int(x_obj);
|
|
if (max < 0) {
|
|
mp_raise_msg(&mp_type_ValueError, "negative factorial");
|
|
} else if (max <= 1) {
|
|
return MP_OBJ_NEW_SMALL_INT(1);
|
|
}
|
|
mp_int_t h = max >> 1;
|
|
mp_int_t q = h * h;
|
|
mp_int_t r = q << 1;
|
|
if (max & 1) {
|
|
r *= max;
|
|
}
|
|
mp_obj_t prod = MP_OBJ_NEW_SMALL_INT(r);
|
|
for (mp_int_t num = 1; num < max - 2; num += 2) {
|
|
q -= num;
|
|
prod = mp_binary_op(MP_BINARY_OP_MULTIPLY, prod, MP_OBJ_NEW_SMALL_INT(q));
|
|
}
|
|
return prod;
|
|
}
|
|
|
|
#endif
|
|
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(mp_math_factorial_obj, mp_math_factorial);
|
|
|
|
#endif
|
|
|
|
STATIC const mp_rom_map_elem_t mp_module_math_globals_table[] = {
|
|
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_math) },
|
|
{ MP_ROM_QSTR(MP_QSTR_e), mp_const_float_e },
|
|
{ MP_ROM_QSTR(MP_QSTR_pi), mp_const_float_pi },
|
|
{ MP_ROM_QSTR(MP_QSTR_sqrt), MP_ROM_PTR(&mp_math_sqrt_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_pow), MP_ROM_PTR(&mp_math_pow_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_exp), MP_ROM_PTR(&mp_math_exp_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_expm1), MP_ROM_PTR(&mp_math_expm1_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_log), MP_ROM_PTR(&mp_math_log_obj) },
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_log2), MP_ROM_PTR(&mp_math_log2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_log10), MP_ROM_PTR(&mp_math_log10_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_cosh), MP_ROM_PTR(&mp_math_cosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sinh), MP_ROM_PTR(&mp_math_sinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tanh), MP_ROM_PTR(&mp_math_tanh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acosh), MP_ROM_PTR(&mp_math_acosh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asinh), MP_ROM_PTR(&mp_math_asinh_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atanh), MP_ROM_PTR(&mp_math_atanh_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_cos), MP_ROM_PTR(&mp_math_cos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_sin), MP_ROM_PTR(&mp_math_sin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_tan), MP_ROM_PTR(&mp_math_tan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_acos), MP_ROM_PTR(&mp_math_acos_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_asin), MP_ROM_PTR(&mp_math_asin_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan), MP_ROM_PTR(&mp_math_atan_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_atan2), MP_ROM_PTR(&mp_math_atan2_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ceil), MP_ROM_PTR(&mp_math_ceil_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_copysign), MP_ROM_PTR(&mp_math_copysign_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fabs), MP_ROM_PTR(&mp_math_fabs_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_floor), MP_ROM_PTR(&mp_math_floor_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_fmod), MP_ROM_PTR(&mp_math_fmod_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_frexp), MP_ROM_PTR(&mp_math_frexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_ldexp), MP_ROM_PTR(&mp_math_ldexp_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_modf), MP_ROM_PTR(&mp_math_modf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isfinite), MP_ROM_PTR(&mp_math_isfinite_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isinf), MP_ROM_PTR(&mp_math_isinf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_isnan), MP_ROM_PTR(&mp_math_isnan_obj) },
|
|
#if MICROPY_PY_MATH_ISCLOSE
|
|
{ MP_ROM_QSTR(MP_QSTR_isclose), MP_ROM_PTR(&mp_math_isclose_obj) },
|
|
#endif
|
|
{ MP_ROM_QSTR(MP_QSTR_trunc), MP_ROM_PTR(&mp_math_trunc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_radians), MP_ROM_PTR(&mp_math_radians_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_degrees), MP_ROM_PTR(&mp_math_degrees_obj) },
|
|
#if MICROPY_PY_MATH_FACTORIAL
|
|
{ MP_ROM_QSTR(MP_QSTR_factorial), MP_ROM_PTR(&mp_math_factorial_obj) },
|
|
#endif
|
|
#if MICROPY_PY_MATH_SPECIAL_FUNCTIONS
|
|
{ MP_ROM_QSTR(MP_QSTR_erf), MP_ROM_PTR(&mp_math_erf_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_erfc), MP_ROM_PTR(&mp_math_erfc_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_gamma), MP_ROM_PTR(&mp_math_gamma_obj) },
|
|
{ MP_ROM_QSTR(MP_QSTR_lgamma), MP_ROM_PTR(&mp_math_lgamma_obj) },
|
|
#endif
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(mp_module_math_globals, mp_module_math_globals_table);
|
|
|
|
const mp_obj_module_t mp_module_math = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t *)&mp_module_math_globals,
|
|
};
|
|
|
|
#endif // MICROPY_PY_BUILTINS_FLOAT && MICROPY_PY_MATH
|