795 lines
24 KiB
C
795 lines
24 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013-2018 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "py/stackctrl.h"
|
|
#include "py/gc.h"
|
|
#include "py/mperrno.h"
|
|
#include "py/mphal.h"
|
|
#include "lib/mp-readline/readline.h"
|
|
#include "lib/utils/pyexec.h"
|
|
#include "lib/oofatfs/ff.h"
|
|
#include "lib/littlefs/lfs1.h"
|
|
#include "lib/littlefs/lfs1_util.h"
|
|
#include "lib/littlefs/lfs2.h"
|
|
#include "lib/littlefs/lfs2_util.h"
|
|
#include "extmod/vfs.h"
|
|
#include "extmod/vfs_fat.h"
|
|
#include "extmod/vfs_lfs.h"
|
|
|
|
#if MICROPY_PY_LWIP
|
|
#include "lwip/init.h"
|
|
#include "lwip/apps/mdns.h"
|
|
#include "drivers/cyw43/cyw43.h"
|
|
#endif
|
|
|
|
#if MICROPY_BLUETOOTH_NIMBLE
|
|
#include "extmod/modbluetooth.h"
|
|
#endif
|
|
|
|
#include "mpu.h"
|
|
#include "rfcore.h"
|
|
#include "systick.h"
|
|
#include "pendsv.h"
|
|
#include "powerctrl.h"
|
|
#include "pybthread.h"
|
|
#include "gccollect.h"
|
|
#include "factoryreset.h"
|
|
#include "modmachine.h"
|
|
#include "softtimer.h"
|
|
#include "i2c.h"
|
|
#include "spi.h"
|
|
#include "uart.h"
|
|
#include "timer.h"
|
|
#include "led.h"
|
|
#include "pin.h"
|
|
#include "extint.h"
|
|
#include "usrsw.h"
|
|
#include "usb.h"
|
|
#include "rtc.h"
|
|
#include "storage.h"
|
|
#include "sdcard.h"
|
|
#include "sdram.h"
|
|
#include "rng.h"
|
|
#include "accel.h"
|
|
#include "servo.h"
|
|
#include "dac.h"
|
|
#include "can.h"
|
|
#include "modnetwork.h"
|
|
|
|
#if MICROPY_PY_THREAD
|
|
STATIC pyb_thread_t pyb_thread_main;
|
|
#endif
|
|
|
|
#if defined(MICROPY_HW_UART_REPL)
|
|
#ifndef MICROPY_HW_UART_REPL_RXBUF
|
|
#define MICROPY_HW_UART_REPL_RXBUF (260)
|
|
#endif
|
|
STATIC pyb_uart_obj_t pyb_uart_repl_obj;
|
|
STATIC uint8_t pyb_uart_repl_rxbuf[MICROPY_HW_UART_REPL_RXBUF];
|
|
#endif
|
|
|
|
void flash_error(int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
led_state(PYB_LED_RED, 1);
|
|
led_state(PYB_LED_GREEN, 0);
|
|
mp_hal_delay_ms(250);
|
|
led_state(PYB_LED_RED, 0);
|
|
led_state(PYB_LED_GREEN, 1);
|
|
mp_hal_delay_ms(250);
|
|
}
|
|
led_state(PYB_LED_GREEN, 0);
|
|
}
|
|
|
|
void NORETURN __fatal_error(const char *msg) {
|
|
for (volatile uint delay = 0; delay < 10000000; delay++) {
|
|
}
|
|
led_state(1, 1);
|
|
led_state(2, 1);
|
|
led_state(3, 1);
|
|
led_state(4, 1);
|
|
mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
|
|
mp_hal_stdout_tx_strn(msg, strlen(msg));
|
|
for (uint i = 0;;) {
|
|
led_toggle(((i++) & 3) + 1);
|
|
for (volatile uint delay = 0; delay < 10000000; delay++) {
|
|
}
|
|
if (i >= 16) {
|
|
// to conserve power
|
|
__WFI();
|
|
}
|
|
}
|
|
}
|
|
|
|
void nlr_jump_fail(void *val) {
|
|
printf("FATAL: uncaught exception %p\n", val);
|
|
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(val));
|
|
__fatal_error("");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
(void)func;
|
|
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("");
|
|
}
|
|
#endif
|
|
|
|
STATIC mp_obj_t pyb_main(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
|
|
};
|
|
|
|
if (mp_obj_is_str(pos_args[0])) {
|
|
MP_STATE_PORT(pyb_config_main) = pos_args[0];
|
|
|
|
// parse args
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
#if MICROPY_ENABLE_COMPILER
|
|
MP_STATE_VM(mp_optimise_value) = args[0].u_int;
|
|
#endif
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);
|
|
|
|
#if MICROPY_HW_ENABLE_STORAGE
|
|
STATIC int vfs_mount_and_chdir(mp_obj_t bdev, mp_obj_t mount_point) {
|
|
nlr_buf_t nlr;
|
|
mp_int_t ret = -MP_EIO;
|
|
if (nlr_push(&nlr) == 0) {
|
|
mp_obj_t args[] = { bdev, mount_point };
|
|
mp_vfs_mount(2, args, (mp_map_t*)&mp_const_empty_map);
|
|
mp_vfs_chdir(mount_point);
|
|
ret = 0; // success
|
|
nlr_pop();
|
|
} else {
|
|
mp_obj_base_t *exc = nlr.ret_val;
|
|
if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(exc->type), MP_OBJ_FROM_PTR(&mp_type_OSError))) {
|
|
mp_obj_t v = mp_obj_exception_get_value(MP_OBJ_FROM_PTR(exc));
|
|
mp_obj_get_int_maybe(v, &ret); // get errno value
|
|
ret = -ret;
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// avoid inlining to avoid stack usage within main()
|
|
MP_NOINLINE STATIC bool init_flash_fs(uint reset_mode) {
|
|
if (reset_mode == 3) {
|
|
// Asked by user to reset filesystem
|
|
factory_reset_create_filesystem();
|
|
}
|
|
|
|
// Default block device to entire flash storage
|
|
mp_obj_t bdev = MP_OBJ_FROM_PTR(&pyb_flash_obj);
|
|
|
|
#if MICROPY_VFS_LFS1 || MICROPY_VFS_LFS2
|
|
|
|
// Try to detect the block device used for the main filesystem, based on the first block
|
|
|
|
uint8_t buf[FLASH_BLOCK_SIZE];
|
|
storage_read_blocks(buf, FLASH_PART1_START_BLOCK, 1);
|
|
|
|
mp_int_t len = -1;
|
|
|
|
#if MICROPY_VFS_LFS1
|
|
if (memcmp(&buf[40], "littlefs", 8) == 0) {
|
|
// LFS1
|
|
lfs1_superblock_t *superblock = (void*)&buf[12];
|
|
uint32_t block_size = lfs1_fromle32(superblock->d.block_size);
|
|
uint32_t block_count = lfs1_fromle32(superblock->d.block_count);
|
|
len = block_count * block_size;
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_VFS_LFS2
|
|
if (memcmp(&buf[8], "littlefs", 8) == 0) {
|
|
// LFS2
|
|
lfs2_superblock_t *superblock = (void*)&buf[20];
|
|
uint32_t block_size = lfs2_fromle32(superblock->block_size);
|
|
uint32_t block_count = lfs2_fromle32(superblock->block_count);
|
|
len = block_count * block_size;
|
|
}
|
|
#endif
|
|
|
|
if (len != -1) {
|
|
// Detected a littlefs filesystem so create correct block device for it
|
|
mp_obj_t args[] = { MP_OBJ_NEW_SMALL_INT(0), MP_OBJ_NEW_SMALL_INT(len) };
|
|
bdev = pyb_flash_type.make_new(&pyb_flash_type, 2, 0, args);
|
|
}
|
|
|
|
#endif
|
|
|
|
// Try to mount the flash on "/flash" and chdir to it for the boot-up directory.
|
|
mp_obj_t mount_point = MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash);
|
|
int ret = vfs_mount_and_chdir(bdev, mount_point);
|
|
|
|
if (ret == -MP_ENODEV && bdev == MP_OBJ_FROM_PTR(&pyb_flash_obj) && reset_mode != 3) {
|
|
// No filesystem, bdev is still the default (so didn't detect a possibly corrupt littlefs),
|
|
// and didn't already create a filesystem, so try to create a fresh one now.
|
|
ret = factory_reset_create_filesystem();
|
|
if (ret == 0) {
|
|
ret = vfs_mount_and_chdir(bdev, mount_point);
|
|
}
|
|
}
|
|
|
|
if (ret != 0) {
|
|
printf("MPY: can't mount flash\n");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_SDCARD_MOUNT_AT_BOOT
|
|
STATIC bool init_sdcard_fs(void) {
|
|
bool first_part = true;
|
|
for (int part_num = 1; part_num <= 4; ++part_num) {
|
|
// create vfs object
|
|
fs_user_mount_t *vfs_fat = m_new_obj_maybe(fs_user_mount_t);
|
|
mp_vfs_mount_t *vfs = m_new_obj_maybe(mp_vfs_mount_t);
|
|
if (vfs == NULL || vfs_fat == NULL) {
|
|
break;
|
|
}
|
|
vfs_fat->blockdev.flags = MP_BLOCKDEV_FLAG_FREE_OBJ;
|
|
sdcard_init_vfs(vfs_fat, part_num);
|
|
|
|
// try to mount the partition
|
|
FRESULT res = f_mount(&vfs_fat->fatfs);
|
|
|
|
if (res != FR_OK) {
|
|
// couldn't mount
|
|
m_del_obj(fs_user_mount_t, vfs_fat);
|
|
m_del_obj(mp_vfs_mount_t, vfs);
|
|
} else {
|
|
// mounted via FatFs, now mount the SD partition in the VFS
|
|
if (first_part) {
|
|
// the first available partition is traditionally called "sd" for simplicity
|
|
vfs->str = "/sd";
|
|
vfs->len = 3;
|
|
} else {
|
|
// subsequent partitions are numbered by their index in the partition table
|
|
if (part_num == 2) {
|
|
vfs->str = "/sd2";
|
|
} else if (part_num == 2) {
|
|
vfs->str = "/sd3";
|
|
} else {
|
|
vfs->str = "/sd4";
|
|
}
|
|
vfs->len = 4;
|
|
}
|
|
vfs->obj = MP_OBJ_FROM_PTR(vfs_fat);
|
|
vfs->next = NULL;
|
|
for (mp_vfs_mount_t **m = &MP_STATE_VM(vfs_mount_table);; m = &(*m)->next) {
|
|
if (*m == NULL) {
|
|
*m = vfs;
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) {
|
|
// if no USB MSC medium is selected then use the SD card
|
|
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
// only use SD card as current directory if that's what the USB medium is
|
|
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD)
|
|
#endif
|
|
{
|
|
if (first_part) {
|
|
// use SD card as current directory
|
|
MP_STATE_PORT(vfs_cur) = vfs;
|
|
}
|
|
}
|
|
first_part = false;
|
|
}
|
|
}
|
|
|
|
if (first_part) {
|
|
printf("MPY: can't mount SD card\n");
|
|
return false;
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !MICROPY_HW_USES_BOOTLOADER
|
|
STATIC uint update_reset_mode(uint reset_mode) {
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
if (switch_get()) {
|
|
|
|
// The original method used on the pyboard is appropriate if you have 2
|
|
// or more LEDs.
|
|
#if defined(MICROPY_HW_LED2)
|
|
for (uint i = 0; i < 3000; i++) {
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
mp_hal_delay_ms(20);
|
|
if (i % 30 == 29) {
|
|
if (++reset_mode > 3) {
|
|
reset_mode = 1;
|
|
}
|
|
led_state(2, reset_mode & 1);
|
|
led_state(3, reset_mode & 2);
|
|
led_state(4, reset_mode & 4);
|
|
}
|
|
}
|
|
// flash the selected reset mode
|
|
for (uint i = 0; i < 6; i++) {
|
|
led_state(2, 0);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
mp_hal_delay_ms(50);
|
|
led_state(2, reset_mode & 1);
|
|
led_state(3, reset_mode & 2);
|
|
led_state(4, reset_mode & 4);
|
|
mp_hal_delay_ms(50);
|
|
}
|
|
mp_hal_delay_ms(400);
|
|
|
|
#elif defined(MICROPY_HW_LED1)
|
|
|
|
// For boards with only a single LED, we'll flash that LED the
|
|
// appropriate number of times, with a pause between each one
|
|
for (uint i = 0; i < 10; i++) {
|
|
led_state(1, 0);
|
|
for (uint j = 0; j < reset_mode; j++) {
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
led_state(1, 1);
|
|
mp_hal_delay_ms(100);
|
|
led_state(1, 0);
|
|
mp_hal_delay_ms(200);
|
|
}
|
|
mp_hal_delay_ms(400);
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
if (++reset_mode > 3) {
|
|
reset_mode = 1;
|
|
}
|
|
}
|
|
// Flash the selected reset mode
|
|
for (uint i = 0; i < 2; i++) {
|
|
for (uint j = 0; j < reset_mode; j++) {
|
|
led_state(1, 1);
|
|
mp_hal_delay_ms(100);
|
|
led_state(1, 0);
|
|
mp_hal_delay_ms(200);
|
|
}
|
|
mp_hal_delay_ms(400);
|
|
}
|
|
#else
|
|
#error Need a reset mode update method
|
|
#endif
|
|
}
|
|
#endif
|
|
return reset_mode;
|
|
}
|
|
#endif
|
|
|
|
void stm32_main(uint32_t reset_mode) {
|
|
#if !defined(STM32F0) && defined(MICROPY_HW_VTOR)
|
|
// Change IRQ vector table if configured differently
|
|
SCB->VTOR = MICROPY_HW_VTOR;
|
|
#endif
|
|
|
|
// Enable 8-byte stack alignment for IRQ handlers, in accord with EABI
|
|
SCB->CCR |= SCB_CCR_STKALIGN_Msk;
|
|
|
|
// Check if bootloader should be entered instead of main application
|
|
powerctrl_check_enter_bootloader();
|
|
|
|
// Enable caches and prefetch buffers
|
|
|
|
#if defined(STM32F4)
|
|
|
|
#if INSTRUCTION_CACHE_ENABLE
|
|
__HAL_FLASH_INSTRUCTION_CACHE_ENABLE();
|
|
#endif
|
|
#if DATA_CACHE_ENABLE
|
|
__HAL_FLASH_DATA_CACHE_ENABLE();
|
|
#endif
|
|
#if PREFETCH_ENABLE
|
|
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
|
|
#endif
|
|
|
|
#elif defined(STM32F7) || defined(STM32H7)
|
|
|
|
#if ART_ACCLERATOR_ENABLE
|
|
__HAL_FLASH_ART_ENABLE();
|
|
#endif
|
|
|
|
SCB_EnableICache();
|
|
SCB_EnableDCache();
|
|
|
|
#elif defined(STM32L4)
|
|
|
|
#if !INSTRUCTION_CACHE_ENABLE
|
|
__HAL_FLASH_INSTRUCTION_CACHE_DISABLE();
|
|
#endif
|
|
#if !DATA_CACHE_ENABLE
|
|
__HAL_FLASH_DATA_CACHE_DISABLE();
|
|
#endif
|
|
#if PREFETCH_ENABLE
|
|
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
|
|
#endif
|
|
|
|
#endif
|
|
|
|
mpu_init();
|
|
|
|
#if __CORTEX_M >= 0x03
|
|
// Set the priority grouping
|
|
NVIC_SetPriorityGrouping(NVIC_PRIORITYGROUP_4);
|
|
#endif
|
|
|
|
// SysTick is needed by HAL_RCC_ClockConfig (called in SystemClock_Config)
|
|
HAL_InitTick(TICK_INT_PRIORITY);
|
|
|
|
// set the system clock to be HSE
|
|
SystemClock_Config();
|
|
|
|
// enable GPIO clocks
|
|
__HAL_RCC_GPIOA_CLK_ENABLE();
|
|
__HAL_RCC_GPIOB_CLK_ENABLE();
|
|
__HAL_RCC_GPIOC_CLK_ENABLE();
|
|
#if defined(GPIOD)
|
|
__HAL_RCC_GPIOD_CLK_ENABLE();
|
|
#endif
|
|
|
|
#if defined(STM32F4) || defined(STM32F7)
|
|
#if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE)
|
|
// The STM32F746 doesn't really have CCM memory, but it does have DTCM,
|
|
// which behaves more or less like normal SRAM.
|
|
__HAL_RCC_DTCMRAMEN_CLK_ENABLE();
|
|
#elif defined(CCMDATARAM_BASE)
|
|
// enable the CCM RAM
|
|
__HAL_RCC_CCMDATARAMEN_CLK_ENABLE();
|
|
#endif
|
|
#elif defined(STM32H7)
|
|
// Enable D2 SRAM1/2/3 clocks.
|
|
__HAL_RCC_D2SRAM1_CLK_ENABLE();
|
|
__HAL_RCC_D2SRAM2_CLK_ENABLE();
|
|
__HAL_RCC_D2SRAM3_CLK_ENABLE();
|
|
#endif
|
|
|
|
|
|
#if defined(MICROPY_BOARD_EARLY_INIT)
|
|
MICROPY_BOARD_EARLY_INIT();
|
|
#endif
|
|
|
|
// basic sub-system init
|
|
#if defined(STM32WB)
|
|
rfcore_init();
|
|
#endif
|
|
#if MICROPY_HW_SDRAM_SIZE
|
|
sdram_init();
|
|
#if MICROPY_HW_SDRAM_STARTUP_TEST
|
|
sdram_test(true);
|
|
#endif
|
|
#endif
|
|
#if MICROPY_PY_THREAD
|
|
pyb_thread_init(&pyb_thread_main);
|
|
#endif
|
|
pendsv_init();
|
|
led_init();
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
switch_init0();
|
|
#endif
|
|
machine_init();
|
|
#if MICROPY_HW_ENABLE_RTC
|
|
rtc_init_start(false);
|
|
#endif
|
|
uart_init0();
|
|
spi_init0();
|
|
#if MICROPY_PY_PYB_LEGACY && MICROPY_HW_ENABLE_HW_I2C
|
|
i2c_init0();
|
|
#endif
|
|
#if MICROPY_HW_ENABLE_SDCARD
|
|
sdcard_init();
|
|
#endif
|
|
#if MICROPY_HW_ENABLE_STORAGE
|
|
storage_init();
|
|
#endif
|
|
#if MICROPY_PY_LWIP
|
|
// lwIP doesn't allow to reinitialise itself by subsequent calls to this function
|
|
// because the system timeout list (next_timeout) is only ever reset by BSS clearing.
|
|
// So for now we only init the lwIP stack once on power-up.
|
|
lwip_init();
|
|
#if LWIP_MDNS_RESPONDER
|
|
mdns_resp_init();
|
|
#endif
|
|
systick_enable_dispatch(SYSTICK_DISPATCH_LWIP, mod_network_lwip_poll_wrapper);
|
|
#endif
|
|
#if MICROPY_BLUETOOTH_NIMBLE
|
|
extern void mod_bluetooth_nimble_poll_wrapper(uint32_t ticks_ms);
|
|
systick_enable_dispatch(SYSTICK_DISPATCH_NIMBLE, mod_bluetooth_nimble_poll_wrapper);
|
|
#endif
|
|
|
|
#if MICROPY_PY_NETWORK_CYW43
|
|
{
|
|
cyw43_init(&cyw43_state);
|
|
uint8_t buf[8];
|
|
memcpy(&buf[0], "PYBD", 4);
|
|
mp_hal_get_mac_ascii(MP_HAL_MAC_WLAN0, 8, 4, (char*)&buf[4]);
|
|
cyw43_wifi_ap_set_ssid(&cyw43_state, 8, buf);
|
|
cyw43_wifi_ap_set_password(&cyw43_state, 8, (const uint8_t*)"pybd0123");
|
|
}
|
|
#endif
|
|
|
|
#if defined(MICROPY_HW_UART_REPL)
|
|
// Set up a UART REPL using a statically allocated object
|
|
pyb_uart_repl_obj.base.type = &pyb_uart_type;
|
|
pyb_uart_repl_obj.uart_id = MICROPY_HW_UART_REPL;
|
|
pyb_uart_repl_obj.is_static = true;
|
|
pyb_uart_repl_obj.timeout = 0;
|
|
pyb_uart_repl_obj.timeout_char = 2;
|
|
uart_init(&pyb_uart_repl_obj, MICROPY_HW_UART_REPL_BAUD, UART_WORDLENGTH_8B, UART_PARITY_NONE, UART_STOPBITS_1, 0);
|
|
uart_set_rxbuf(&pyb_uart_repl_obj, sizeof(pyb_uart_repl_rxbuf), pyb_uart_repl_rxbuf);
|
|
uart_attach_to_repl(&pyb_uart_repl_obj, true);
|
|
MP_STATE_PORT(pyb_uart_obj_all)[MICROPY_HW_UART_REPL - 1] = &pyb_uart_repl_obj;
|
|
#endif
|
|
|
|
soft_reset:
|
|
|
|
#if defined(MICROPY_HW_LED2)
|
|
led_state(1, 0);
|
|
led_state(2, 1);
|
|
#else
|
|
led_state(1, 1);
|
|
led_state(2, 0);
|
|
#endif
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
|
|
#if !MICROPY_HW_USES_BOOTLOADER
|
|
// check if user switch held to select the reset mode
|
|
reset_mode = update_reset_mode(1);
|
|
#endif
|
|
|
|
// Python threading init
|
|
#if MICROPY_PY_THREAD
|
|
mp_thread_init();
|
|
#endif
|
|
|
|
// Stack limit should be less than real stack size, so we have a chance
|
|
// to recover from limit hit. (Limit is measured in bytes.)
|
|
// Note: stack control relies on main thread being initialised above
|
|
mp_stack_set_top(&_estack);
|
|
mp_stack_set_limit((char*)&_estack - (char*)&_sstack - 1024);
|
|
|
|
// GC init
|
|
gc_init(MICROPY_HEAP_START, MICROPY_HEAP_END);
|
|
|
|
#if MICROPY_ENABLE_PYSTACK
|
|
static mp_obj_t pystack[384];
|
|
mp_pystack_init(pystack, &pystack[384]);
|
|
#endif
|
|
|
|
// MicroPython init
|
|
mp_init();
|
|
mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_path), 0);
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
|
|
mp_obj_list_init(MP_OBJ_TO_PTR(mp_sys_argv), 0);
|
|
|
|
// Initialise low-level sub-systems. Here we need to very basic things like
|
|
// zeroing out memory and resetting any of the sub-systems. Following this
|
|
// we can run Python scripts (eg boot.py), but anything that is configurable
|
|
// by boot.py must be set after boot.py is run.
|
|
|
|
#if defined(MICROPY_HW_UART_REPL)
|
|
MP_STATE_PORT(pyb_stdio_uart) = &pyb_uart_repl_obj;
|
|
#else
|
|
MP_STATE_PORT(pyb_stdio_uart) = NULL;
|
|
#endif
|
|
|
|
readline_init0();
|
|
pin_init0();
|
|
extint_init0();
|
|
timer_init0();
|
|
|
|
#if MICROPY_HW_ENABLE_CAN
|
|
can_init0();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
pyb_usb_init0();
|
|
#endif
|
|
|
|
// Initialise the local flash filesystem.
|
|
// Create it if needed, mount in on /flash, and set it as current dir.
|
|
bool mounted_flash = false;
|
|
#if MICROPY_HW_ENABLE_STORAGE
|
|
mounted_flash = init_flash_fs(reset_mode);
|
|
#endif
|
|
|
|
bool mounted_sdcard = false;
|
|
#if MICROPY_HW_SDCARD_MOUNT_AT_BOOT
|
|
// if an SD card is present then mount it on /sd/
|
|
if (sdcard_is_present()) {
|
|
// if there is a file in the flash called "SKIPSD", then we don't mount the SD card
|
|
if (!mounted_flash || mp_vfs_import_stat("SKIPSD") == MP_IMPORT_STAT_FILE) {
|
|
mounted_sdcard = init_sdcard_fs();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
// if the SD card isn't used as the USB MSC medium then use the internal flash
|
|
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_NONE) {
|
|
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
|
|
}
|
|
#endif
|
|
|
|
// set sys.path based on mounted filesystems (/sd is first so it can override /flash)
|
|
if (mounted_sdcard) {
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
|
|
}
|
|
if (mounted_flash) {
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
|
|
}
|
|
|
|
// reset config variables; they should be set by boot.py
|
|
MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;
|
|
|
|
// run boot.py, if it exists
|
|
// TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
|
|
if (reset_mode == 1 || reset_mode == 3) {
|
|
const char *boot_py = "boot.py";
|
|
int ret = pyexec_file_if_exists(boot_py);
|
|
if (ret & PYEXEC_FORCED_EXIT) {
|
|
goto soft_reset_exit;
|
|
}
|
|
if (!ret) {
|
|
flash_error(4);
|
|
}
|
|
}
|
|
|
|
// turn boot-up LEDs off
|
|
#if !defined(MICROPY_HW_LED2)
|
|
// If there is only one LED on the board then it's used to signal boot-up
|
|
// and so we turn it off here. Otherwise LED(1) is used to indicate dirty
|
|
// flash cache and so we shouldn't change its state.
|
|
led_state(1, 0);
|
|
#endif
|
|
led_state(2, 0);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
|
|
// Now we initialise sub-systems that need configuration from boot.py,
|
|
// or whose initialisation can be safely deferred until after running
|
|
// boot.py.
|
|
|
|
#if MICROPY_HW_ENABLE_USB
|
|
// init USB device to default setting if it was not already configured
|
|
if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
|
|
#if MICROPY_HW_USB_MSC
|
|
const uint16_t pid = USBD_PID_CDC_MSC;
|
|
const uint8_t mode = USBD_MODE_CDC_MSC;
|
|
#else
|
|
const uint16_t pid = USBD_PID_CDC;
|
|
const uint8_t mode = USBD_MODE_CDC;
|
|
#endif
|
|
pyb_usb_dev_init(pyb_usb_dev_detect(), USBD_VID, pid, mode, 0, NULL, NULL);
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_MMA7660
|
|
// MMA accel: init and reset
|
|
accel_init();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_SERVO
|
|
servo_init();
|
|
#endif
|
|
|
|
#if MICROPY_PY_NETWORK
|
|
mod_network_init();
|
|
#endif
|
|
|
|
// At this point everything is fully configured and initialised.
|
|
|
|
// Run the main script from the current directory.
|
|
if ((reset_mode == 1 || reset_mode == 3) && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
|
|
const char *main_py;
|
|
if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) {
|
|
main_py = "main.py";
|
|
} else {
|
|
main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main));
|
|
}
|
|
int ret = pyexec_file_if_exists(main_py);
|
|
if (ret & PYEXEC_FORCED_EXIT) {
|
|
goto soft_reset_exit;
|
|
}
|
|
if (!ret) {
|
|
flash_error(3);
|
|
}
|
|
}
|
|
|
|
#if MICROPY_ENABLE_COMPILER
|
|
// Main script is finished, so now go into REPL mode.
|
|
// The REPL mode can change, or it can request a soft reset.
|
|
for (;;) {
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
if (pyexec_raw_repl() != 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (pyexec_friendly_repl() != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
soft_reset_exit:
|
|
|
|
// soft reset
|
|
|
|
#if MICROPY_HW_ENABLE_STORAGE
|
|
printf("MPY: sync filesystems\n");
|
|
storage_flush();
|
|
#endif
|
|
|
|
printf("MPY: soft reboot\n");
|
|
#if MICROPY_BLUETOOTH_NIMBLE
|
|
mp_bluetooth_deinit();
|
|
#endif
|
|
#if MICROPY_PY_NETWORK
|
|
mod_network_deinit();
|
|
#endif
|
|
soft_timer_deinit();
|
|
timer_deinit();
|
|
uart_deinit_all();
|
|
#if MICROPY_HW_ENABLE_CAN
|
|
can_deinit_all();
|
|
#endif
|
|
machine_deinit();
|
|
|
|
#if MICROPY_PY_THREAD
|
|
pyb_thread_deinit();
|
|
#endif
|
|
|
|
gc_sweep_all();
|
|
|
|
goto soft_reset;
|
|
}
|