micropython/teensy/hal_ftm.h

185 lines
7.9 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#define FTM0 ((FTM_TypeDef *)&FTM0_SC)
#define FTM1 ((FTM_TypeDef *)&FTM1_SC)
#define FTM2 ((FTM_TypeDef *)&FTM2_SC)
typedef struct {
volatile uint32_t CSC; // Channel x Status And Control
volatile uint32_t CV; // Channel x Value
} FTM_ChannelTypeDef;
typedef struct {
volatile uint32_t SC; // Status And Control
volatile uint32_t CNT; // Counter
volatile uint32_t MOD; // Modulo
FTM_ChannelTypeDef channel[8];
volatile uint32_t CNTIN; // Counter Initial Value
volatile uint32_t STATUS; // Capture And Compare Status
volatile uint32_t MODE; // Features Mode Selection
volatile uint32_t SYNC; // Synchronization
volatile uint32_t OUTINIT; // Initial State For Channels Output
volatile uint32_t OUTMASK; // Output Mask
volatile uint32_t COMBINE; // Function For Linked Channels
volatile uint32_t DEADTIME; // Deadtime Insertion Control
volatile uint32_t EXTTRIG; // FTM External Trigger
volatile uint32_t POL; // Channels Polarity
volatile uint32_t FMS; // Fault Mode Status
volatile uint32_t FILTER; // Input Capture Filter Control
volatile uint32_t FLTCTRL; // Fault Control
volatile uint32_t QDCTRL; // Quadrature Decoder Control And Status
volatile uint32_t CONF; // Configuration
volatile uint32_t FLTPOL; // FTM Fault Input Polarity
volatile uint32_t SYNCONF; // Synchronization Configuration
volatile uint32_t INVCTRL; // FTM Inverting Control
volatile uint32_t SWOCTRL; // FTM Software Output Control
volatile uint32_t PWMLOAD; // FTM PWM Load
} FTM_TypeDef;
typedef struct {
uint32_t PrescalerShift; // Sets the prescaler to 1 << PrescalerShift
uint32_t CounterMode; // One of FTM_COUNTERMODE_xxx
uint32_t Period; // Specifies the Period for determining timer overflow
} FTM_Base_InitTypeDef;
typedef struct {
uint32_t OCMode; // One of FTM_OCMODE_xxx
uint32_t Pulse; // Specifies initial pulse width (0-0xffff)
uint32_t OCPolarity; // One of FTM_OCPOLRITY_xxx
} FTM_OC_InitTypeDef;
typedef struct {
uint32_t ICPolarity; // Specifies Rising/Falling/Both
} FTM_IC_InitTypeDef;
#define IS_FTM_INSTANCE(INSTANCE) (((INSTANCE) == FTM0) || \
((INSTANCE) == FTM1) || \
((INSTANCE) == FTM2))
#define IS_FTM_PRESCALERSHIFT(PRESCALERSHIFT) (((PRESCALERSHIFT) & ~7) == 0)
#define FTM_COUNTERMODE_UP (0)
#define FTM_COUNTERMODE_CENTER (FTM_SC_CPWMS)
#define IS_FTM_COUNTERMODE(MODE) (((MODE) == FTM_COUNTERMODE_UP) ||\
((MODE) == FTM_COUNTERMODE_CENTER))
#define IS_FTM_PERIOD(PERIOD) (((PERIOD) & 0xFFFF0000) == 0)
#define FTM_CSC_CHF 0x80
#define FTM_CSC_CHIE 0x40
#define FTM_CSC_MSB 0x20
#define FTM_CSC_MSA 0x10
#define FTM_CSC_ELSB 0x08
#define FTM_CSC_ELSA 0x04
#define FTM_CSC_DMA 0x01
#define FTM_OCMODE_TIMING (0)
#define FTM_OCMODE_ACTIVE (FTM_CSC_MSA | FTM_CSC_ELSB | FTM_CSC_ELSA)
#define FTM_OCMODE_INACTIVE (FTM_CSC_MSA | FTM_CSC_ELSB)
#define FTM_OCMODE_TOGGLE (FTM_CSC_MSA | FTM_CSC_ELSA)
#define FTM_OCMODE_PWM1 (FTM_CSC_MSB | FTM_CSC_ELSB)
#define FTM_OCMODE_PWM2 (FTM_CSC_MSB | FTM_CSC_ELSA)
#define IS_FTM_OC_MODE(mode) ((mode) == FTM_OCMODE_TIMING || \
(mode) == FTM_OCMODE_ACTIVE || \
(mode) == FTM_OCMODE_INACTIVE || \
(mode) == FTM_OCMODE_TOGGLE )
#define IS_FTM_PWM_MODE(mode) ((mode) == FTM_OCMODE_PWM1 || \
(mode) == FTM_OCMODE_PWM2)
#define IS_FTM_CHANNEL(channel) (((channel) & ~7) == 0)
#define IS_FTM_PULSE(pulse) (((pulse) & ~0xffff) == 0)
#define FTM_OCPOLARITY_HIGH (0)
#define FTM_OCPOLARITY_LOW (1)
#define IS_FTM_OC_POLARITY(polarity) ((polarity) == FTM_OCPOLARITY_HIGH || \
(polarity) == FTM_OCPOLARITY_LOW)
#define FTM_ICPOLARITY_RISING (FTM_CSC_ELSA)
#define FTM_ICPOLARITY_FALLING (FTM_CSC_ELSB)
#define FTM_ICPOLARITY_BOTH (FTM_CSC_ELSA | FTM_CSC_ELSB)
#define IS_FTM_IC_POLARITY(polarity) ((polarity) == FTM_ICPOLARITY_RISING || \
(polarity) == FTM_ICPOLARITY_FALLING || \
(polarity) == FTM_ICPOLARITY_BOTH)
typedef enum {
HAL_FTM_STATE_RESET = 0x00,
HAL_FTM_STATE_READY = 0x01,
HAL_FTM_STATE_BUSY = 0x02,
} HAL_FTM_State;
typedef struct {
FTM_TypeDef *Instance;
FTM_Base_InitTypeDef Init;
HAL_FTM_State State;
} FTM_HandleTypeDef;
#define __HAL_FTM_GET_TOF_FLAG(HANDLE) (((HANDLE)->Instance->SC & FTM_SC_TOF) != 0)
#define __HAL_FTM_CLEAR_TOF_FLAG(HANDLE) ((HANDLE)->Instance->SC &= ~FTM_SC_TOF)
#define __HAL_FTM_GET_TOF_IT(HANDLE) (((HANDLE)->Instance->SC & FTM_SC_TOIE) != 0)
#define __HAL_FTM_ENABLE_TOF_IT(HANDLE) ((HANDLE)->Instance->SC |= FTM_SC_TOIE)
#define __HAL_FTM_DISABLE_TOF_IT(HANDLE) ((HANDLE)->Instance->SC &= ~FTM_SC_TOIE)
#define __HAL_FTM_GET_CH_FLAG(HANDLE, CH) (((HANDLE)->Instance->channel[CH].CSC & FTM_CSC_CHF) != 0)
#define __HAL_FTM_CLEAR_CH_FLAG(HANDLE, CH) ((HANDLE)->Instance->channel[CH].CSC &= ~FTM_CSC_CHF)
#define __HAL_FTM_GET_CH_IT(HANDLE, CH) (((HANDLE)->Instance->channel[CH].CSC & FTM_CSC_CHIE) != 0)
#define __HAL_FTM_ENABLE_CH_IT(HANDLE, CH) ((HANDLE)->Instance->channel[CH].CSC |= FTM_CSC_CHIE)
#define __HAL_FTM_DISABLE_CH_IT(HANDLE, CH) ((HANDLE)->Instance->channel[CH].CSC &= ~FTM_CSC_CHIE)
void HAL_FTM_Base_Init(FTM_HandleTypeDef *hftm);
void HAL_FTM_Base_Start(FTM_HandleTypeDef *hftm);
void HAL_FTM_Base_Start_IT(FTM_HandleTypeDef *hftm);
void HAL_FTM_Base_DeInit(FTM_HandleTypeDef *hftm);
void HAL_FTM_OC_Init(FTM_HandleTypeDef *hftm);
void HAL_FTM_OC_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_OC_InitTypeDef* sConfig, uint32_t channel);
void HAL_FTM_OC_Start(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_OC_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_OC_DeInit(FTM_HandleTypeDef *hftm);
void HAL_FTM_PWM_Init(FTM_HandleTypeDef *hftm);
void HAL_FTM_PWM_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_OC_InitTypeDef* sConfig, uint32_t channel);
void HAL_FTM_PWM_Start(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_PWM_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_PWM_DeInit(FTM_HandleTypeDef *hftm);
void HAL_FTM_IC_Init(FTM_HandleTypeDef *hftm);
void HAL_FTM_IC_ConfigChannel(FTM_HandleTypeDef *hftm, FTM_IC_InitTypeDef* sConfig, uint32_t channel);
void HAL_FTM_IC_Start(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_IC_Start_IT(FTM_HandleTypeDef *hftm, uint32_t channel);
void HAL_FTM_IC_DeInit(FTM_HandleTypeDef *hftm);