micropython/ports/renesas-ra/ra/ra_spi.c

458 lines
13 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2021,2022 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hal_data.h"
#include "ra_config.h"
#include "ra_gpio.h"
#include "ra_utils.h"
#include "ra_spi.h"
#if defined(__GNUC__)
#pragma GCC diagnostic ignored "-Wunused-parameter"
#pragma GCC diagnostic ignored "-Wconversion"
// #pragma GCC diagnostic ignored "-Wshift-negative-value"
// #pragma GCC diagnostic ignored "-Wunused-but-set-variable"
// #pragma GCC diagnostic ignored "-Wsequence-point"
// #pragma GCC diagnostic ignored "-Wunused-function"
#endif
static R_SPI0_Type *spi_regs[] = {
(R_SPI0_Type *)0x40072000,
(R_SPI0_Type *)0x40072100,
};
static const ra_af_pin_t mosi_pins[] = {
#if defined(RA4M1)
{ AF_SPI, 0, P101 }, /* MOSIA */
{ AF_SPI, 0, P411 }, /* MOSIA */
{ AF_SPI, 1, P109 }, /* MOSIB */
{ AF_SPI, 1, P203 }, /* MOSIB */
#elif defined(RA4W1)
{ AF_SPI, 0, P101 }, /* MOSIA */
{ AF_SPI, 1, P109 }, /* MOSIB */
#elif defined(RA6M1)
{ AF_SPI, 0, P101 }, /* MOSIA_A */
{ AF_SPI, 0, P411 }, /* MOSIA_B */
{ AF_SPI, 1, P109 }, /* MOSIB_B */
#elif defined(RA6M2)
{ AF_SPI, 0, P101 }, /* MOSIA_A */
{ AF_SPI, 0, P411 }, /* MOSIA_B */
{ AF_SPI, 1, P109 }, /* MOSIB_B */
{ AF_SPI, 1, P203 }, /* MOSIB_A */
{ AF_SPI, 1, P701 }, /* MOSIB_C */
#else
#error "CMSIS MCU Series is not specified."
#endif
};
#define MOSI_PINS_SIZE sizeof(mosi_pins) / sizeof(ra_af_pin_t)
static const ra_af_pin_t miso_pins[] = {
#if defined(RA4M1)
{ AF_SPI, 0, P100 }, /* MISOA */
{ AF_SPI, 0, P410 }, /* MISOA */
{ AF_SPI, 1, P110 }, /* MISOB */
{ AF_SPI, 1, P202 }, /* MISOB */
#elif defined(RA4W1)
{ AF_SPI, 0, P100 }, /* MISOA */
{ AF_SPI, 1, P110 }, /* MISOB */
#elif defined(RA6M1)
{ AF_SPI, 0, P100 }, /* MISOA_A */
{ AF_SPI, 0, P410 }, /* MISOA_B */
{ AF_SPI, 1, P110 }, /* MISOB_B */
#elif defined(RA6M2)
{ AF_SPI, 0, P100 }, /* MISOA_A */
{ AF_SPI, 0, P410 }, /* MISOA_B */
{ AF_SPI, 1, P110 }, /* MISOB_B */
{ AF_SPI, 1, P202 }, /* MISOB_A */
{ AF_SPI, 1, P700 }, /* MISOB_C */
#else
#error "CMSIS MCU Series is not specified."
#endif
};
#define MISO_PINS_SIZE sizeof(miso_pins) / sizeof(ra_af_pin_t)
static const ra_af_pin_t sck_pins[] = {
#if defined(RA4M1)
{ AF_SPI, 0, P102 }, /* RSPCKA */
{ AF_SPI, 0, P412 }, /* RSPCKA */
{ AF_SPI, 1, P111 }, /* RSPCKB */
{ AF_SPI, 1, P204 }, /* RSPCKB */
#elif defined(RA4W1)
{ AF_SPI, 0, P102 }, /* RSPCKA */
{ AF_SPI, 1, P111 }, /* RSPCKB */
#elif defined(RA6M1)
{ AF_SPI, 0, P102 }, /* RSPCKA_A */
{ AF_SPI, 0, P412 }, /* RSPCKA_B */
{ AF_SPI, 1, P111 }, /* RSPCKB_B */
#elif defined(RA6M2)
{ AF_SPI, 0, P102 }, /* RSPCKA_A */
{ AF_SPI, 0, P412 }, /* RSPCKA_B */
{ AF_SPI, 1, P111 }, /* RSPCKB_B */
{ AF_SPI, 1, P204 }, /* RSPCKB_A */
{ AF_SPI, 1, P702 }, /* RSPCKB_C */
#else
#error "CMSIS MCU Series is not specified."
#endif
};
#define SCK_PINS_SIZE sizeof(sck_pins) / sizeof(ra_af_pin_t)
bool ra_af_find_ch(ra_af_pin_t *af_pin, uint32_t size, uint32_t pin, uint8_t *ch) {
bool find = false;
uint32_t i;
for (i = 0; i < size; i++) {
if (af_pin->pin == pin) {
find = true;
*ch = af_pin->ch;
break;
}
af_pin++;
}
return find;
}
bool ra_spi_find_af_ch(uint32_t mosi, uint32_t miso, uint32_t sck, uint8_t *ch) {
bool find = false;
uint8_t mosi_ch;
uint8_t miso_ch;
uint8_t sck_ch;
find = ra_af_find_ch((ra_af_pin_t *)&mosi_pins, MOSI_PINS_SIZE, mosi, &mosi_ch);
if (find) {
find = ra_af_find_ch((ra_af_pin_t *)&miso_pins, MISO_PINS_SIZE, miso, &miso_ch);
if (find) {
find = ra_af_find_ch((ra_af_pin_t *)&sck_pins, SCK_PINS_SIZE, sck, &sck_ch);
if (find) {
find = (mosi_ch == miso_ch) && (miso_ch == sck_ch);
if (find) {
*ch = mosi_ch;
} else {
*ch = 0;
}
}
}
}
return find;
}
static void ra_spi_module_start(uint32_t ch) {
if (ch == 0) {
ra_mstpcrb_start(R_MSTP_MSTPCRB_MSTPB19_Msk);
} else {
ra_mstpcrb_start(R_MSTP_MSTPCRB_MSTPB18_Msk);
}
}
static void ra_spi_module_stop(uint32_t ch) {
if (ch == 0) {
ra_mstpcrb_stop(R_MSTP_MSTPCRB_MSTPB19_Msk);
} else {
ra_mstpcrb_stop(R_MSTP_MSTPCRB_MSTPB18_Msk);
}
}
static void ra_spi_set_pin(uint32_t pin, bool miso) {
if (miso) {
ra_gpio_config(pin, GPIO_MODE_INPUT, GPIO_PULLUP, GPIO_LOW_POWER, AF_SPI);
} else {
ra_gpio_config(pin, GPIO_MODE_AF_PP, GPIO_NOPULL, GPIO_LOW_POWER, AF_SPI);
}
}
void ra_spi_set_bits(uint32_t ch, uint32_t bits) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
if (bits == 8) {
spi_reg->SPDCR_b.SPBYT = 1;
spi_reg->SPDCR_b.SPLW = 0;
spi_reg->SPCMD_b[0].SPB = 0x7;
} else if (bits == 16) {
spi_reg->SPDCR_b.SPBYT = 0;
spi_reg->SPDCR_b.SPLW = 0;
spi_reg->SPCMD_b[0].SPB = 0xf;
} else if (bits == 32) {
spi_reg->SPDCR_b.SPBYT = 0;
spi_reg->SPDCR_b.SPLW = 1;
spi_reg->SPCMD_b[0].SPB = 0x3;
}
}
void ra_spi_set_clk(uint32_t ch, uint32_t baud) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
if (baud == 0) {
return;
}
spi_reg->SPCR_b.SPE = 0;
spi_reg->SPBR = (PCLK / 2 / baud) - 1;
spi_reg->SPCR_b.SPE = 1;
}
void ra_spi_set_lsb_first(uint32_t ch, uint32_t lsb_first) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
if (lsb_first) {
spi_reg->SPCMD_b[0].LSBF = 1; // LSB first
} else {
spi_reg->SPCMD_b[0].LSBF = 0; // MSB first
}
}
void ra_spi_set_mode(uint32_t ch, uint32_t polarity, uint32_t phase) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
if (polarity != 0) {
// CPOL(Clock Polarity)
spi_reg->SPCMD_b[0].CPOL = 1;
} else {
spi_reg->SPCMD_b[0].CPOL = 0;
}
if (phase != 0) {
// CPHA(Clock Phase)
spi_reg->SPCMD_b[0].CPHA = 1;
} else {
spi_reg->SPCMD_b[0].CPHA = 0;
}
}
void ra_spi_set_ch(uint32_t ch) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
spi_reg->SPCR = 0x00; // disable SPI
spi_reg->SPSR = 0xa0;
spi_reg->SPPCR = 0x00; // fixed idle value, disable loop-back mode
spi_reg->SPSCR = 0x00; // Disable sequence control
spi_reg->SPDCR = 0x40; // SPBYT=1, SPLW=0 byte access
spi_reg->SPCMD[0] = 0xe700; // LSBF=0, SPB=7, BRDV=0, CPOL=0, CPHA=0
spi_reg->SPCR2 = 0x10;
spi_reg->SPCR = 0x48; // Start SPI in master mode
}
uint8_t ra_spi_write_byte(uint32_t ch, uint8_t b) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
while (spi_reg->SPSR_b.SPTEF == 0) {
;
}
spi_reg->SPDR_BY = (uint8_t)(b);
while (spi_reg->SPSR_b.SPRF == 0) {
;
}
return (uint8_t)(spi_reg->SPDR_BY);
}
void ra_spi_write_bytes8(uint32_t ch, uint8_t *buf, uint32_t count) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
ra_spi_set_bits(ch, 8);
while (count-- > 0) {
while (spi_reg->SPSR_b.SPTEF == 0) {
;
}
spi_reg->SPDR_BY = (uint8_t)(*buf++);
while (spi_reg->SPSR_b.SPRF == 0) {
;
}
spi_reg->SPDR_BY;
}
}
void ra_spi_read_bytes8(uint32_t ch, uint8_t *buf, uint32_t count) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
ra_spi_set_bits(ch, 8);
while (count-- > 0) {
while (spi_reg->SPSR_b.SPTEF == 0) {
;
}
spi_reg->SPDR_BY = (uint8_t)(0);
while (spi_reg->SPSR_b.SPRF == 0) {
;
}
*buf++ = (uint8_t)spi_reg->SPDR_BY;
}
}
void ra_spi_write_bytes16(uint32_t ch, uint16_t *buf, uint32_t count) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
ra_spi_set_bits(ch, 16);
while (count-- > 0) {
while (spi_reg->SPSR_b.SPTEF == 0) {
;
}
spi_reg->SPDR_HA = (uint16_t)(*buf++);
while (spi_reg->SPSR_b.SPRF == 0) {
;
}
spi_reg->SPDR_HA;
}
}
void ra_spi_write_bytes32(uint32_t ch, uint32_t *buf, uint32_t count) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
ra_spi_set_bits(ch, 32);
while (count-- > 0) {
while (spi_reg->SPSR_b.SPTEF == 0) {
;
}
spi_reg->SPDR = (uint32_t)(*buf++);
while (spi_reg->SPSR_b.SPRF == 0) {
;
}
spi_reg->SPDR;
}
}
void ra_spi_write_bytes(uint32_t ch, uint32_t bits, uint8_t *buf, uint32_t count) {
if (bits == 8) {
ra_spi_write_bytes8(ch, buf, count);
} else if (bits == 16) {
ra_spi_write_bytes16(ch, (uint16_t *)buf, count >> 1);
} else if (bits == 32) {
ra_spi_write_bytes32(ch, (uint32_t *)buf, count >> 2);
}
}
void ra_spi_transfer8(uint32_t ch, uint8_t *dst, uint8_t *src, uint32_t count) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
ra_spi_set_bits(ch, 8);
while (count-- > 0) {
while (spi_reg->SPSR_b.SPTEF == 0) {
;
}
spi_reg->SPDR_BY = (uint8_t)(*src++);
while (spi_reg->SPSR_b.SPRF == 0) {
;
}
*dst++ = (uint8_t)(spi_reg->SPDR_BY);
}
}
void ra_spi_transfer16(uint32_t ch, uint16_t *dst, uint16_t *src, uint32_t count) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
ra_spi_set_bits(ch, 16);
while (count-- > 0) {
while (spi_reg->SPSR_b.SPTEF == 0) {
;
}
spi_reg->SPDR_HA = (uint16_t)(*src++);
while (spi_reg->SPSR_b.SPRF == 0) {
;
}
*dst++ = (uint16_t)(spi_reg->SPDR_HA);
}
}
void ra_spi_transfer32(uint32_t ch, uint32_t *dst, uint32_t *src, uint32_t count) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
ra_spi_set_bits(ch, 32);
while (count-- > 0) {
while (spi_reg->SPSR_b.SPTEF == 0) {
;
}
spi_reg->SPDR = (uint32_t)(*src++);
while (spi_reg->SPSR_b.SPRF == 0) {
;
}
*dst++ = (uint32_t)(spi_reg->SPDR);
}
}
void ra_spi_transfer(uint32_t ch, uint32_t bits, uint8_t *dst, uint8_t *src, uint32_t count, uint32_t timeout) {
if (bits == 8) {
ra_spi_transfer8(ch, dst, src, count);
} else if (bits == 16) {
ra_spi_transfer16(ch, (uint16_t *)dst, (uint16_t *)src, count >> 1);
} else if (bits == 32) {
ra_spi_transfer32(ch, (uint32_t *)dst, (uint32_t *)src, count >> 2);
}
}
void ra_spi_start_xfer(uint32_t ch, uint16_t spcmd, uint8_t spbr) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
spi_reg->SPCR_b.SPE = 0; // disable
spi_reg->SPCMD[0] = spcmd;
spi_reg->SPBR = spbr;
spi_reg->SPCR_b.SPE = 1; // enable
}
void ra_spi_end_xfer(uint32_t ch) {
(void)ch;
}
void ra_spi_get_conf(uint32_t ch, uint16_t *spcmd, uint8_t *spbr) {
R_SPI0_Type *spi_reg = (R_SPI0_Type *)spi_regs[ch];
*spcmd = spi_reg->SPCMD[0];
*spbr = spi_reg->SPBR;
}
void ra_spi_init(uint32_t ch, uint32_t mosi, uint32_t miso, uint32_t sck, uint32_t cs, uint32_t baud, uint32_t bits, uint32_t polarity, uint32_t phase) {
ra_gpio_mode_output(cs);
ra_gpio_write(cs, 1);
ra_spi_module_start(ch);
ra_spi_set_pin(mosi, false);
ra_spi_set_pin(miso, true);
ra_spi_set_pin(sck, false);
ra_spi_set_mode(ch, polarity, phase);
ra_spi_set_ch(ch);
ra_spi_set_clk(ch, baud);
ra_spi_set_bits(ch, bits);
ra_spi_set_lsb_first(ch, 0); // MSB first
return;
}
void ra_spi_deinit(uint32_t ch, uint32_t cs) {
ra_spi_module_stop(ch);
}
__WEAK void spi_rxi_isr(void) {
// dummy
}
__WEAK void spi_txi_isr(void) {
// dummy
}
__WEAK void spi_tei_isr(void) {
// dummy
}
__WEAK void spi_eri_isr(void) {
// dummy
}