349 lines
13 KiB
C
349 lines
13 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* This file provides functions for configuring the clocks.
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2022 Robert Hammelrath
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "py/runtime.h"
|
|
#include "samd_soc.h"
|
|
|
|
static uint32_t cpu_freq = CPU_FREQ;
|
|
static uint32_t apb_freq = APB_FREQ;
|
|
|
|
#if defined(MCU_SAMD21)
|
|
int sercom_gclk_id[] = {
|
|
GCLK_CLKCTRL_ID_SERCOM0_CORE, GCLK_CLKCTRL_ID_SERCOM1_CORE,
|
|
GCLK_CLKCTRL_ID_SERCOM2_CORE, GCLK_CLKCTRL_ID_SERCOM3_CORE,
|
|
GCLK_CLKCTRL_ID_SERCOM4_CORE, GCLK_CLKCTRL_ID_SERCOM5_CORE
|
|
};
|
|
#elif defined(MCU_SAMD51)
|
|
int sercom_gclk_id[] = {
|
|
SERCOM0_GCLK_ID_CORE, SERCOM1_GCLK_ID_CORE,
|
|
SERCOM2_GCLK_ID_CORE, SERCOM3_GCLK_ID_CORE,
|
|
SERCOM4_GCLK_ID_CORE, SERCOM5_GCLK_ID_CORE,
|
|
#if defined(SERCOM7_GCLK_ID_CORE)
|
|
SERCOM6_GCLK_ID_CORE, SERCOM7_GCLK_ID_CORE,
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
uint32_t get_cpu_freq(void) {
|
|
return cpu_freq;
|
|
}
|
|
|
|
uint32_t get_apb_freq(void) {
|
|
return apb_freq;
|
|
}
|
|
|
|
#if defined(MCU_SAMD21)
|
|
void set_cpu_freq(uint32_t cpu_freq_arg) {
|
|
cpu_freq = cpu_freq_arg;
|
|
}
|
|
|
|
#elif defined(MCU_SAMD51)
|
|
void set_cpu_freq(uint32_t cpu_freq_arg) {
|
|
cpu_freq = cpu_freq_arg;
|
|
|
|
// Setup GCLK0 for 48MHz as default state to keep the MCU running during config change.
|
|
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
|
|
}
|
|
|
|
// Setup DPLL0 for 120 MHz
|
|
// first: disable DPLL0 in case it is running
|
|
OSCCTRL->Dpll[0].DPLLCTRLA.bit.ENABLE = 0;
|
|
while (OSCCTRL->Dpll[0].DPLLSYNCBUSY.bit.ENABLE == 1) {
|
|
}
|
|
// Now configure the registers
|
|
OSCCTRL->Dpll[0].DPLLCTRLB.reg = OSCCTRL_DPLLCTRLB_DIV(1) | OSCCTRL_DPLLCTRLB_LBYPASS |
|
|
OSCCTRL_DPLLCTRLB_REFCLK(0) | OSCCTRL_DPLLCTRLB_WUF | OSCCTRL_DPLLCTRLB_FILTER(0x01);
|
|
|
|
uint32_t div = cpu_freq / DPLLx_REF_FREQ;
|
|
uint32_t frac = (cpu_freq - div * DPLLx_REF_FREQ) / (DPLLx_REF_FREQ / 32);
|
|
OSCCTRL->Dpll[0].DPLLRATIO.reg = (frac << 16) + div - 1;
|
|
// enable it again
|
|
OSCCTRL->Dpll[0].DPLLCTRLA.reg = OSCCTRL_DPLLCTRLA_ENABLE | OSCCTRL_DPLLCTRLA_RUNSTDBY;
|
|
|
|
// Per errata 2.13.1
|
|
while (!(OSCCTRL->Dpll[0].DPLLSTATUS.bit.CLKRDY == 1)) {
|
|
}
|
|
|
|
// Setup GCLK0 for DPLL0 output (48 or 48-200MHz)
|
|
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DPLL0;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void init_clocks(uint32_t cpu_freq) {
|
|
#if defined(MCU_SAMD21)
|
|
|
|
// SAMD21 Clock settings
|
|
// GCLK0: 48MHz from DFLL open loop mode or closed loop mode from 32k Crystal
|
|
// GCLK1: 32768 Hz from 32K ULP or 32k Crystal
|
|
// GCLK2: 48MHz from DFLL for Peripherals
|
|
// GCLK3: 1Mhz for the us-counter (TC3/TC4)
|
|
// GCLK8: 1kHz clock for WDT
|
|
|
|
NVMCTRL->CTRLB.bit.MANW = 1; // errata "Spurious Writes"
|
|
NVMCTRL->CTRLB.bit.RWS = 1; // 1 read wait state for 48MHz
|
|
|
|
#if MICROPY_HW_XOSC32K
|
|
// Set up OSC32K according datasheet 17.6.3
|
|
SYSCTRL->XOSC32K.reg = SYSCTRL_XOSC32K_STARTUP(0x3) | SYSCTRL_XOSC32K_EN32K |
|
|
SYSCTRL_XOSC32K_XTALEN;
|
|
SYSCTRL->XOSC32K.bit.ENABLE = 1;
|
|
while (SYSCTRL->PCLKSR.bit.XOSC32KRDY == 0) {
|
|
}
|
|
// Set up the DFLL48 according to the data sheet 17.6.7.1.2
|
|
// Step 1: Set up the reference clock
|
|
// Connect the OSC32K via GCLK1 to the DFLL input and for further use.
|
|
GCLK->GENDIV.reg = GCLK_GENDIV_ID(1) | GCLK_GENDIV_DIV(1);
|
|
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K | GCLK_GENCTRL_ID(1);
|
|
while (GCLK->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID_DFLL48 | GCLK_CLKCTRL_GEN_GCLK1 | GCLK_CLKCTRL_CLKEN;
|
|
// Enable access to the DFLLCTRL reg acc. to Errata 1.2.1
|
|
SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE;
|
|
while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
|
|
}
|
|
// Step 2: Set the coarse and fine values.
|
|
// The coarse setting will be taken from the calibration data. So the value used here
|
|
// does not matter. Get the coarse value from the calib data. In case it is not set,
|
|
// set a midrange value.
|
|
uint32_t coarse = (*((uint32_t *)FUSES_DFLL48M_COARSE_CAL_ADDR) & FUSES_DFLL48M_COARSE_CAL_Msk)
|
|
>> FUSES_DFLL48M_COARSE_CAL_Pos;
|
|
if (coarse == 0x3f) {
|
|
coarse = 0x1f;
|
|
}
|
|
SYSCTRL->DFLLVAL.reg = SYSCTRL_DFLLVAL_COARSE(coarse) | SYSCTRL_DFLLVAL_FINE(512);
|
|
while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
|
|
}
|
|
// Step 3: Set the multiplication values. The offset of 16384 to the freq is for rounding.
|
|
SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_MUL((CPU_FREQ + 16384) / 32768) |
|
|
SYSCTRL_DFLLMUL_FSTEP(1) | SYSCTRL_DFLLMUL_CSTEP(1);
|
|
while (SYSCTRL->PCLKSR.bit.DFLLRDY == 0) {
|
|
}
|
|
// Step 4: Start the DFLL and wait for the PLL lock. We just wait for the fine lock, since
|
|
// coarse adjusting is bypassed.
|
|
SYSCTRL->DFLLCTRL.reg |= SYSCTRL_DFLLCTRL_MODE | SYSCTRL_DFLLCTRL_WAITLOCK |
|
|
SYSCTRL_DFLLCTRL_BPLCKC | SYSCTRL_DFLLCTRL_ENABLE;
|
|
while (SYSCTRL->PCLKSR.bit.DFLLLCKF == 0) {
|
|
}
|
|
|
|
#else // MICROPY_HW_XOSC32K
|
|
|
|
// Enable DFLL48M
|
|
SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_ENABLE;
|
|
while (!SYSCTRL->PCLKSR.bit.DFLLRDY) {
|
|
}
|
|
SYSCTRL->DFLLMUL.reg = SYSCTRL_DFLLMUL_CSTEP(1) | SYSCTRL_DFLLMUL_FSTEP(1)
|
|
| SYSCTRL_DFLLMUL_MUL(48000);
|
|
uint32_t coarse = (*((uint32_t *)FUSES_DFLL48M_COARSE_CAL_ADDR) & FUSES_DFLL48M_COARSE_CAL_Msk)
|
|
>> FUSES_DFLL48M_COARSE_CAL_Pos;
|
|
if (coarse == 0x3f) {
|
|
coarse = 0x1f;
|
|
}
|
|
SYSCTRL->DFLLVAL.reg = SYSCTRL_DFLLVAL_COARSE(coarse) | SYSCTRL_DFLLVAL_FINE(512);
|
|
SYSCTRL->DFLLCTRL.reg = SYSCTRL_DFLLCTRL_CCDIS | SYSCTRL_DFLLCTRL_USBCRM
|
|
| SYSCTRL_DFLLCTRL_MODE | SYSCTRL_DFLLCTRL_ENABLE;
|
|
while (!SYSCTRL->PCLKSR.bit.DFLLRDY) {
|
|
}
|
|
// Enable 32768 Hz on GCLK1 for consistency
|
|
GCLK->GENDIV.reg = GCLK_GENDIV_ID(1) | GCLK_GENDIV_DIV(48016384 / 32768);
|
|
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(1);
|
|
while (GCLK->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
|
|
#endif // MICROPY_HW_XOSC32K
|
|
|
|
// Enable GCLK output: 48M on both CCLK0 and GCLK2
|
|
GCLK->GENDIV.reg = GCLK_GENDIV_ID(0) | GCLK_GENDIV_DIV(1);
|
|
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(0);
|
|
while (GCLK->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
GCLK->GENDIV.reg = GCLK_GENDIV_ID(2) | GCLK_GENDIV_DIV(1);
|
|
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(2);
|
|
while (GCLK->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
|
|
// Enable GCLK output: 1MHz on GCLK3 for TC3
|
|
GCLK->GENDIV.reg = GCLK_GENDIV_ID(3) | GCLK_GENDIV_DIV(48);
|
|
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL48M | GCLK_GENCTRL_ID(3);
|
|
while (GCLK->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
// Set GCLK8 to 1 kHz.
|
|
GCLK->GENDIV.reg = GCLK_GENDIV_ID(8) | GCLK_GENDIV_DIV(32);
|
|
GCLK->GENCTRL.reg = GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_OSCULP32K | GCLK_GENCTRL_ID(8);
|
|
while (GCLK->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
|
|
#elif defined(MCU_SAMD51)
|
|
|
|
// SAMD51 clock settings
|
|
// GCLK0: 48MHz from DFLL48M or 48 - 200 MHz from DPLL0 (SAMD51)
|
|
// GCLK1: DPLLx_REF_FREQ 32768 Hz from 32KULP or 32k Crystal
|
|
// GCLK2: 48MHz from DFLL48M for Peripheral devices
|
|
// GCLK3: 16Mhz for the us-counter (TC0/TC1)
|
|
// DPLL0: 48 - 200 MHz
|
|
|
|
// Steps to set up clocks:
|
|
// Reset Clocks
|
|
// Switch GCLK0 to DFLL 48MHz
|
|
// Setup 32768 Hz source and DFLL48M in closed loop mode, if a crystal is present.
|
|
// Setup GCLK1 to the DPLL0 Reference freq. of 32768 Hz
|
|
// Setup GCLK1 to drive peripheral channel 1
|
|
// Setup DPLL0 to 120MHz
|
|
// Setup GCLK0 to 120MHz
|
|
// Setup GCLK2 to 48MHz for Peripherals
|
|
// Setup GCLK3 to 8MHz for TC0/TC1
|
|
|
|
// Setup GCLK0 for 48MHz as default state to keep the MCU running during config change.
|
|
GCLK->GENCTRL[0].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL0) {
|
|
}
|
|
|
|
#if MICROPY_HW_XOSC32K
|
|
// OSCILLATOR CONTROL
|
|
// Setup XOSC32K
|
|
OSC32KCTRL->INTFLAG.reg = OSC32KCTRL_INTFLAG_XOSC32KRDY | OSC32KCTRL_INTFLAG_XOSC32KFAIL;
|
|
OSC32KCTRL->XOSC32K.bit.CGM = OSC32KCTRL_XOSC32K_CGM_HS_Val;
|
|
OSC32KCTRL->XOSC32K.bit.XTALEN = 1; // 0: Generator 1: Crystal
|
|
OSC32KCTRL->XOSC32K.bit.EN32K = 1;
|
|
OSC32KCTRL->XOSC32K.bit.ONDEMAND = 0;
|
|
OSC32KCTRL->XOSC32K.bit.RUNSTDBY = 1;
|
|
OSC32KCTRL->XOSC32K.bit.STARTUP = 4;
|
|
OSC32KCTRL->CFDCTRL.bit.CFDEN = 1; // Fall back to internal Osc on crystal fail
|
|
OSC32KCTRL->XOSC32K.bit.ENABLE = 1;
|
|
// make sure osc32kcrtl is ready
|
|
while (OSC32KCTRL->STATUS.bit.XOSC32KRDY == 0) {
|
|
}
|
|
|
|
// Setup GCLK1 for 32kHz crystal
|
|
GCLK->GENCTRL[1].reg = GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_XOSC32K;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL1) {
|
|
}
|
|
|
|
// Set-up the DFLL48M in closed loop mode with input from the 32kHz crystal
|
|
|
|
// Step 1: Peripheral channel 0 is driven by GCLK1 and it feeds DFLL48M
|
|
GCLK->PCHCTRL[0].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN;
|
|
while (GCLK->PCHCTRL[0].bit.CHEN == 0) {
|
|
}
|
|
// Step 2: Set the multiplication values. The offset of 16384 to the freq is for rounding.
|
|
OSCCTRL->DFLLMUL.reg = OSCCTRL_DFLLMUL_MUL((APB_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) |
|
|
OSCCTRL_DFLLMUL_FSTEP(1) | OSCCTRL_DFLLMUL_CSTEP(1);
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLMUL == 1) {
|
|
}
|
|
// Step 3: Set the mode to closed loop
|
|
OSCCTRL->DFLLCTRLB.reg = OSCCTRL_DFLLCTRLB_BPLCKC | OSCCTRL_DFLLCTRLB_MODE;
|
|
while (OSCCTRL->DFLLSYNC.bit.DFLLCTRLB == 1) {
|
|
}
|
|
// Wait for lock fine
|
|
while (OSCCTRL->STATUS.bit.DFLLLCKF == 0) {
|
|
}
|
|
// Step 4: Start the DFLL.
|
|
OSCCTRL->DFLLCTRLA.reg = OSCCTRL_DFLLCTRLA_RUNSTDBY | OSCCTRL_DFLLCTRLA_ENABLE;
|
|
while (OSCCTRL->DFLLSYNC.bit.ENABLE == 1) {
|
|
}
|
|
|
|
#else // MICROPY_HW_XOSC32K
|
|
|
|
// Set GCLK1 to DPLL0_REF_FREQ as defined in mpconfigboard.h (e.g. 32768 Hz)
|
|
GCLK->GENCTRL[1].reg = ((APB_FREQ + DPLLx_REF_FREQ / 2) / DPLLx_REF_FREQ) << GCLK_GENCTRL_DIV_Pos
|
|
| GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL1) {
|
|
}
|
|
|
|
#endif // MICROPY_HW_XOSC32K
|
|
|
|
// Peripheral channel 1 is driven by GCLK1 and it feeds DPLL0
|
|
GCLK->PCHCTRL[1].reg = GCLK_PCHCTRL_GEN_GCLK1 | GCLK_PCHCTRL_CHEN;
|
|
while (GCLK->PCHCTRL[1].bit.CHEN == 0) {
|
|
}
|
|
|
|
set_cpu_freq(cpu_freq);
|
|
|
|
apb_freq = APB_FREQ; // To be changed if CPU_FREQ < 48M
|
|
|
|
// Setup GCLK2 for DPLL1 output (48 MHz)
|
|
GCLK->GENCTRL[2].reg = GCLK_GENCTRL_DIV(1) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL2) {
|
|
}
|
|
|
|
// Setup GCLK3 for 8MHz, Used for TC0/1 counter
|
|
GCLK->GENCTRL[3].reg = GCLK_GENCTRL_DIV(6) | GCLK_GENCTRL_RUNSTDBY | GCLK_GENCTRL_GENEN | GCLK_GENCTRL_SRC_DFLL;
|
|
while (GCLK->SYNCBUSY.bit.GENCTRL3) {
|
|
}
|
|
|
|
#endif // defined(MCU_SAMD51)
|
|
}
|
|
|
|
void enable_sercom_clock(int id) {
|
|
// Next: Set up the clocks
|
|
#if defined(MCU_SAMD21)
|
|
// Enable synchronous clock. The bits are nicely arranged
|
|
PM->APBCMASK.reg |= 0x04 << id;
|
|
// Select multiplexer generic clock source and enable.
|
|
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | sercom_gclk_id[id];
|
|
// Wait while it updates synchronously.
|
|
while (GCLK->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
#elif defined(MCU_SAMD51)
|
|
GCLK->PCHCTRL[sercom_gclk_id[id]].reg = GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN_GCLK2;
|
|
// no easy way to set the clocks, except enabling all of them
|
|
switch (id) {
|
|
case 0:
|
|
MCLK->APBAMASK.bit.SERCOM0_ = 1;
|
|
break;
|
|
case 1:
|
|
MCLK->APBAMASK.bit.SERCOM1_ = 1;
|
|
break;
|
|
case 2:
|
|
MCLK->APBBMASK.bit.SERCOM2_ = 1;
|
|
break;
|
|
case 3:
|
|
MCLK->APBBMASK.bit.SERCOM3_ = 1;
|
|
break;
|
|
case 4:
|
|
MCLK->APBDMASK.bit.SERCOM4_ = 1;
|
|
break;
|
|
case 5:
|
|
MCLK->APBDMASK.bit.SERCOM5_ = 1;
|
|
break;
|
|
#ifdef SERCOM7_GCLK_ID_CORE
|
|
case 6:
|
|
MCLK->APBDMASK.bit.SERCOM6_ = 1;
|
|
break;
|
|
case 7:
|
|
MCLK->APBDMASK.bit.SERCOM7_ = 1;
|
|
break;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|