675 lines
25 KiB
C
675 lines
25 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2021 Mike Teachman
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
// This file is never compiled standalone, it's included directly from
|
|
// extmod/machine_i2s.c via MICROPY_PY_MACHINE_I2S_INCLUDEFILE.
|
|
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include "py/mphal.h"
|
|
|
|
#include "hardware/pio.h"
|
|
#include "hardware/clocks.h"
|
|
#include "hardware/gpio.h"
|
|
#include "hardware/dma.h"
|
|
#include "hardware/irq.h"
|
|
|
|
// The I2S class has 3 modes of operation:
|
|
//
|
|
// Mode1: Blocking
|
|
// - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write)
|
|
// - this is the default mode of operation
|
|
//
|
|
// Mode2: Non-Blocking
|
|
// - readinto() and write() methods return immediately
|
|
// - buffer filling and emptying happens asynchronously to the main MicroPython task
|
|
// - a callback function is called when the supplied buffer has been filled (read) or emptied (write)
|
|
// - non-blocking mode is enabled when a callback is set with the irq() method
|
|
// - the DMA IRQ handler is used to implement the asynchronous background operations
|
|
//
|
|
// Mode3: Asyncio
|
|
// - implements the stream protocol
|
|
// - asyncio mode is enabled when the ioctl() function is called
|
|
// - the state of the internal ring buffer is used to detect that I2S samples can be read or written
|
|
//
|
|
// The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention:
|
|
// Mono: little endian format
|
|
// Stereo: little endian format, left channel first
|
|
//
|
|
// I2S terms:
|
|
// "frame": consists of two audio samples (Left audio sample + Right audio sample)
|
|
//
|
|
// Misc:
|
|
// - for Mono configuration:
|
|
// - readinto method: samples are gathered from the L channel only
|
|
// - write method: every sample is output to both the L and R channels
|
|
// - for readinto method the I2S hardware is read using 8-byte frames
|
|
// (this is standard for almost all I2S hardware, such as MEMS microphones)
|
|
// - the PIO is used to drive the I2S bus signals
|
|
// - all sample data transfers use non-blocking DMA
|
|
// - the DMA controller is configured with 2 DMA channels in chained mode
|
|
|
|
#define MAX_I2S_RP2 (2)
|
|
|
|
// The DMA buffer size was empirically determined. It is a tradeoff between:
|
|
// 1. memory use (smaller buffer size desirable to reduce memory footprint)
|
|
// 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency)
|
|
#define SIZEOF_DMA_BUFFER_IN_BYTES (256)
|
|
#define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2)
|
|
#define I2S_NUM_DMA_CHANNELS (2)
|
|
|
|
// For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster
|
|
// than the DMA transfer rate
|
|
#define NON_BLOCKING_RATE_MULTIPLIER (4)
|
|
#define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER)
|
|
|
|
#define NUM_I2S_USER_FORMATS (4)
|
|
#define I2S_RX_FRAME_SIZE_IN_BYTES (8)
|
|
|
|
#define SAMPLES_PER_FRAME (2)
|
|
#define PIO_INSTRUCTIONS_PER_BIT (2)
|
|
|
|
typedef enum {
|
|
RX,
|
|
TX
|
|
} i2s_mode_t;
|
|
|
|
typedef enum {
|
|
MONO,
|
|
STEREO
|
|
} format_t;
|
|
|
|
typedef enum {
|
|
BLOCKING,
|
|
NON_BLOCKING,
|
|
ASYNCIO
|
|
} io_mode_t;
|
|
|
|
typedef enum {
|
|
GP_INPUT = 0,
|
|
GP_OUTPUT = 1
|
|
} gpio_dir_t;
|
|
|
|
typedef struct _machine_i2s_obj_t {
|
|
mp_obj_base_t base;
|
|
uint8_t i2s_id;
|
|
mp_hal_pin_obj_t sck;
|
|
mp_hal_pin_obj_t ws;
|
|
mp_hal_pin_obj_t sd;
|
|
i2s_mode_t mode;
|
|
int8_t bits;
|
|
format_t format;
|
|
int32_t rate;
|
|
int32_t ibuf;
|
|
mp_obj_t callback_for_non_blocking;
|
|
io_mode_t io_mode;
|
|
PIO pio;
|
|
uint8_t sm;
|
|
const pio_program_t *pio_program;
|
|
uint prog_offset;
|
|
int dma_channel[I2S_NUM_DMA_CHANNELS];
|
|
uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES];
|
|
ring_buf_t ring_buffer;
|
|
uint8_t *ring_buffer_storage;
|
|
non_blocking_descriptor_t non_blocking_descriptor;
|
|
} machine_i2s_obj_t;
|
|
|
|
// The frame map is used with the readinto() method to transform the audio sample data coming
|
|
// from DMA memory (32-bit stereo) to the format specified
|
|
// in the I2S constructor. e.g. 16-bit mono
|
|
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
|
|
{-1, -1, 0, 1, -1, -1, -1, -1 }, // Mono, 16-bits
|
|
{ 0, 1, 2, 3, -1, -1, -1, -1 }, // Mono, 32-bits
|
|
{-1, -1, 0, 1, -1, -1, 2, 3 }, // Stereo, 16-bits
|
|
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // Stereo, 32-bits
|
|
};
|
|
|
|
STATIC const PIO pio_instances[NUM_PIOS] = {pio0, pio1};
|
|
|
|
// PIO program for 16-bit write
|
|
// set(x, 14) .side(0b01)
|
|
// label('left_channel')
|
|
// out(pins, 1) .side(0b00)
|
|
// jmp(x_dec, "left_channel") .side(0b01)
|
|
// out(pins, 1) .side(0b10)
|
|
// set(x, 14) .side(0b11)
|
|
// label('right_channel')
|
|
// out(pins, 1) .side(0b10)
|
|
// jmp(x_dec, "right_channel") .side(0b11)
|
|
// out(pins, 1) .side(0b00)
|
|
STATIC const uint16_t pio_instructions_write_16[] = {59438, 24577, 2113, 28673, 63534, 28673, 6213, 24577};
|
|
STATIC const pio_program_t pio_write_16 = {
|
|
pio_instructions_write_16,
|
|
sizeof(pio_instructions_write_16) / sizeof(uint16_t),
|
|
-1
|
|
};
|
|
|
|
// PIO program for 32-bit write
|
|
// set(x, 30) .side(0b01)
|
|
// label('left_channel')
|
|
// out(pins, 1) .side(0b00)
|
|
// jmp(x_dec, "left_channel") .side(0b01)
|
|
// out(pins, 1) .side(0b10)
|
|
// set(x, 30) .side(0b11)
|
|
// label('right_channel')
|
|
// out(pins, 1) .side(0b10)
|
|
// jmp(x_dec, "right_channel") .side(0b11)
|
|
// out(pins, 1) .side(0b00)
|
|
STATIC const uint16_t pio_instructions_write_32[] = {59454, 24577, 2113, 28673, 63550, 28673, 6213, 24577};
|
|
STATIC const pio_program_t pio_write_32 = {
|
|
pio_instructions_write_32,
|
|
sizeof(pio_instructions_write_32) / sizeof(uint16_t),
|
|
-1
|
|
};
|
|
|
|
// PIO program for 32-bit read
|
|
// set(x, 30) .side(0b00)
|
|
// label('left_channel')
|
|
// in_(pins, 1) .side(0b01)
|
|
// jmp(x_dec, "left_channel") .side(0b00)
|
|
// in_(pins, 1) .side(0b11)
|
|
// set(x, 30) .side(0b10)
|
|
// label('right_channel')
|
|
// in_(pins, 1) .side(0b11)
|
|
// jmp(x_dec, "right_channel") .side(0b10)
|
|
// in_(pins, 1) .side(0b01)
|
|
STATIC const uint16_t pio_instructions_read_32[] = {57406, 18433, 65, 22529, 61502, 22529, 4165, 18433};
|
|
STATIC const pio_program_t pio_read_32 = {
|
|
pio_instructions_read_32,
|
|
sizeof(pio_instructions_read_32) / sizeof(uint16_t),
|
|
-1
|
|
};
|
|
|
|
STATIC uint8_t dma_get_bits(i2s_mode_t mode, int8_t bits);
|
|
STATIC void dma_irq0_handler(void);
|
|
STATIC void dma_irq1_handler(void);
|
|
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
|
|
|
|
void machine_i2s_init0(void) {
|
|
for (uint8_t i = 0; i < MAX_I2S_RP2; i++) {
|
|
MP_STATE_PORT(machine_i2s_obj[i]) = NULL;
|
|
}
|
|
}
|
|
|
|
STATIC int8_t get_frame_mapping_index(int8_t bits, format_t format) {
|
|
if (format == MONO) {
|
|
if (bits == 16) {
|
|
return 0;
|
|
} else { // 32 bits
|
|
return 1;
|
|
}
|
|
} else { // STEREO
|
|
if (bits == 16) {
|
|
return 2;
|
|
} else { // 32 bits
|
|
return 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
// function is used in IRQ context
|
|
STATIC void empty_dma(machine_i2s_obj_t *self, uint8_t *dma_buffer_p) {
|
|
// when space exists, copy samples into ring buffer
|
|
if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
|
|
ringbuf_push(&self->ring_buffer, dma_buffer_p[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// function is used in IRQ context
|
|
STATIC void feed_dma(machine_i2s_obj_t *self, uint8_t *dma_buffer_p) {
|
|
// when data exists, copy samples from ring buffer
|
|
if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
|
|
|
|
// copy a block of samples from the ring buffer to the dma buffer.
|
|
// STM32 HAL API has a stereo I2S implementation, but not mono
|
|
// mono format is implemented by duplicating each sample into both L and R channels.
|
|
if ((self->format == MONO) && (self->bits == 16)) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) {
|
|
for (uint8_t b = 0; b < sizeof(uint16_t); b++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]);
|
|
dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample
|
|
}
|
|
}
|
|
} else if ((self->format == MONO) && (self->bits == 32)) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) {
|
|
for (uint8_t b = 0; b < sizeof(uint32_t); b++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]);
|
|
dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample
|
|
}
|
|
}
|
|
} else { // STEREO, both 16-bit and 32-bit
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]);
|
|
}
|
|
}
|
|
} else {
|
|
// underflow. clear buffer to transmit "silence" on the I2S bus
|
|
memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
|
|
}
|
|
}
|
|
|
|
STATIC void irq_configure(machine_i2s_obj_t *self) {
|
|
if (self->i2s_id == 0) {
|
|
irq_set_exclusive_handler(DMA_IRQ_0, dma_irq0_handler);
|
|
irq_set_enabled(DMA_IRQ_0, true);
|
|
} else {
|
|
irq_set_exclusive_handler(DMA_IRQ_1, dma_irq1_handler);
|
|
irq_set_enabled(DMA_IRQ_1, true);
|
|
}
|
|
}
|
|
|
|
STATIC void irq_deinit(machine_i2s_obj_t *self) {
|
|
if (self->i2s_id == 0) {
|
|
irq_set_enabled(DMA_IRQ_0, false);
|
|
irq_remove_handler(DMA_IRQ_0, dma_irq0_handler);
|
|
} else {
|
|
irq_set_enabled(DMA_IRQ_1, false);
|
|
irq_remove_handler(DMA_IRQ_1, dma_irq1_handler);
|
|
}
|
|
}
|
|
|
|
STATIC void pio_configure(machine_i2s_obj_t *self) {
|
|
if (self->mode == TX) {
|
|
if (self->bits == 16) {
|
|
self->pio_program = &pio_write_16;
|
|
} else {
|
|
self->pio_program = &pio_write_32;
|
|
}
|
|
} else { // RX
|
|
self->pio_program = &pio_read_32;
|
|
}
|
|
|
|
// find a PIO with a free state machine and adequate program space
|
|
PIO candidate_pio;
|
|
bool is_free_sm;
|
|
bool can_add_program;
|
|
for (uint8_t p = 0; p < NUM_PIOS; p++) {
|
|
candidate_pio = pio_instances[p];
|
|
is_free_sm = false;
|
|
can_add_program = false;
|
|
|
|
for (uint8_t sm = 0; sm < NUM_PIO_STATE_MACHINES; sm++) {
|
|
if (!pio_sm_is_claimed(candidate_pio, sm)) {
|
|
is_free_sm = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pio_can_add_program(candidate_pio, self->pio_program)) {
|
|
can_add_program = true;
|
|
}
|
|
|
|
if (is_free_sm && can_add_program) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!is_free_sm) {
|
|
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("no free state machines"));
|
|
}
|
|
|
|
if (!can_add_program) {
|
|
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("not enough PIO program space"));
|
|
}
|
|
|
|
self->pio = candidate_pio;
|
|
self->sm = pio_claim_unused_sm(self->pio, false);
|
|
self->prog_offset = pio_add_program(self->pio, self->pio_program);
|
|
pio_sm_init(self->pio, self->sm, self->prog_offset, NULL);
|
|
|
|
pio_sm_config config = pio_get_default_sm_config();
|
|
|
|
float pio_freq = self->rate *
|
|
SAMPLES_PER_FRAME *
|
|
dma_get_bits(self->mode, self->bits) *
|
|
PIO_INSTRUCTIONS_PER_BIT;
|
|
float clkdiv = clock_get_hz(clk_sys) / pio_freq;
|
|
sm_config_set_clkdiv(&config, clkdiv);
|
|
|
|
if (self->mode == TX) {
|
|
sm_config_set_out_pins(&config, self->sd, 1);
|
|
sm_config_set_out_shift(&config, false, true, dma_get_bits(self->mode, self->bits));
|
|
sm_config_set_fifo_join(&config, PIO_FIFO_JOIN_TX); // double TX FIFO size
|
|
} else { // RX
|
|
sm_config_set_in_pins(&config, self->sd);
|
|
sm_config_set_in_shift(&config, false, true, dma_get_bits(self->mode, self->bits));
|
|
sm_config_set_fifo_join(&config, PIO_FIFO_JOIN_RX); // double RX FIFO size
|
|
}
|
|
|
|
sm_config_set_sideset(&config, 2, false, false);
|
|
sm_config_set_sideset_pins(&config, self->sck);
|
|
sm_config_set_wrap(&config, self->prog_offset, self->prog_offset + self->pio_program->length - 1);
|
|
pio_sm_set_config(self->pio, self->sm, &config);
|
|
}
|
|
|
|
STATIC void pio_deinit(machine_i2s_obj_t *self) {
|
|
if (self->pio) {
|
|
pio_sm_set_enabled(self->pio, self->sm, false);
|
|
pio_sm_unclaim(self->pio, self->sm);
|
|
pio_remove_program(self->pio, self->pio_program, self->prog_offset);
|
|
}
|
|
}
|
|
|
|
STATIC void gpio_init_i2s(PIO pio, uint8_t sm, mp_hal_pin_obj_t pin_num, uint8_t pin_val, gpio_dir_t pin_dir) {
|
|
uint32_t pinmask = 1 << pin_num;
|
|
pio_sm_set_pins_with_mask(pio, sm, pin_val << pin_num, pinmask);
|
|
pio_sm_set_pindirs_with_mask(pio, sm, pin_dir << pin_num, pinmask);
|
|
pio_gpio_init(pio, pin_num);
|
|
}
|
|
|
|
STATIC void gpio_configure(machine_i2s_obj_t *self) {
|
|
gpio_init_i2s(self->pio, self->sm, self->sck, 0, GP_OUTPUT);
|
|
gpio_init_i2s(self->pio, self->sm, self->ws, 0, GP_OUTPUT);
|
|
if (self->mode == TX) {
|
|
gpio_init_i2s(self->pio, self->sm, self->sd, 0, GP_OUTPUT);
|
|
} else { // RX
|
|
gpio_init_i2s(self->pio, self->sm, self->sd, 0, GP_INPUT);
|
|
}
|
|
}
|
|
|
|
STATIC uint8_t dma_get_bits(i2s_mode_t mode, int8_t bits) {
|
|
if (mode == TX) {
|
|
return bits;
|
|
} else { // RX
|
|
// always read 32 bit words for I2S e.g. I2S MEMS microphones
|
|
return 32;
|
|
}
|
|
}
|
|
|
|
// determine which DMA channel is associated to this IRQ
|
|
STATIC uint dma_map_irq_to_channel(uint irq_index) {
|
|
for (uint ch = 0; ch < NUM_DMA_CHANNELS; ch++) {
|
|
if ((dma_irqn_get_channel_status(irq_index, ch))) {
|
|
return ch;
|
|
}
|
|
}
|
|
// This should never happen
|
|
return -1;
|
|
}
|
|
|
|
// note: first DMA channel is mapped to the top half of buffer, second is mapped to the bottom half
|
|
STATIC uint8_t *dma_get_buffer(machine_i2s_obj_t *i2s_obj, uint channel) {
|
|
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
|
|
if (i2s_obj->dma_channel[ch] == channel) {
|
|
return i2s_obj->dma_buffer + (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * ch);
|
|
}
|
|
}
|
|
// This should never happen
|
|
return NULL;
|
|
}
|
|
|
|
STATIC void dma_configure(machine_i2s_obj_t *self) {
|
|
uint8_t num_free_dma_channels = 0;
|
|
for (uint8_t ch = 0; ch < NUM_DMA_CHANNELS; ch++) {
|
|
if (!dma_channel_is_claimed(ch)) {
|
|
num_free_dma_channels++;
|
|
}
|
|
}
|
|
if (num_free_dma_channels < I2S_NUM_DMA_CHANNELS) {
|
|
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("cannot claim 2 DMA channels"));
|
|
}
|
|
|
|
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
|
|
self->dma_channel[ch] = dma_claim_unused_channel(false);
|
|
}
|
|
|
|
// The DMA channels are chained together. The first DMA channel is used to access
|
|
// the top half of the DMA buffer. The second DMA channel accesses the bottom half of the DMA buffer.
|
|
// With chaining, when one DMA channel has completed a data transfer, the other
|
|
// DMA channel automatically starts a new data transfer.
|
|
enum dma_channel_transfer_size dma_size = (dma_get_bits(self->mode, self->bits) == 16) ? DMA_SIZE_16 : DMA_SIZE_32;
|
|
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
|
|
dma_channel_config dma_config = dma_channel_get_default_config(self->dma_channel[ch]);
|
|
channel_config_set_transfer_data_size(&dma_config, dma_size);
|
|
channel_config_set_chain_to(&dma_config, self->dma_channel[(ch + 1) % I2S_NUM_DMA_CHANNELS]);
|
|
|
|
uint8_t *dma_buffer = self->dma_buffer + (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * ch);
|
|
if (self->mode == TX) {
|
|
channel_config_set_dreq(&dma_config, pio_get_dreq(self->pio, self->sm, true));
|
|
channel_config_set_read_increment(&dma_config, true);
|
|
channel_config_set_write_increment(&dma_config, false);
|
|
dma_channel_configure(self->dma_channel[ch],
|
|
&dma_config,
|
|
(void *)&self->pio->txf[self->sm], // dest = PIO TX FIFO
|
|
dma_buffer, // src = DMA buffer
|
|
SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (dma_get_bits(self->mode, self->bits) / 8),
|
|
false);
|
|
} else { // RX
|
|
channel_config_set_dreq(&dma_config, pio_get_dreq(self->pio, self->sm, false));
|
|
channel_config_set_read_increment(&dma_config, false);
|
|
channel_config_set_write_increment(&dma_config, true);
|
|
dma_channel_configure(self->dma_channel[ch],
|
|
&dma_config,
|
|
dma_buffer, // dest = DMA buffer
|
|
(void *)&self->pio->rxf[self->sm], // src = PIO RX FIFO
|
|
SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (dma_get_bits(self->mode, self->bits) / 8),
|
|
false);
|
|
}
|
|
}
|
|
|
|
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
|
|
dma_irqn_acknowledge_channel(self->i2s_id, self->dma_channel[ch]); // clear pending. e.g. from SPI
|
|
dma_irqn_set_channel_enabled(self->i2s_id, self->dma_channel[ch], true);
|
|
}
|
|
}
|
|
|
|
STATIC void dma_deinit(machine_i2s_obj_t *self) {
|
|
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
|
|
int channel = self->dma_channel[ch];
|
|
|
|
// unchain the channel to prevent triggering a transfer in the chained-to channel
|
|
dma_channel_config dma_config = dma_get_channel_config(channel);
|
|
channel_config_set_chain_to(&dma_config, channel);
|
|
dma_channel_set_config(channel, &dma_config, false);
|
|
|
|
dma_irqn_set_channel_enabled(self->i2s_id, channel, false);
|
|
dma_channel_abort(channel); // in case a transfer is in flight
|
|
dma_channel_unclaim(channel);
|
|
}
|
|
}
|
|
|
|
STATIC void dma_irq_handler(uint8_t irq_index) {
|
|
int dma_channel = dma_map_irq_to_channel(irq_index);
|
|
if (dma_channel == -1) {
|
|
// This should never happen
|
|
return;
|
|
}
|
|
|
|
machine_i2s_obj_t *self = MP_STATE_PORT(machine_i2s_obj[irq_index]);
|
|
if (self == NULL) {
|
|
// This should never happen
|
|
return;
|
|
}
|
|
|
|
uint8_t *dma_buffer = dma_get_buffer(self, dma_channel);
|
|
if (dma_buffer == NULL) {
|
|
// This should never happen
|
|
return;
|
|
}
|
|
|
|
if (self->mode == TX) {
|
|
// for non-blocking operation handle the write() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
copy_appbuf_to_ringbuf_non_blocking(self);
|
|
}
|
|
|
|
feed_dma(self, dma_buffer);
|
|
dma_irqn_acknowledge_channel(irq_index, dma_channel);
|
|
dma_channel_set_read_addr(dma_channel, dma_buffer, false);
|
|
} else { // RX
|
|
empty_dma(self, dma_buffer);
|
|
dma_irqn_acknowledge_channel(irq_index, dma_channel);
|
|
dma_channel_set_write_addr(dma_channel, dma_buffer, false);
|
|
|
|
// for non-blocking operation handle the readinto() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
fill_appbuf_from_ringbuf_non_blocking(self);
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC void dma_irq0_handler(void) {
|
|
dma_irq_handler(0);
|
|
}
|
|
|
|
STATIC void dma_irq1_handler(void) {
|
|
dma_irq_handler(1);
|
|
}
|
|
|
|
STATIC void mp_machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
|
|
enum {
|
|
ARG_sck,
|
|
ARG_ws,
|
|
ARG_sd,
|
|
ARG_mode,
|
|
ARG_bits,
|
|
ARG_format,
|
|
ARG_rate,
|
|
ARG_ibuf,
|
|
};
|
|
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
|
|
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
{ MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
|
|
};
|
|
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
//
|
|
// ---- Check validity of arguments ----
|
|
//
|
|
|
|
// are Pins valid?
|
|
mp_hal_pin_obj_t sck = args[ARG_sck].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sck].u_obj);
|
|
mp_hal_pin_obj_t ws = args[ARG_ws].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_ws].u_obj);
|
|
mp_hal_pin_obj_t sd = args[ARG_sd].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sd].u_obj);
|
|
|
|
// does WS pin follow SCK pin?
|
|
// note: SCK and WS are implemented as PIO sideset pins. Sideset pins must be sequential.
|
|
if (ws != (sck + 1)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid ws (must be sck+1)"));
|
|
}
|
|
|
|
// is Mode valid?
|
|
i2s_mode_t i2s_mode = args[ARG_mode].u_int;
|
|
if ((i2s_mode != RX) &&
|
|
(i2s_mode != TX)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
|
|
}
|
|
|
|
// is Bits valid?
|
|
int8_t i2s_bits = args[ARG_bits].u_int;
|
|
if ((i2s_bits != 16) &&
|
|
(i2s_bits != 32)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
|
|
}
|
|
|
|
// is Format valid?
|
|
format_t i2s_format = args[ARG_format].u_int;
|
|
if ((i2s_format != MONO) &&
|
|
(i2s_format != STEREO)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
|
|
}
|
|
|
|
// is Rate valid?
|
|
// Not checked
|
|
|
|
// is Ibuf valid?
|
|
int32_t ring_buffer_len = args[ARG_ibuf].u_int;
|
|
if (ring_buffer_len > 0) {
|
|
self->ring_buffer_storage = m_new(uint8_t, ring_buffer_len);
|
|
;
|
|
ringbuf_init(&self->ring_buffer, self->ring_buffer_storage, ring_buffer_len);
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf"));
|
|
}
|
|
|
|
self->sck = sck;
|
|
self->ws = ws;
|
|
self->sd = sd;
|
|
self->mode = i2s_mode;
|
|
self->bits = i2s_bits;
|
|
self->format = i2s_format;
|
|
self->rate = args[ARG_rate].u_int;
|
|
self->ibuf = ring_buffer_len;
|
|
self->callback_for_non_blocking = MP_OBJ_NULL;
|
|
self->non_blocking_descriptor.copy_in_progress = false;
|
|
self->io_mode = BLOCKING;
|
|
|
|
irq_configure(self);
|
|
pio_configure(self);
|
|
gpio_configure(self);
|
|
dma_configure(self);
|
|
|
|
pio_sm_set_enabled(self->pio, self->sm, true);
|
|
dma_channel_start(self->dma_channel[0]);
|
|
}
|
|
|
|
STATIC machine_i2s_obj_t *mp_machine_i2s_make_new_instance(mp_int_t i2s_id) {
|
|
if (i2s_id >= MAX_I2S_RP2) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
|
|
}
|
|
|
|
machine_i2s_obj_t *self;
|
|
if (MP_STATE_PORT(machine_i2s_obj[i2s_id]) == NULL) {
|
|
self = mp_obj_malloc(machine_i2s_obj_t, &machine_i2s_type);
|
|
MP_STATE_PORT(machine_i2s_obj[i2s_id]) = self;
|
|
self->i2s_id = i2s_id;
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj[i2s_id]);
|
|
machine_i2s_deinit(MP_OBJ_FROM_PTR(self));
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
STATIC void mp_machine_i2s_deinit(machine_i2s_obj_t *self) {
|
|
// use self->pio as in indication that I2S object has already been de-initialized
|
|
if (self->pio != NULL) {
|
|
pio_deinit(self);
|
|
dma_deinit(self);
|
|
irq_deinit(self);
|
|
m_free(self->ring_buffer_storage);
|
|
self->pio = NULL; // flag object as de-initialized
|
|
}
|
|
}
|
|
|
|
STATIC void mp_machine_i2s_irq_update(machine_i2s_obj_t *self) {
|
|
(void)self;
|
|
}
|
|
|
|
MP_REGISTER_ROOT_POINTER(void *machine_i2s_obj[2]);
|