micropython/ports/unix/coverage.c

746 lines
27 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "py/obj.h"
#include "py/objfun.h"
#include "py/objstr.h"
#include "py/runtime.h"
#include "py/gc.h"
#include "py/repl.h"
#include "py/mpz.h"
#include "py/builtin.h"
#include "py/emit.h"
#include "py/formatfloat.h"
#include "py/ringbuf.h"
#include "py/pairheap.h"
#include "py/stream.h"
#include "py/binary.h"
#include "py/bc.h"
// expected output of this file is found in extra_coverage.py.exp
#if defined(MICROPY_UNIX_COVERAGE)
// stream testing object
typedef struct _mp_obj_streamtest_t {
mp_obj_base_t base;
uint8_t *buf;
size_t len;
size_t pos;
int error_code;
} mp_obj_streamtest_t;
STATIC mp_obj_t stest_set_buf(mp_obj_t o_in, mp_obj_t buf_in) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(buf_in, &bufinfo, MP_BUFFER_READ);
o->buf = m_new(uint8_t, bufinfo.len);
memcpy(o->buf, bufinfo.buf, bufinfo.len);
o->len = bufinfo.len;
o->pos = 0;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(stest_set_buf_obj, stest_set_buf);
STATIC mp_obj_t stest_set_error(mp_obj_t o_in, mp_obj_t err_in) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
o->error_code = mp_obj_get_int(err_in);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(stest_set_error_obj, stest_set_error);
STATIC mp_uint_t stest_read(mp_obj_t o_in, void *buf, mp_uint_t size, int *errcode) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
if (o->pos < o->len) {
if (size > o->len - o->pos) {
size = o->len - o->pos;
}
memcpy(buf, o->buf + o->pos, size);
o->pos += size;
return size;
} else if (o->error_code == 0) {
return 0;
} else {
*errcode = o->error_code;
return MP_STREAM_ERROR;
}
}
STATIC mp_uint_t stest_write(mp_obj_t o_in, const void *buf, mp_uint_t size, int *errcode) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
(void)buf;
(void)size;
*errcode = o->error_code;
return MP_STREAM_ERROR;
}
STATIC mp_uint_t stest_ioctl(mp_obj_t o_in, mp_uint_t request, uintptr_t arg, int *errcode) {
mp_obj_streamtest_t *o = MP_OBJ_TO_PTR(o_in);
(void)arg;
(void)request;
(void)errcode;
if (o->error_code != 0) {
*errcode = o->error_code;
return MP_STREAM_ERROR;
}
return 0;
}
STATIC const mp_rom_map_elem_t rawfile_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_set_buf), MP_ROM_PTR(&stest_set_buf_obj) },
{ MP_ROM_QSTR(MP_QSTR_set_error), MP_ROM_PTR(&stest_set_error_obj) },
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
{ MP_ROM_QSTR(MP_QSTR_read1), MP_ROM_PTR(&mp_stream_read1_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_write1), MP_ROM_PTR(&mp_stream_write1_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_readline), MP_ROM_PTR(&mp_stream_unbuffered_readline_obj) },
{ MP_ROM_QSTR(MP_QSTR_ioctl), MP_ROM_PTR(&mp_stream_ioctl_obj) },
};
STATIC MP_DEFINE_CONST_DICT(rawfile_locals_dict, rawfile_locals_dict_table);
STATIC const mp_stream_p_t fileio_stream_p = {
.read = stest_read,
.write = stest_write,
.ioctl = stest_ioctl,
};
STATIC MP_DEFINE_CONST_OBJ_TYPE(
mp_type_stest_fileio,
MP_QSTR_stest_fileio,
MP_TYPE_FLAG_NONE,
protocol, &fileio_stream_p,
locals_dict, &rawfile_locals_dict
);
// stream read returns non-blocking error
STATIC mp_uint_t stest_read2(mp_obj_t o_in, void *buf, mp_uint_t size, int *errcode) {
(void)o_in;
(void)buf;
(void)size;
*errcode = MP_EAGAIN;
return MP_STREAM_ERROR;
}
STATIC const mp_rom_map_elem_t rawfile_locals_dict_table2[] = {
{ MP_ROM_QSTR(MP_QSTR_read), MP_ROM_PTR(&mp_stream_read_obj) },
};
STATIC MP_DEFINE_CONST_DICT(rawfile_locals_dict2, rawfile_locals_dict_table2);
STATIC const mp_stream_p_t textio_stream_p2 = {
.read = stest_read2,
.write = NULL,
.is_text = true,
};
STATIC MP_DEFINE_CONST_OBJ_TYPE(
mp_type_stest_textio2,
MP_QSTR_stest_textio2,
MP_TYPE_FLAG_NONE,
protocol, &textio_stream_p2,
locals_dict, &rawfile_locals_dict2
);
// str/bytes objects without a valid hash
STATIC const mp_obj_str_t str_no_hash_obj = {{&mp_type_str}, 0, 10, (const byte *)"0123456789"};
STATIC const mp_obj_str_t bytes_no_hash_obj = {{&mp_type_bytes}, 0, 10, (const byte *)"0123456789"};
STATIC int pairheap_lt(mp_pairheap_t *a, mp_pairheap_t *b) {
return (uintptr_t)a < (uintptr_t)b;
}
// ops array contain operations: x>=0 means push(x), x<0 means delete(-x)
STATIC void pairheap_test(size_t nops, int *ops) {
mp_pairheap_t node[8];
for (size_t i = 0; i < MP_ARRAY_SIZE(node); ++i) {
mp_pairheap_init_node(pairheap_lt, &node[i]);
}
mp_pairheap_t *heap = mp_pairheap_new(pairheap_lt);
mp_printf(&mp_plat_print, "create:");
for (size_t i = 0; i < nops; ++i) {
if (ops[i] >= 0) {
heap = mp_pairheap_push(pairheap_lt, heap, &node[ops[i]]);
} else {
heap = mp_pairheap_delete(pairheap_lt, heap, &node[-ops[i]]);
}
if (mp_pairheap_is_empty(pairheap_lt, heap)) {
mp_printf(&mp_plat_print, " -");
} else {
mp_printf(&mp_plat_print, " %d", mp_pairheap_peek(pairheap_lt, heap) - &node[0]);
;
}
}
mp_printf(&mp_plat_print, "\npop all:");
while (!mp_pairheap_is_empty(pairheap_lt, heap)) {
mp_printf(&mp_plat_print, " %d", mp_pairheap_peek(pairheap_lt, heap) - &node[0]);
;
heap = mp_pairheap_pop(pairheap_lt, heap);
}
mp_printf(&mp_plat_print, "\n");
}
// function to run extra tests for things that can't be checked by scripts
STATIC mp_obj_t extra_coverage(void) {
// mp_printf (used by ports that don't have a native printf)
{
mp_printf(&mp_plat_print, "# mp_printf\n");
mp_printf(&mp_plat_print, "%d %+d % d\n", -123, 123, 123); // sign
mp_printf(&mp_plat_print, "%05d\n", -123); // negative number with zero padding
mp_printf(&mp_plat_print, "%ld\n", 123); // long
mp_printf(&mp_plat_print, "%lx\n", 0x123); // long hex
mp_printf(&mp_plat_print, "%X\n", 0x1abcdef); // capital hex
mp_printf(&mp_plat_print, "%.2s %.3s '%4.4s' '%5.5q' '%.3q'\n", "abc", "abc", "abc", MP_QSTR_True, MP_QSTR_True); // fixed string precision
mp_printf(&mp_plat_print, "%.*s\n", -1, "abc"); // negative string precision
mp_printf(&mp_plat_print, "%b %b\n", 0, 1); // bools
#ifndef NDEBUG
mp_printf(&mp_plat_print, "%s\n", NULL); // null string
#else
mp_printf(&mp_plat_print, "(null)\n"); // without debugging mp_printf won't check for null
#endif
mp_printf(&mp_plat_print, "%d\n", 0x80000000); // should print signed
mp_printf(&mp_plat_print, "%u\n", 0x80000000); // should print unsigned
mp_printf(&mp_plat_print, "%x\n", 0x80000000); // should print unsigned
mp_printf(&mp_plat_print, "%X\n", 0x80000000); // should print unsigned
mp_printf(&mp_plat_print, "abc\n%"); // string ends in middle of format specifier
mp_printf(&mp_plat_print, "%%\n"); // literal % character
}
// GC
{
mp_printf(&mp_plat_print, "# GC\n");
// calling gc_free while GC is locked
gc_lock();
gc_free(NULL);
gc_unlock();
// using gc_realloc to resize to 0, which means free the memory
void *p = gc_alloc(4, false);
mp_printf(&mp_plat_print, "%p\n", gc_realloc(p, 0, false));
// calling gc_nbytes with a non-heap pointer
mp_printf(&mp_plat_print, "%p\n", gc_nbytes(NULL));
}
// GC initialisation and allocation stress test, to check the logic behind ALLOC_TABLE_GAP_BYTE
// (the following test should fail when ALLOC_TABLE_GAP_BYTE=0)
{
mp_printf(&mp_plat_print, "# GC part 2\n");
// check the GC is unlocked and save its state
assert(MP_STATE_THREAD(gc_lock_depth) == 0);
mp_state_mem_t mp_state_mem_orig = mp_state_ctx.mem;
// perform the test
unsigned heap_size = 64 * MICROPY_BYTES_PER_GC_BLOCK;
for (unsigned j = 0; j < 256 * MP_BYTES_PER_OBJ_WORD; ++j) {
char *heap = calloc(heap_size, 1);
gc_init(heap, heap + heap_size);
m_malloc(MICROPY_BYTES_PER_GC_BLOCK);
void *o = gc_alloc(MICROPY_BYTES_PER_GC_BLOCK, GC_ALLOC_FLAG_HAS_FINALISER);
((mp_obj_base_t *)o)->type = NULL; // ensure type is cleared so GC doesn't look for finaliser
for (unsigned i = 0; i < heap_size / MICROPY_BYTES_PER_GC_BLOCK; ++i) {
void *p = m_malloc_maybe(MICROPY_BYTES_PER_GC_BLOCK);
if (!p) {
break;
}
*(void **)p = o;
o = p;
}
gc_collect();
free(heap);
heap_size += MICROPY_BYTES_PER_GC_BLOCK / 16;
}
mp_printf(&mp_plat_print, "pass\n");
// restore the GC state (the original heap)
mp_state_ctx.mem = mp_state_mem_orig;
}
// tracked allocation
{
#define NUM_PTRS (8)
#define NUM_BYTES (128)
#define FLIP_POINTER(p) ((uint8_t *)((uintptr_t)(p) ^ 0x0f))
mp_printf(&mp_plat_print, "# tracked allocation\n");
mp_printf(&mp_plat_print, "m_tracked_head = %p\n", MP_STATE_VM(m_tracked_head));
uint8_t *ptrs[NUM_PTRS];
// allocate memory blocks
for (size_t i = 0; i < NUM_PTRS; ++i) {
ptrs[i] = m_tracked_calloc(1, NUM_BYTES);
bool all_zero = true;
for (size_t j = 0; j < NUM_BYTES; ++j) {
if (ptrs[i][j] != 0) {
all_zero = false;
break;
}
ptrs[i][j] = j;
}
mp_printf(&mp_plat_print, "%d %d\n", i, all_zero);
// hide the pointer from the GC and collect
ptrs[i] = FLIP_POINTER(ptrs[i]);
gc_collect();
}
// check the memory blocks have the correct content
for (size_t i = 0; i < NUM_PTRS; ++i) {
bool correct_contents = true;
for (size_t j = 0; j < NUM_BYTES; ++j) {
if (FLIP_POINTER(ptrs[i])[j] != j) {
correct_contents = false;
break;
}
}
mp_printf(&mp_plat_print, "%d %d\n", i, correct_contents);
}
// free the memory blocks
for (size_t i = 0; i < NUM_PTRS; ++i) {
m_tracked_free(FLIP_POINTER(ptrs[i]));
}
mp_printf(&mp_plat_print, "m_tracked_head = %p\n", MP_STATE_VM(m_tracked_head));
}
// vstr
{
mp_printf(&mp_plat_print, "# vstr\n");
vstr_t *vstr = vstr_new(16);
vstr_hint_size(vstr, 32);
vstr_add_str(vstr, "ts");
vstr_ins_byte(vstr, 1, 'e');
vstr_ins_char(vstr, 3, 't');
vstr_ins_char(vstr, 10, 's');
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
vstr_cut_head_bytes(vstr, 2);
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
vstr_cut_tail_bytes(vstr, 10);
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
vstr_printf(vstr, "t%cst", 'e');
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
vstr_cut_out_bytes(vstr, 3, 10);
mp_printf(&mp_plat_print, "%.*s\n", (int)vstr->len, vstr->buf);
VSTR_FIXED(fix, 4);
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
vstr_add_str(&fix, "large");
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
fix.len = fix.alloc;
if (nlr_push(&nlr) == 0) {
vstr_null_terminated_str(&fix);
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
}
// repl autocomplete
{
mp_printf(&mp_plat_print, "# repl\n");
const char *str;
size_t len = mp_repl_autocomplete("__n", 3, &mp_plat_print, &str); // expect "ame__"
mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
len = mp_repl_autocomplete("im", 2, &mp_plat_print, &str); // expect "port"
mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
mp_repl_autocomplete("import ", 7, &mp_plat_print, &str); // expect the list of builtins
len = mp_repl_autocomplete("import ti", 9, &mp_plat_print, &str); // expect "me"
mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
mp_repl_autocomplete("import time", 11, &mp_plat_print, &str); // expect "time timeq"
mp_store_global(MP_QSTR_sys, mp_import_name(MP_QSTR_sys, mp_const_none, MP_OBJ_NEW_SMALL_INT(0)));
mp_repl_autocomplete("sys.", 4, &mp_plat_print, &str); // expect dir(sys)
len = mp_repl_autocomplete("sys.impl", 8, &mp_plat_print, &str); // expect "ementation"
mp_printf(&mp_plat_print, "%.*s\n", (int)len, str);
}
// attrtuple
{
mp_printf(&mp_plat_print, "# attrtuple\n");
static const qstr fields[] = {MP_QSTR_start, MP_QSTR_stop, MP_QSTR_step};
static const mp_obj_t items[] = {MP_OBJ_NEW_SMALL_INT(1), MP_OBJ_NEW_SMALL_INT(2), MP_OBJ_NEW_SMALL_INT(3)};
mp_obj_print_helper(&mp_plat_print, mp_obj_new_attrtuple(fields, 3, items), PRINT_REPR);
mp_printf(&mp_plat_print, "\n");
}
// str
{
mp_printf(&mp_plat_print, "# str\n");
// intern string
mp_printf(&mp_plat_print, "%d\n", mp_obj_is_qstr(mp_obj_str_intern(mp_obj_new_str("intern me", 9))));
}
// bytearray
{
mp_printf(&mp_plat_print, "# bytearray\n");
// create a bytearray via mp_obj_new_bytearray
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(mp_obj_new_bytearray(4, "data"), &bufinfo, MP_BUFFER_RW);
mp_printf(&mp_plat_print, "%.*s\n", bufinfo.len, bufinfo.buf);
}
// mpz
{
mp_printf(&mp_plat_print, "# mpz\n");
mp_uint_t value;
mpz_t mpz;
mpz_init_zero(&mpz);
// mpz_as_uint_checked, with success
mpz_set_from_int(&mpz, 12345678);
mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_as_uint_checked, with negative arg
mpz_set_from_int(&mpz, -1);
mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));
// mpz_as_uint_checked, with overflowing arg
mpz_set_from_int(&mpz, 1);
mpz_shl_inpl(&mpz, &mpz, 70);
mp_printf(&mp_plat_print, "%d\n", mpz_as_uint_checked(&mpz, &value));
// mpz_set_from_float with inf as argument
mpz_set_from_float(&mpz, 1.0 / 0.0);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_set_from_float with 0 as argument
mpz_set_from_float(&mpz, 0);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_set_from_float with 0<x<1 as argument
mpz_set_from_float(&mpz, 1e-10);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_set_from_float with 1<=x<2 as argument
mpz_set_from_float(&mpz, 1.5);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_set_from_float with 2<x as argument
mpz_set_from_float(&mpz, 12345);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
// mpz_mul_inpl with dest==rhs, lhs!=rhs
mpz_t mpz2;
mpz_set_from_int(&mpz, 2);
mpz_init_from_int(&mpz2, 3);
mpz_mul_inpl(&mpz, &mpz2, &mpz);
mpz_as_uint_checked(&mpz, &value);
mp_printf(&mp_plat_print, "%d\n", (int)value);
}
// runtime utils
{
mp_printf(&mp_plat_print, "# runtime utils\n");
// call mp_call_function_1_protected
mp_call_function_1_protected(MP_OBJ_FROM_PTR(&mp_builtin_abs_obj), MP_OBJ_NEW_SMALL_INT(1));
// call mp_call_function_1_protected with invalid args
mp_call_function_1_protected(MP_OBJ_FROM_PTR(&mp_builtin_abs_obj), mp_obj_new_str("abc", 3));
// call mp_call_function_2_protected
mp_call_function_2_protected(MP_OBJ_FROM_PTR(&mp_builtin_divmod_obj), MP_OBJ_NEW_SMALL_INT(1), MP_OBJ_NEW_SMALL_INT(1));
// call mp_call_function_2_protected with invalid args
mp_call_function_2_protected(MP_OBJ_FROM_PTR(&mp_builtin_divmod_obj), mp_obj_new_str("abc", 3), mp_obj_new_str("abc", 3));
// mp_obj_int_get_uint_checked with non-negative small-int
mp_printf(&mp_plat_print, "%d\n", (int)mp_obj_int_get_uint_checked(MP_OBJ_NEW_SMALL_INT(1)));
// mp_obj_int_get_uint_checked with non-negative big-int
mp_printf(&mp_plat_print, "%d\n", (int)mp_obj_int_get_uint_checked(mp_obj_new_int_from_ll(2)));
// mp_obj_int_get_uint_checked with negative small-int (should raise exception)
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_obj_int_get_uint_checked(MP_OBJ_NEW_SMALL_INT(-1));
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
// mp_obj_int_get_uint_checked with negative big-int (should raise exception)
if (nlr_push(&nlr) == 0) {
mp_obj_int_get_uint_checked(mp_obj_new_int_from_ll(-2));
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
// call mp_obj_new_exception_args (it's a part of the public C API and not used in the core)
mp_obj_print_exception(&mp_plat_print, mp_obj_new_exception_args(&mp_type_ValueError, 0, NULL));
}
// warning
{
mp_emitter_warning(MP_PASS_CODE_SIZE, "test");
}
// format float
{
mp_printf(&mp_plat_print, "# format float\n");
// format with inadequate buffer size
char buf[5];
mp_format_float(1, buf, sizeof(buf), 'g', 0, '+');
mp_printf(&mp_plat_print, "%s\n", buf);
// format with just enough buffer so that precision must be
// set from 0 to 1 twice
char buf2[8];
mp_format_float(1, buf2, sizeof(buf2), 'g', 0, '+');
mp_printf(&mp_plat_print, "%s\n", buf2);
// format where precision is trimmed to avoid buffer overflow
mp_format_float(1, buf2, sizeof(buf2), 'e', 0, '+');
mp_printf(&mp_plat_print, "%s\n", buf2);
}
// binary
{
mp_printf(&mp_plat_print, "# binary\n");
// call function with float and double typecodes
float far[1];
double dar[1];
mp_binary_set_val_array_from_int('f', far, 0, 123);
mp_printf(&mp_plat_print, "%.0f\n", (double)far[0]);
mp_binary_set_val_array_from_int('d', dar, 0, 456);
mp_printf(&mp_plat_print, "%.0lf\n", dar[0]);
}
// VM
{
mp_printf(&mp_plat_print, "# VM\n");
// call mp_execute_bytecode with invalid bytecode (should raise NotImplementedError)
mp_module_context_t context;
mp_obj_fun_bc_t fun_bc;
fun_bc.context = &context;
fun_bc.child_table = NULL;
fun_bc.bytecode = (const byte *)"\x01"; // just needed for n_state
mp_code_state_t *code_state = m_new_obj_var(mp_code_state_t, mp_obj_t, 1);
code_state->fun_bc = &fun_bc;
code_state->ip = (const byte *)"\x00"; // just needed for an invalid opcode
code_state->sp = &code_state->state[0];
code_state->exc_sp_idx = 0;
code_state->old_globals = NULL;
mp_vm_return_kind_t ret = mp_execute_bytecode(code_state, MP_OBJ_NULL);
mp_printf(&mp_plat_print, "%d %d\n", ret, mp_obj_get_type(code_state->state[0]) == &mp_type_NotImplementedError);
}
// scheduler
{
mp_printf(&mp_plat_print, "# scheduler\n");
// lock scheduler
mp_sched_lock();
// schedule multiple callbacks; last one should fail
for (int i = 0; i < 5; ++i) {
mp_printf(&mp_plat_print, "sched(%d)=%d\n", i, mp_sched_schedule(MP_OBJ_FROM_PTR(&mp_builtin_print_obj), MP_OBJ_NEW_SMALL_INT(i)));
}
// test nested locking/unlocking
mp_sched_lock();
mp_sched_unlock();
// shouldn't do anything while scheduler is locked
mp_handle_pending(true);
// unlock scheduler
mp_sched_unlock();
mp_printf(&mp_plat_print, "unlocked\n");
// drain pending callbacks
while (mp_sched_num_pending()) {
mp_handle_pending(true);
}
// setting the keyboard interrupt and raising it during mp_handle_pending
mp_sched_keyboard_interrupt();
nlr_buf_t nlr;
if (nlr_push(&nlr) == 0) {
mp_handle_pending(true);
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
// setting the keyboard interrupt (twice) and cancelling it during mp_handle_pending
mp_sched_keyboard_interrupt();
mp_sched_keyboard_interrupt();
mp_handle_pending(false);
// setting keyboard interrupt and a pending event (intr should be handled first)
mp_sched_schedule(MP_OBJ_FROM_PTR(&mp_builtin_print_obj), MP_OBJ_NEW_SMALL_INT(10));
mp_sched_keyboard_interrupt();
if (nlr_push(&nlr) == 0) {
mp_handle_pending(true);
nlr_pop();
} else {
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
}
mp_handle_pending(true);
}
// ringbuf
{
byte buf[100];
ringbuf_t ringbuf = {buf, sizeof(buf), 0, 0};
mp_printf(&mp_plat_print, "# ringbuf\n");
// Single-byte put/get with empty ringbuf.
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
ringbuf_put(&ringbuf, 22);
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
mp_printf(&mp_plat_print, "%d\n", ringbuf_get(&ringbuf));
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
// Two-byte put/get with empty ringbuf.
ringbuf_put16(&ringbuf, 0xaa55);
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf));
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
// Two-byte put with full ringbuf.
for (int i = 0; i < 99; ++i) {
ringbuf_put(&ringbuf, i);
}
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x11bb));
// Two-byte put with one byte free.
ringbuf_get(&ringbuf);
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x3377));
ringbuf_get(&ringbuf);
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0xcc99));
for (int i = 0; i < 97; ++i) {
ringbuf_get(&ringbuf);
}
mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf));
mp_printf(&mp_plat_print, "%d %d\n", ringbuf_free(&ringbuf), ringbuf_avail(&ringbuf));
// Two-byte put with wrap around on first byte:
ringbuf.iput = 0;
ringbuf.iget = 0;
for (int i = 0; i < 99; ++i) {
ringbuf_put(&ringbuf, i);
ringbuf_get(&ringbuf);
}
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x11bb));
mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf));
// Two-byte put with wrap around on second byte:
ringbuf.iput = 0;
ringbuf.iget = 0;
for (int i = 0; i < 98; ++i) {
ringbuf_put(&ringbuf, i);
ringbuf_get(&ringbuf);
}
mp_printf(&mp_plat_print, "%d\n", ringbuf_put16(&ringbuf, 0x22ff));
mp_printf(&mp_plat_print, "%04x\n", ringbuf_get16(&ringbuf));
// Two-byte get from empty ringbuf.
ringbuf.iput = 0;
ringbuf.iget = 0;
mp_printf(&mp_plat_print, "%d\n", ringbuf_get16(&ringbuf));
// Two-byte get from ringbuf with one byte available.
ringbuf.iput = 0;
ringbuf.iget = 0;
ringbuf_put(&ringbuf, 0xaa);
mp_printf(&mp_plat_print, "%d\n", ringbuf_get16(&ringbuf));
}
// pairheap
{
mp_printf(&mp_plat_print, "# pairheap\n");
// Basic case.
int t0[] = {0, 2, 1, 3};
pairheap_test(MP_ARRAY_SIZE(t0), t0);
// All pushed in reverse order.
int t1[] = {7, 6, 5, 4, 3, 2, 1, 0};
pairheap_test(MP_ARRAY_SIZE(t1), t1);
// Basic deletion.
int t2[] = {1, -1, -1, 1, 2, -2, 2, 3, -3};
pairheap_test(MP_ARRAY_SIZE(t2), t2);
// Deletion of first child that has next node (the -3).
int t3[] = {1, 2, 3, 4, -1, -3};
pairheap_test(MP_ARRAY_SIZE(t3), t3);
// Deletion of node that's not first child (the -2).
int t4[] = {1, 2, 3, 4, -2};
pairheap_test(MP_ARRAY_SIZE(t4), t4);
// Deletion of node that's not first child and has children (the -3).
int t5[] = {3, 4, 5, 1, 2, -3};
pairheap_test(MP_ARRAY_SIZE(t5), t5);
}
// mp_obj_is_type and derivatives
{
mp_printf(&mp_plat_print, "# mp_obj_is_type\n");
// mp_obj_is_bool accepts only booleans
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_bool(mp_const_true), mp_obj_is_bool(mp_const_false));
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_bool(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_bool(mp_const_none));
// mp_obj_is_integer accepts ints and booleans
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_integer(mp_obj_new_int_from_ll(1)));
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(mp_const_true), mp_obj_is_integer(mp_const_false));
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_integer(mp_obj_new_str("1", 1)), mp_obj_is_integer(mp_const_none));
// mp_obj_is_int accepts small int and object ints
mp_printf(&mp_plat_print, "%d %d\n", mp_obj_is_int(MP_OBJ_NEW_SMALL_INT(1)), mp_obj_is_int(mp_obj_new_int_from_ll(1)));
}
mp_printf(&mp_plat_print, "# end coverage.c\n");
mp_obj_streamtest_t *s = mp_obj_malloc(mp_obj_streamtest_t, &mp_type_stest_fileio);
s->buf = NULL;
s->len = 0;
s->pos = 0;
s->error_code = 0;
mp_obj_streamtest_t *s2 = mp_obj_malloc(mp_obj_streamtest_t, &mp_type_stest_textio2);
// return a tuple of data for testing on the Python side
mp_obj_t items[] = {(mp_obj_t)&str_no_hash_obj, (mp_obj_t)&bytes_no_hash_obj, MP_OBJ_FROM_PTR(s), MP_OBJ_FROM_PTR(s2)};
return mp_obj_new_tuple(MP_ARRAY_SIZE(items), items);
}
MP_DEFINE_CONST_FUN_OBJ_0(extra_coverage_obj, extra_coverage);
#endif