micropython/ports/esp8266/modmachine.c

412 lines
15 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2015 Damien P. George
* Copyright (c) 2016 Paul Sokolovsky
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include "py/obj.h"
#include "py/runtime.h"
// This needs to be set before we include the RTOS headers
#define USE_US_TIMER 1
#include "extmod/machine_mem.h"
#include "extmod/machine_signal.h"
#include "extmod/machine_pulse.h"
#include "extmod/machine_i2c.h"
#include "modmachine.h"
#include "xtirq.h"
#include "os_type.h"
#include "osapi.h"
#include "etshal.h"
#include "ets_alt_task.h"
#include "user_interface.h"
#if MICROPY_PY_MACHINE
//#define MACHINE_WAKE_IDLE (0x01)
//#define MACHINE_WAKE_SLEEP (0x02)
#define MACHINE_WAKE_DEEPSLEEP (0x04)
extern const mp_obj_type_t esp_wdt_type;
STATIC mp_obj_t machine_freq(size_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// get
return mp_obj_new_int(system_get_cpu_freq() * 1000000);
} else {
// set
mp_int_t freq = mp_obj_get_int(args[0]) / 1000000;
if (freq != 80 && freq != 160) {
mp_raise_ValueError("frequency can only be either 80Mhz or 160MHz");
}
system_update_cpu_freq(freq);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_freq_obj, 0, 1, machine_freq);
STATIC mp_obj_t machine_reset(void) {
system_restart();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_obj, machine_reset);
STATIC mp_obj_t machine_reset_cause(void) {
return MP_OBJ_NEW_SMALL_INT(system_get_rst_info()->reason);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_reset_cause_obj, machine_reset_cause);
STATIC mp_obj_t machine_unique_id(void) {
uint32_t id = system_get_chip_id();
return mp_obj_new_bytes((byte*)&id, sizeof(id));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_unique_id_obj, machine_unique_id);
STATIC mp_obj_t machine_idle(void) {
uint32_t t = mp_hal_ticks_cpu();
asm("waiti 0");
t = mp_hal_ticks_cpu() - t;
ets_event_poll(); // handle any events after possibly a long wait (eg feed WDT)
return MP_OBJ_NEW_SMALL_INT(t);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(machine_idle_obj, machine_idle);
STATIC mp_obj_t machine_lightsleep(size_t n_args, const mp_obj_t *args) {
uint32_t max_us = 0xffffffff;
if (n_args == 1) {
mp_int_t max_ms = mp_obj_get_int(args[0]);
if (max_ms < 0) {
max_ms = 0;
}
max_us = max_ms * 1000;
}
uint32_t wifi_mode = wifi_get_opmode();
uint32_t start = system_get_time();
while (system_get_time() - start <= max_us) {
ets_event_poll();
if (wifi_mode == NULL_MODE) {
// Can only idle if the wifi is off
asm("waiti 0");
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_lightsleep_obj, 0, 1, machine_lightsleep);
STATIC mp_obj_t machine_deepsleep(size_t n_args, const mp_obj_t *args) {
// default to sleep forever
uint32_t sleep_us = 0;
// see if RTC.ALARM0 should wake the device
if (pyb_rtc_alarm0_wake & MACHINE_WAKE_DEEPSLEEP) {
uint64_t t = pyb_rtc_get_us_since_2000();
if (pyb_rtc_alarm0_expiry <= t) {
sleep_us = 1; // alarm already expired so wake immediately
} else {
uint64_t delta = pyb_rtc_alarm0_expiry - t;
if (delta <= 0xffffffff) {
// sleep for the desired time
sleep_us = delta;
} else {
// overflow, just set to maximum sleep time
sleep_us = 0xffffffff;
}
}
}
// if an argument is given then that's the maximum time to sleep for
if (n_args == 1) {
mp_int_t max_ms = mp_obj_get_int(args[0]);
if (max_ms <= 0) {
max_ms = 1;
}
uint32_t max_us = max_ms * 1000;
if (sleep_us == 0 || max_us < sleep_us) {
sleep_us = max_us;
}
}
// prepare for RTC reset at wake up
rtc_prepare_deepsleep(sleep_us);
// put the device in a deep-sleep state
system_deep_sleep_set_option(0); // default power down mode; TODO check this
system_deep_sleep(sleep_us);
for (;;) {
// we must not return
ets_loop_iter();
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(machine_deepsleep_obj, 0, 1, machine_deepsleep);
// These values are from the datasheet
#define ESP_TIMER_US_MIN (100)
#define ESP_TIMER_US_MAX (0xfffffff)
#define ESP_TIMER_MS_MAX (0x689d0)
typedef struct _esp_timer_obj_t {
mp_obj_base_t base;
os_timer_t timer;
uint32_t remain_ms; // if non-zero, remaining time to handle large periods
uint32_t period_ms; // if non-zero, periodic timer with a large period
mp_obj_t callback;
} esp_timer_obj_t;
STATIC void esp_timer_arm_ms(esp_timer_obj_t *self, uint32_t ms, bool repeat) {
if (ms <= ESP_TIMER_MS_MAX) {
self->remain_ms = 0;
self->period_ms = 0;
} else {
self->remain_ms = ms - ESP_TIMER_MS_MAX;
if (repeat) {
repeat = false;
self->period_ms = ms;
} else {
self->period_ms = 0;
}
ms = ESP_TIMER_MS_MAX;
}
os_timer_arm(&self->timer, ms, repeat);
}
STATIC void esp_timer_arm_us(esp_timer_obj_t *self, uint32_t us, bool repeat) {
if (us < ESP_TIMER_US_MIN) {
us = ESP_TIMER_US_MIN;
}
if (us <= ESP_TIMER_US_MAX) {
self->remain_ms = 0;
self->period_ms = 0;
os_timer_arm_us(&self->timer, us, repeat);
} else {
esp_timer_arm_ms(self, us / 1000, repeat);
}
}
const mp_obj_type_t esp_timer_type;
STATIC void esp_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
esp_timer_obj_t *self = self_in;
mp_printf(print, "Timer(%p)", &self->timer);
}
STATIC mp_obj_t esp_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, 1, false);
esp_timer_obj_t *tim = m_new_obj(esp_timer_obj_t);
tim->base.type = &esp_timer_type;
return tim;
}
STATIC void esp_timer_cb(void *arg) {
esp_timer_obj_t *self = arg;
if (self->remain_ms != 0) {
// Handle periods larger than the maximum system period
uint32_t next_period_ms = self->remain_ms;
if (next_period_ms > ESP_TIMER_MS_MAX) {
next_period_ms = ESP_TIMER_MS_MAX;
}
self->remain_ms -= next_period_ms;
os_timer_arm(&self->timer, next_period_ms, false);
} else {
mp_sched_schedule(self->callback, self);
if (self->period_ms != 0) {
// A periodic timer with a larger period: reschedule it
esp_timer_arm_ms(self, self->period_ms, true);
}
}
}
STATIC mp_obj_t esp_timer_init_helper(esp_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_mode,
ARG_callback,
ARG_period,
ARG_tick_hz,
ARG_freq,
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
{ MP_QSTR_callback, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
{ MP_QSTR_tick_hz, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
#if MICROPY_PY_BUILTINS_FLOAT
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = mp_const_none} },
#else
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
#endif
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
self->callback = args[ARG_callback].u_obj;
// Be sure to disarm timer before making any changes
os_timer_disarm(&self->timer);
os_timer_setfn(&self->timer, esp_timer_cb, self);
#if MICROPY_PY_BUILTINS_FLOAT
if (args[ARG_freq].u_obj != mp_const_none) {
mp_float_t freq = mp_obj_get_float(args[ARG_freq].u_obj);
if (freq < 0.001) {
esp_timer_arm_ms(self, (mp_int_t)(1000 / freq), args[ARG_mode].u_int);
} else {
esp_timer_arm_us(self, (mp_int_t)(1000000 / freq), args[ARG_mode].u_int);
}
}
#else
if (args[ARG_freq].u_int != 0xffffffff) {
esp_timer_arm_us(self, 1000000 / args[ARG_freq].u_int, args[ARG_mode].u_int);
}
#endif
else {
mp_int_t period = args[ARG_period].u_int;
mp_int_t hz = args[ARG_tick_hz].u_int;
if (hz == 1000) {
esp_timer_arm_ms(self, period, args[ARG_mode].u_int);
} else if (hz == 1000000) {
esp_timer_arm_us(self, period, args[ARG_mode].u_int);
} else {
// Use a long long to ensure that we don't either overflow or loose accuracy
uint64_t period_us = (((uint64_t)period) * 1000000) / hz;
if (period_us < 0x80000000ull) {
esp_timer_arm_us(self, (mp_int_t)period_us, args[ARG_mode].u_int);
} else {
esp_timer_arm_ms(self, (mp_int_t)(period_us / 1000), args[ARG_mode].u_int);
}
}
}
return mp_const_none;
}
STATIC mp_obj_t esp_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return esp_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(esp_timer_init_obj, 1, esp_timer_init);
STATIC mp_obj_t esp_timer_deinit(mp_obj_t self_in) {
esp_timer_obj_t *self = self_in;
os_timer_disarm(&self->timer);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(esp_timer_deinit_obj, esp_timer_deinit);
STATIC const mp_rom_map_elem_t esp_timer_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&esp_timer_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&esp_timer_init_obj) },
// { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&esp_timer_callback_obj) },
{ MP_ROM_QSTR(MP_QSTR_ONE_SHOT), MP_ROM_INT(false) },
{ MP_ROM_QSTR(MP_QSTR_PERIODIC), MP_ROM_INT(true) },
};
STATIC MP_DEFINE_CONST_DICT(esp_timer_locals_dict, esp_timer_locals_dict_table);
const mp_obj_type_t esp_timer_type = {
{ &mp_type_type },
.name = MP_QSTR_Timer,
.print = esp_timer_print,
.make_new = esp_timer_make_new,
.locals_dict = (mp_obj_dict_t*)&esp_timer_locals_dict,
};
// this bit is unused in the Xtensa PS register
#define ETS_LOOP_ITER_BIT (12)
STATIC mp_obj_t machine_disable_irq(void) {
uint32_t state = disable_irq();
state = (state & ~(1 << ETS_LOOP_ITER_BIT)) | (ets_loop_iter_disable << ETS_LOOP_ITER_BIT);
ets_loop_iter_disable = 1;
return mp_obj_new_int(state);
}
MP_DEFINE_CONST_FUN_OBJ_0(machine_disable_irq_obj, machine_disable_irq);
STATIC mp_obj_t machine_enable_irq(mp_obj_t state_in) {
uint32_t state = mp_obj_get_int(state_in);
ets_loop_iter_disable = (state >> ETS_LOOP_ITER_BIT) & 1;
enable_irq(state & ~(1 << ETS_LOOP_ITER_BIT));
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_1(machine_enable_irq_obj, machine_enable_irq);
STATIC const mp_rom_map_elem_t machine_module_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_umachine) },
{ MP_ROM_QSTR(MP_QSTR_mem8), MP_ROM_PTR(&machine_mem8_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem16), MP_ROM_PTR(&machine_mem16_obj) },
{ MP_ROM_QSTR(MP_QSTR_mem32), MP_ROM_PTR(&machine_mem32_obj) },
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&machine_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset), MP_ROM_PTR(&machine_reset_obj) },
{ MP_ROM_QSTR(MP_QSTR_reset_cause), MP_ROM_PTR(&machine_reset_cause_obj) },
{ MP_ROM_QSTR(MP_QSTR_unique_id), MP_ROM_PTR(&machine_unique_id_obj) },
{ MP_ROM_QSTR(MP_QSTR_idle), MP_ROM_PTR(&machine_idle_obj) },
{ MP_ROM_QSTR(MP_QSTR_sleep), MP_ROM_PTR(&machine_lightsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_lightsleep), MP_ROM_PTR(&machine_lightsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_deepsleep), MP_ROM_PTR(&machine_deepsleep_obj) },
{ MP_ROM_QSTR(MP_QSTR_disable_irq), MP_ROM_PTR(&machine_disable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_enable_irq), MP_ROM_PTR(&machine_enable_irq_obj) },
{ MP_ROM_QSTR(MP_QSTR_time_pulse_us), MP_ROM_PTR(&machine_time_pulse_us_obj) },
{ MP_ROM_QSTR(MP_QSTR_RTC), MP_ROM_PTR(&pyb_rtc_type) },
{ MP_ROM_QSTR(MP_QSTR_Timer), MP_ROM_PTR(&esp_timer_type) },
{ MP_ROM_QSTR(MP_QSTR_WDT), MP_ROM_PTR(&esp_wdt_type) },
{ MP_ROM_QSTR(MP_QSTR_Pin), MP_ROM_PTR(&pyb_pin_type) },
{ MP_ROM_QSTR(MP_QSTR_Signal), MP_ROM_PTR(&machine_signal_type) },
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_PTR(&pyb_pwm_type) },
{ MP_ROM_QSTR(MP_QSTR_ADC), MP_ROM_PTR(&pyb_adc_type) },
{ MP_ROM_QSTR(MP_QSTR_UART), MP_ROM_PTR(&pyb_uart_type) },
#if MICROPY_PY_MACHINE_I2C
{ MP_ROM_QSTR(MP_QSTR_I2C), MP_ROM_PTR(&machine_i2c_type) },
#endif
#if MICROPY_PY_MACHINE_SPI
{ MP_ROM_QSTR(MP_QSTR_SPI), MP_ROM_PTR(&machine_hspi_type) },
#endif
// wake abilities
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP), MP_ROM_INT(MACHINE_WAKE_DEEPSLEEP) },
// reset causes
{ MP_ROM_QSTR(MP_QSTR_PWRON_RESET), MP_ROM_INT(REASON_DEFAULT_RST) },
{ MP_ROM_QSTR(MP_QSTR_HARD_RESET), MP_ROM_INT(REASON_EXT_SYS_RST) },
{ MP_ROM_QSTR(MP_QSTR_DEEPSLEEP_RESET), MP_ROM_INT(REASON_DEEP_SLEEP_AWAKE) },
{ MP_ROM_QSTR(MP_QSTR_WDT_RESET), MP_ROM_INT(REASON_WDT_RST) },
{ MP_ROM_QSTR(MP_QSTR_SOFT_RESET), MP_ROM_INT(REASON_SOFT_RESTART) },
};
STATIC MP_DEFINE_CONST_DICT(machine_module_globals, machine_module_globals_table);
const mp_obj_module_t mp_module_machine = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&machine_module_globals,
};
#endif // MICROPY_PY_MACHINE