micropython/py/runtime.c

1527 lines
52 KiB
C

// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args
// py_xxx functions are safer and can be called by anyone
// note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <assert.h>
#include "nlr.h"
#include "misc.h"
#include "mpyconfig.h"
#include "runtime.h"
#include "bc.h"
#include "map.h"
#include "obj.h"
#include "objprivate.h"
#include "builtin.h"
#if 0 // print debugging info
#define DEBUG_PRINT (1)
#define WRITE_CODE (1)
#define DEBUG_printf(args...) printf(args)
#define DEBUG_OP_printf(args...) printf(args)
#else // don't print debugging info
#define DEBUG_printf(args...) (void)0
#define DEBUG_OP_printf(args...) (void)0
#endif
// TODO make these predefined so they don't take up RAM
qstr rt_q_append;
qstr rt_q_pop;
qstr rt_q_sort;
qstr rt_q_join;
qstr rt_q_format;
qstr rt_q___build_class__;
qstr rt_q___next__;
qstr rt_q_AttributeError;
qstr rt_q_IndexError;
qstr rt_q_KeyError;
qstr rt_q_NameError;
qstr rt_q_TypeError;
qstr rt_q_SyntaxError;
qstr rt_q_ValueError;
py_obj_t py_const_none;
py_obj_t py_const_false;
py_obj_t py_const_true;
py_obj_t py_const_stop_iteration;
// locals and globals need to be pointers because they can be the same in outer module scope
static py_map_t *map_locals;
static py_map_t *map_globals;
static py_map_t map_builtins;
py_map_t *rt_get_map_locals(void) {
return map_locals;
}
void rt_set_map_locals(py_map_t *m) {
map_locals = m;
}
static bool fit_small_int(py_small_int_t o) {
return true;
}
int rt_is_true(py_obj_t arg) {
DEBUG_OP_printf("is true %p\n", arg);
if (IS_SMALL_INT(arg)) {
if (FROM_SMALL_INT(arg) == 0) {
return 0;
} else {
return 1;
}
} else if (arg == py_const_none) {
return 0;
} else if (arg == py_const_false) {
return 0;
} else if (arg == py_const_true) {
return 1;
} else {
assert(0);
return 0;
}
}
void vstr_printf_wrapper(void *env, const char *fmt, ...) {
va_list args;
va_start(args, fmt);
vstr_vprintf(env, fmt, args);
va_end(args);
}
py_obj_t rt_str_join(py_obj_t self_in, py_obj_t arg) {
assert(IS_O(self_in, O_STR));
py_obj_base_t *self = self_in;
int required_len = strlen(qstr_str(self->u_str));
// process arg, count required chars
if (!IS_O(arg, O_TUPLE) && !IS_O(arg, O_LIST)) {
goto bad_arg;
}
py_obj_base_t *tuple_list = arg;
for (int i = 0; i < tuple_list->u_tuple_list.len; i++) {
if (!IS_O(tuple_list->u_tuple_list.items[i], O_STR)) {
goto bad_arg;
}
required_len += strlen(qstr_str(((py_obj_base_t*)tuple_list->u_tuple_list.items[i])->u_str));
}
// make joined string
char *joined_str = m_new(char, required_len + 1);
joined_str[0] = 0;
for (int i = 0; i < tuple_list->u_tuple_list.len; i++) {
const char *s2 = qstr_str(((py_obj_base_t*)tuple_list->u_tuple_list.items[i])->u_str);
if (i > 0) {
strcat(joined_str, qstr_str(self->u_str));
}
strcat(joined_str, s2);
}
return py_obj_new_str(qstr_from_str_take(joined_str));
bad_arg:
nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "?str.join expecting a list of str's", NULL, NULL));
}
py_obj_t rt_str_format(int n_args, const py_obj_t* args) {
assert(IS_O(args[0], O_STR));
py_obj_base_t *self = args[0];
const char *str = qstr_str(self->u_str);
int arg_i = 1;
vstr_t *vstr = vstr_new();
for (; *str; str++) {
if (*str == '{') {
str++;
if (*str == '{') {
vstr_add_char(vstr, '{');
} else if (*str == '}') {
if (arg_i >= n_args) {
nlr_jump(py_obj_new_exception_2(rt_q_IndexError, "tuple index out of range", NULL, NULL));
}
py_obj_print_helper(vstr_printf_wrapper, vstr, args[arg_i]);
arg_i++;
}
} else {
vstr_add_char(vstr, *str);
}
}
return py_obj_new_str(qstr_from_str_take(vstr->buf));
}
uint get_index(py_obj_base_t *base, py_obj_t index) {
// assumes base is O_TUPLE or O_LIST
// TODO False and True are considered 0 and 1 for indexing purposes
int len = base->u_tuple_list.len;
if (IS_SMALL_INT(index)) {
int i = FROM_SMALL_INT(index);
if (i < 0) {
i += len;
}
if (i < 0 || i >= len) {
nlr_jump(py_obj_new_exception_2(rt_q_IndexError, "%s index out of range", py_obj_get_type_str(base), NULL));
}
return i;
} else {
nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "%s indices must be integers, not %s", py_obj_get_type_str(base), py_obj_get_type_str(index)));
}
}
py_obj_t rt_list_append(py_obj_t self_in, py_obj_t arg) {
assert(IS_O(self_in, O_LIST));
py_obj_base_t *self = self_in;
if (self->u_tuple_list.len >= self->u_tuple_list.alloc) {
self->u_tuple_list.alloc *= 2;
self->u_tuple_list.items = m_renew(py_obj_t, self->u_tuple_list.items, self->u_tuple_list.alloc);
}
self->u_tuple_list.items[self->u_tuple_list.len++] = arg;
return py_const_none; // return None, as per CPython
}
py_obj_t rt_list_pop(py_obj_t self_in, py_obj_t arg) {
assert(IS_O(self_in, O_LIST));
py_obj_base_t *self = self_in;
uint index = get_index(self, arg);
py_obj_t ret = self->u_tuple_list.items[index];
self->u_tuple_list.len -= 1;
memcpy(self->u_tuple_list.items + index, self->u_tuple_list.items + index + 1, (self->u_tuple_list.len - index) * sizeof(py_obj_t));
return ret;
}
// TODO make this conform to CPython's definition of sort
static void py_quicksort(py_obj_t *head, py_obj_t *tail, py_obj_t key_fn) {
while (head < tail) {
py_obj_t *h = head - 1;
py_obj_t *t = tail;
py_obj_t v = rt_call_function_1(key_fn, tail[0]); // get pivot using key_fn
for (;;) {
do ++h; while (rt_compare_op(RT_COMPARE_OP_LESS, rt_call_function_1(key_fn, h[0]), v) == py_const_true);
do --t; while (h < t && rt_compare_op(RT_COMPARE_OP_LESS, v, rt_call_function_1(key_fn, t[0])) == py_const_true);
if (h >= t) break;
py_obj_t x = h[0];
h[0] = t[0];
t[0] = x;
}
py_obj_t x = h[0];
h[0] = tail[0];
tail[0] = x;
py_quicksort(head, t, key_fn);
head = h + 1;
}
}
py_obj_t rt_list_sort(py_obj_t self_in, py_obj_t key_fn) {
assert(IS_O(self_in, O_LIST));
py_obj_base_t *self = self_in;
if (self->u_tuple_list.len > 1) {
py_quicksort(self->u_tuple_list.items, self->u_tuple_list.items + self->u_tuple_list.len - 1, key_fn);
}
return py_const_none; // return None, as per CPython
}
py_obj_t rt_gen_instance_next(py_obj_t self_in) {
py_obj_t ret = rt_iternext(self_in);
if (ret == py_const_stop_iteration) {
nlr_jump(py_obj_new_exception_0(qstr_from_str_static("StopIteration")));
} else {
return ret;
}
}
typedef enum {
PY_CODE_NONE,
PY_CODE_BYTE,
PY_CODE_NATIVE,
PY_CODE_INLINE_ASM,
} py_code_kind_t;
typedef struct _py_code_t {
py_code_kind_t kind;
int n_args;
int n_locals;
int n_cells;
int n_stack;
bool is_generator;
union {
struct {
byte *code;
uint len;
} u_byte;
struct {
py_fun_t fun;
} u_native;
struct {
void *fun;
} u_inline_asm;
};
} py_code_t;
static int next_unique_code_id;
static py_code_t *unique_codes;
py_obj_t fun_str_join;
py_obj_t fun_str_format;
py_obj_t fun_list_append;
py_obj_t fun_list_pop;
py_obj_t fun_list_sort;
py_obj_t fun_gen_instance_next;
#ifdef WRITE_CODE
FILE *fp_write_code = NULL;
#endif
void rt_init(void) {
rt_q_append = qstr_from_str_static("append");
rt_q_pop = qstr_from_str_static("pop");
rt_q_sort = qstr_from_str_static("sort");
rt_q_join = qstr_from_str_static("join");
rt_q_format = qstr_from_str_static("format");
rt_q___build_class__ = qstr_from_str_static("__build_class__");
rt_q___next__ = qstr_from_str_static("__next__");
rt_q_AttributeError = qstr_from_str_static("AttributeError");
rt_q_IndexError = qstr_from_str_static("IndexError");
rt_q_KeyError = qstr_from_str_static("KeyError");
rt_q_NameError = qstr_from_str_static("NameError");
rt_q_TypeError = qstr_from_str_static("TypeError");
rt_q_SyntaxError = qstr_from_str_static("SyntaxError");
rt_q_ValueError = qstr_from_str_static("ValueError");
py_const_none = py_obj_new_const("None");
py_const_false = py_obj_new_const("False");
py_const_true = py_obj_new_const("True");
py_const_stop_iteration = py_obj_new_const("StopIteration");
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
map_locals = map_globals = py_map_new(MAP_QSTR, 1);
py_qstr_map_lookup(map_globals, qstr_from_str_static("__name__"), true)->value = py_obj_new_str(qstr_from_str_static("__main__"));
py_map_init(&map_builtins, MAP_QSTR, 3);
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("__repl_print__"), true)->value = rt_make_function_1(py_builtin___repl_print__);
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("print"), true)->value = rt_make_function_var(0, py_builtin_print);
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("len"), true)->value = rt_make_function_1(py_builtin_len);
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("abs"), true)->value = rt_make_function_1(py_builtin_abs);
py_qstr_map_lookup(&map_builtins, rt_q___build_class__, true)->value = rt_make_function_2(py_builtin___build_class__);
py_qstr_map_lookup(&map_builtins, qstr_from_str_static("range"), true)->value = rt_make_function_var(1, py_builtin_range);
next_unique_code_id = 2; // 1 is reserved for the __main__ module scope
unique_codes = NULL;
fun_str_join = rt_make_function_2(rt_str_join);
fun_str_format = rt_make_function_var(1, rt_str_format);
fun_list_append = rt_make_function_2(rt_list_append);
fun_list_pop = rt_make_function_2(rt_list_pop);
fun_list_sort = rt_make_function_2(rt_list_sort);
fun_gen_instance_next = rt_make_function_1(rt_gen_instance_next);
#ifdef WRITE_CODE
fp_write_code = fopen("out-code", "wb");
#endif
}
void rt_deinit(void) {
#ifdef WRITE_CODE
if (fp_write_code != NULL) {
fclose(fp_write_code);
}
#endif
}
int rt_get_unique_code_id(bool is_main_module) {
if (is_main_module) {
return 1;
} else {
return next_unique_code_id++;
}
}
static void alloc_unique_codes(void) {
if (unique_codes == NULL) {
unique_codes = m_new(py_code_t, next_unique_code_id + 10); // XXX hack until we fix the REPL allocation problem
for (int i = 0; i < next_unique_code_id; i++) {
unique_codes[i].kind = PY_CODE_NONE;
}
}
}
void rt_assign_byte_code(int unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_cells, int n_stack, bool is_generator) {
alloc_unique_codes();
assert(unique_code_id < next_unique_code_id);
unique_codes[unique_code_id].kind = PY_CODE_BYTE;
unique_codes[unique_code_id].n_args = n_args;
unique_codes[unique_code_id].n_locals = n_locals;
unique_codes[unique_code_id].n_cells = n_cells;
unique_codes[unique_code_id].n_stack = n_stack;
unique_codes[unique_code_id].is_generator = is_generator;
unique_codes[unique_code_id].u_byte.code = code;
unique_codes[unique_code_id].u_byte.len = len;
//printf("byte code: %d bytes\n", len);
#ifdef DEBUG_PRINT
DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d\n", unique_code_id, code, len, n_args);
for (int i = 0; i < 128 && i < len; i++) {
if (i > 0 && i % 16 == 0) {
DEBUG_printf("\n");
}
DEBUG_printf(" %02x", code[i]);
}
DEBUG_printf("\n");
extern void py_show_byte_code(const byte *code, int len);
py_show_byte_code(code, len);
#ifdef WRITE_CODE
if (fp_write_code != NULL) {
fwrite(code, len, 1, fp_write_code);
fflush(fp_write_code);
}
#endif
#endif
}
void rt_assign_native_code(int unique_code_id, py_fun_t fun, uint len, int n_args) {
alloc_unique_codes();
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id);
unique_codes[unique_code_id].kind = PY_CODE_NATIVE;
unique_codes[unique_code_id].n_args = n_args;
unique_codes[unique_code_id].n_locals = 0;
unique_codes[unique_code_id].n_cells = 0;
unique_codes[unique_code_id].n_stack = 0;
unique_codes[unique_code_id].is_generator = false;
unique_codes[unique_code_id].u_native.fun = fun;
printf("native code: %d bytes\n", len);
#ifdef DEBUG_PRINT
DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
for (int i = 0; i < 128 && i < len; i++) {
if (i > 0 && i % 16 == 0) {
DEBUG_printf("\n");
}
DEBUG_printf(" %02x", fun_data[i]);
}
DEBUG_printf("\n");
#ifdef WRITE_CODE
if (fp_write_code != NULL) {
fwrite(fun_data, len, 1, fp_write_code);
fflush(fp_write_code);
}
#endif
#endif
}
void rt_assign_inline_asm_code(int unique_code_id, py_fun_t fun, uint len, int n_args) {
alloc_unique_codes();
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id);
unique_codes[unique_code_id].kind = PY_CODE_INLINE_ASM;
unique_codes[unique_code_id].n_args = n_args;
unique_codes[unique_code_id].n_locals = 0;
unique_codes[unique_code_id].n_cells = 0;
unique_codes[unique_code_id].n_stack = 0;
unique_codes[unique_code_id].is_generator = false;
unique_codes[unique_code_id].u_inline_asm.fun = fun;
#ifdef DEBUG_PRINT
DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
for (int i = 0; i < 128 && i < len; i++) {
if (i > 0 && i % 16 == 0) {
DEBUG_printf("\n");
}
DEBUG_printf(" %02x", fun_data[i]);
}
DEBUG_printf("\n");
#ifdef WRITE_CODE
if (fp_write_code != NULL) {
fwrite(fun_data, len, 1, fp_write_code);
}
#endif
#endif
}
#define PARSE_DEC_IN_INTG (1)
#define PARSE_DEC_IN_FRAC (2)
#define PARSE_DEC_IN_EXP (3)
py_obj_t rt_load_const_dec(qstr qstr) {
#if MICROPY_ENABLE_FLOAT
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
const char *s = qstr_str(qstr);
int in = PARSE_DEC_IN_INTG;
py_float_t dec_val = 0;
bool exp_neg = false;
int exp_val = 0;
int exp_extra = 0;
bool imag = false;
for (; *s; s++) {
int dig = *s;
if ('0' <= dig && dig <= '9') {
dig -= '0';
if (in == PARSE_DEC_IN_EXP) {
exp_val = 10 * exp_val + dig;
} else {
dec_val = 10 * dec_val + dig;
if (in == PARSE_DEC_IN_FRAC) {
exp_extra -= 1;
}
}
} else if (in == PARSE_DEC_IN_INTG && dig == '.') {
in = PARSE_DEC_IN_FRAC;
} else if (in != PARSE_DEC_IN_EXP && (dig == 'E' || dig == 'e')) {
in = PARSE_DEC_IN_EXP;
if (s[1] == '+') {
s++;
} else if (s[1] == '-') {
s++;
exp_neg = true;
}
} else if (dig == 'J' || dig == 'j') {
s++;
imag = true;
break;
} else {
// unknown character
break;
}
}
if (*s != 0) {
nlr_jump(py_obj_new_exception_2(rt_q_SyntaxError, "invalid syntax for number", NULL, NULL));
}
if (exp_neg) {
exp_val = -exp_val;
}
exp_val += exp_extra;
for (; exp_val > 0; exp_val--) {
dec_val *= 10;
}
for (; exp_val < 0; exp_val++) {
dec_val *= 0.1;
}
if (imag) {
return py_obj_new_complex(0, dec_val);
} else {
return py_obj_new_float(dec_val);
}
#else
nlr_jump(py_obj_new_exception_2(rt_q_SyntaxError, "decimal numbers not supported", NULL, NULL));
#endif
}
py_obj_t rt_load_const_str(qstr qstr) {
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
return py_obj_new_str(qstr);
}
py_obj_t rt_load_name(qstr qstr) {
// logic: search locals, globals, builtins
DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
py_map_elem_t *elem = py_qstr_map_lookup(map_locals, qstr, false);
if (elem == NULL) {
elem = py_qstr_map_lookup(map_globals, qstr, false);
if (elem == NULL) {
elem = py_qstr_map_lookup(&map_builtins, qstr, false);
if (elem == NULL) {
nlr_jump(py_obj_new_exception_2(rt_q_NameError, "name '%s' is not defined", qstr_str(qstr), NULL));
}
}
}
return elem->value;
}
py_obj_t rt_load_global(qstr qstr) {
// logic: search globals, builtins
DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
py_map_elem_t *elem = py_qstr_map_lookup(map_globals, qstr, false);
if (elem == NULL) {
elem = py_qstr_map_lookup(&map_builtins, qstr, false);
if (elem == NULL) {
nlr_jump(py_obj_new_exception_2(rt_q_NameError, "name '%s' is not defined", qstr_str(qstr), NULL));
}
}
return elem->value;
}
py_obj_t rt_load_build_class(void) {
DEBUG_OP_printf("load_build_class\n");
py_map_elem_t *elem = py_qstr_map_lookup(&map_builtins, rt_q___build_class__, false);
if (elem == NULL) {
printf("name doesn't exist: __build_class__\n");
assert(0);
}
return elem->value;
}
py_obj_t rt_new_cell(py_obj_t val) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_CELL;
o->u_cell = val;
return (py_obj_t)o;
}
py_obj_t rt_get_cell(py_obj_t cell) {
if (IS_O(cell, O_CELL)) {
return ((py_obj_base_t*)cell)->u_cell;
} else {
assert(0);
return py_const_none;
}
}
void rt_set_cell(py_obj_t cell, py_obj_t val) {
if (IS_O(cell, O_CELL)) {
((py_obj_base_t*)cell)->u_cell = val;
} else {
assert(0);
}
}
void rt_store_name(qstr qstr, py_obj_t obj) {
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
py_qstr_map_lookup(map_locals, qstr, true)->value = obj;
}
void rt_store_global(qstr qstr, py_obj_t obj) {
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
py_qstr_map_lookup(map_globals, qstr, true)->value = obj;
}
py_obj_t rt_unary_op(int op, py_obj_t arg) {
DEBUG_OP_printf("unary %d %p\n", op, arg);
if (IS_SMALL_INT(arg)) {
py_small_int_t val = FROM_SMALL_INT(arg);
switch (op) {
case RT_UNARY_OP_NOT: if (val != 0) { return py_const_true;} else { return py_const_false; }
case RT_UNARY_OP_POSITIVE: break;
case RT_UNARY_OP_NEGATIVE: val = -val; break;
case RT_UNARY_OP_INVERT: val = ~val; break;
default: assert(0); val = 0;
}
if (fit_small_int(val)) {
return TO_SMALL_INT(val);
}
#if MICROPY_ENABLE_FLOAT
} else if (IS_O(arg, O_FLOAT)) {
py_float_t val = py_obj_get_float(arg);
switch (op) {
case RT_UNARY_OP_NOT: if (val != 0) { return py_const_true;} else { return py_const_false; }
case RT_UNARY_OP_POSITIVE: break;
case RT_UNARY_OP_NEGATIVE: val = -val; break;
case RT_UNARY_OP_INVERT: nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "bad operand type for unary ~: 'float'", NULL, NULL));
default: assert(0); val = 0;
}
return py_obj_new_float(val);
#endif
}
assert(0);
return py_const_none;
}
py_obj_t rt_binary_op(int op, py_obj_t lhs, py_obj_t rhs) {
DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs);
if (op == RT_BINARY_OP_SUBSCR) {
if (IS_O(lhs, O_STR)) {
// string access
// XXX a hack!
const char *str = qstr_str(((py_obj_base_t*)lhs)->u_str);
return py_obj_new_int(str[FROM_SMALL_INT(rhs)]);
} else if ((IS_O(lhs, O_TUPLE) || IS_O(lhs, O_LIST))) {
// tuple/list load
uint index = get_index(lhs, rhs);
return ((py_obj_base_t*)lhs)->u_tuple_list.items[index];
} else if (IS_O(lhs, O_MAP)) {
// map load
py_map_elem_t *elem = py_map_lookup(lhs, rhs, false);
if (elem == NULL) {
nlr_jump(py_obj_new_exception_2(rt_q_KeyError, "<value>", NULL, NULL));
} else {
return elem->value;
}
} else {
assert(0);
}
} else if (IS_SMALL_INT(lhs) && IS_SMALL_INT(rhs)) {
py_small_int_t lhs_val = FROM_SMALL_INT(lhs);
py_small_int_t rhs_val = FROM_SMALL_INT(rhs);
switch (op) {
case RT_BINARY_OP_OR:
case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
case RT_BINARY_OP_XOR:
case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
case RT_BINARY_OP_AND:
case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
case RT_BINARY_OP_LSHIFT:
case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break;
case RT_BINARY_OP_RSHIFT:
case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break;
case RT_BINARY_OP_ADD:
case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
case RT_BINARY_OP_SUBTRACT:
case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
case RT_BINARY_OP_MULTIPLY:
case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break;
case RT_BINARY_OP_FLOOR_DIVIDE:
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break;
#if MICROPY_ENABLE_FLOAT
case RT_BINARY_OP_TRUE_DIVIDE:
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return py_obj_new_float((py_float_t)lhs_val / (py_float_t)rhs_val);
#endif
case RT_BINARY_OP_POWER:
case RT_BINARY_OP_INPLACE_POWER:
// TODO
if (rhs_val == 2) {
lhs_val = lhs_val * lhs_val;
break;
}
default: printf("%d\n", op); assert(0);
}
if (fit_small_int(lhs_val)) {
return TO_SMALL_INT(lhs_val);
}
#if MICROPY_ENABLE_FLOAT
} else if (IS_O(lhs, O_COMPLEX) || IS_O(rhs, O_COMPLEX)) {
py_float_t lhs_real, lhs_imag, rhs_real, rhs_imag;
py_obj_get_complex(lhs, &lhs_real, &lhs_imag);
py_obj_get_complex(rhs, &rhs_real, &rhs_imag);
switch (op) {
case RT_BINARY_OP_ADD:
case RT_BINARY_OP_INPLACE_ADD:
lhs_real += rhs_real;
lhs_imag += rhs_imag;
break;
case RT_BINARY_OP_SUBTRACT:
case RT_BINARY_OP_INPLACE_SUBTRACT:
lhs_real -= rhs_real;
lhs_imag -= rhs_imag;
break;
case RT_BINARY_OP_MULTIPLY:
case RT_BINARY_OP_INPLACE_MULTIPLY:
{
py_float_t real = lhs_real * rhs_real - lhs_imag * rhs_imag;
lhs_imag = lhs_real * rhs_imag + lhs_imag * rhs_real;
lhs_real = real;
break;
}
/* TODO floor(?) the value
case RT_BINARY_OP_FLOOR_DIVIDE:
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break;
*/
/* TODO
case RT_BINARY_OP_TRUE_DIVIDE:
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: val = lhs_val / rhs_val; break;
*/
default: printf("%d\n", op); assert(0);
}
return py_obj_new_complex(lhs_real, lhs_imag);
} else if (IS_O(lhs, O_FLOAT) || IS_O(rhs, O_FLOAT)) {
py_float_t lhs_val = py_obj_get_float(lhs);
py_float_t rhs_val = py_obj_get_float(rhs);
switch (op) {
case RT_BINARY_OP_ADD:
case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
case RT_BINARY_OP_SUBTRACT:
case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
case RT_BINARY_OP_MULTIPLY:
case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break;
/* TODO floor(?) the value
case RT_BINARY_OP_FLOOR_DIVIDE:
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: val = lhs_val / rhs_val; break;
*/
case RT_BINARY_OP_TRUE_DIVIDE:
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: lhs_val /= rhs_val; break;
default: printf("%d\n", op); assert(0);
}
return py_obj_new_float(lhs_val);
#endif
} else if (IS_O(lhs, O_STR) && IS_O(rhs, O_STR)) {
const char *lhs_str = qstr_str(((py_obj_base_t*)lhs)->u_str);
const char *rhs_str = qstr_str(((py_obj_base_t*)rhs)->u_str);
char *val;
switch (op) {
case RT_BINARY_OP_ADD:
case RT_BINARY_OP_INPLACE_ADD: val = m_new(char, strlen(lhs_str) + strlen(rhs_str) + 1); strcpy(val, lhs_str); strcat(val, rhs_str); break;
default: printf("%d\n", op); assert(0); val = NULL;
}
return py_obj_new_str(qstr_from_str_take(val));
}
assert(0);
return py_const_none;
}
py_obj_t rt_compare_op(int op, py_obj_t lhs, py_obj_t rhs) {
DEBUG_OP_printf("compare %d %p %p\n", op, lhs, rhs);
// deal with == and !=
if (op == RT_COMPARE_OP_EQUAL || op == RT_COMPARE_OP_NOT_EQUAL) {
if (py_obj_equal(lhs, rhs)) {
if (op == RT_COMPARE_OP_EQUAL) {
return py_const_true;
} else {
return py_const_false;
}
} else {
if (op == RT_COMPARE_OP_EQUAL) {
return py_const_false;
} else {
return py_const_true;
}
}
}
// deal with small ints
if (IS_SMALL_INT(lhs) && IS_SMALL_INT(rhs)) {
py_small_int_t lhs_val = FROM_SMALL_INT(lhs);
py_small_int_t rhs_val = FROM_SMALL_INT(rhs);
int cmp;
switch (op) {
case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break;
case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break;
case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break;
case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break;
default: assert(0); cmp = 0;
}
if (cmp) {
return py_const_true;
} else {
return py_const_false;
}
}
#if MICROPY_ENABLE_FLOAT
// deal with floats
if (IS_O(lhs, O_FLOAT) || IS_O(rhs, O_FLOAT)) {
py_float_t lhs_val = py_obj_get_float(lhs);
py_float_t rhs_val = py_obj_get_float(rhs);
int cmp;
switch (op) {
case RT_COMPARE_OP_LESS: cmp = lhs_val < rhs_val; break;
case RT_COMPARE_OP_MORE: cmp = lhs_val > rhs_val; break;
case RT_COMPARE_OP_LESS_EQUAL: cmp = lhs_val <= rhs_val; break;
case RT_COMPARE_OP_MORE_EQUAL: cmp = lhs_val >= rhs_val; break;
default: assert(0); cmp = 0;
}
if (cmp) {
return py_const_true;
} else {
return py_const_false;
}
}
#endif
// not implemented
assert(0);
return py_const_none;
}
py_obj_t rt_make_function_from_id(int unique_code_id) {
DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id);
if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) {
// illegal code id
return py_const_none;
}
py_code_t *c = &unique_codes[unique_code_id];
py_obj_base_t *o = m_new(py_obj_base_t, 1);
switch (c->kind) {
case PY_CODE_BYTE:
o->kind = O_FUN_BC;
o->u_fun_bc.n_args = c->n_args;
o->u_fun_bc.n_state = c->n_locals + c->n_cells + c->n_stack;
o->u_fun_bc.code = c->u_byte.code;
break;
case PY_CODE_NATIVE:
switch (c->n_args) {
case 0: o->kind = O_FUN_0; break;
case 1: o->kind = O_FUN_1; break;
case 2: o->kind = O_FUN_2; break;
default: assert(0);
}
o->u_fun.fun = c->u_native.fun;
break;
case PY_CODE_INLINE_ASM:
o->kind = O_FUN_ASM;
o->u_fun_asm.n_args = c->n_args;
o->u_fun_asm.fun = c->u_inline_asm.fun;
break;
default:
assert(0);
}
// check for generator functions and if so wrap in generator object
if (c->is_generator) {
py_obj_base_t *o2 = m_new(py_obj_base_t, 1);
o2->kind = O_GEN_WRAP;
// we have at least 3 locals so the bc can write back fast[0,1,2] safely; should improve how this is done
o2->u_gen_wrap.n_state = ((c->n_locals + c->n_cells) < 3 ? 3 : (c->n_locals + c->n_cells)) + c->n_stack;
o2->u_gen_wrap.fun = o;
o = o2;
}
return o;
}
py_obj_t rt_make_function_0(py_fun_0_t fun) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_FUN_0;
o->u_fun.fun = fun;
return o;
}
py_obj_t rt_make_function_1(py_fun_1_t fun) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_FUN_1;
o->u_fun.fun = fun;
return o;
}
py_obj_t rt_make_function_2(py_fun_2_t fun) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_FUN_2;
o->u_fun.fun = fun;
return o;
}
py_obj_t rt_make_function(int n_args, py_fun_t code) {
// assumes code is a pointer to a py_fun_t (i think this is safe...)
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_FUN_N;
o->u_fun.n_args = n_args;
o->u_fun.fun = code;
return o;
}
py_obj_t rt_make_function_var(int n_fixed_args, py_fun_var_t f) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_FUN_VAR;
o->u_fun.n_args = n_fixed_args;
o->u_fun.fun = f;
return o;
}
py_obj_t rt_make_closure_from_id(int unique_code_id, py_obj_t closure_tuple) {
py_obj_t f = rt_make_function_from_id(unique_code_id);
// wrap function in closure object
py_obj_base_t *f2 = m_new(py_obj_base_t, 1);
f2->kind = O_CLOSURE;
f2->u_closure.fun = f;
f2->u_closure.vars = closure_tuple;
return f2;
}
py_obj_t rt_call_function_0(py_obj_t fun) {
return rt_call_function_n(fun, 0, NULL);
}
py_obj_t rt_call_function_1(py_obj_t fun, py_obj_t arg) {
return rt_call_function_n(fun, 1, &arg);
}
py_obj_t rt_call_function_2(py_obj_t fun, py_obj_t arg1, py_obj_t arg2) {
py_obj_t args[2];
args[1] = arg1;
args[0] = arg2;
return rt_call_function_n(fun, 2, args);
}
typedef machine_uint_t (*inline_asm_fun_0_t)();
typedef machine_uint_t (*inline_asm_fun_1_t)(machine_uint_t);
typedef machine_uint_t (*inline_asm_fun_2_t)(machine_uint_t, machine_uint_t);
typedef machine_uint_t (*inline_asm_fun_3_t)(machine_uint_t, machine_uint_t, machine_uint_t);
// convert a Python object to a sensible value for inline asm
machine_uint_t rt_convert_obj_for_inline_asm(py_obj_t obj) {
// TODO for byte_array, pass pointer to the array
if (IS_SMALL_INT(obj)) {
return FROM_SMALL_INT(obj);
} else if (obj == py_const_none) {
return 0;
} else if (obj == py_const_false) {
return 0;
} else if (obj == py_const_true) {
return 1;
} else {
py_obj_base_t *o = obj;
switch (o->kind) {
case O_STR:
// pointer to the string (it's probably constant though!)
return (machine_uint_t)qstr_str(o->u_str);
#if MICROPY_ENABLE_FLOAT
case O_FLOAT:
// convert float to int (could also pass in float registers)
return (machine_int_t)o->u_float;
#endif
case O_TUPLE:
case O_LIST:
// pointer to start of tuple/list (could pass length, but then could use len(x) for that)
return (machine_uint_t)o->u_tuple_list.items;
default:
// just pass along a pointer to the object
return (machine_uint_t)obj;
}
}
}
// convert a return value from inline asm to a sensible Python object
py_obj_t rt_convert_val_from_inline_asm(machine_uint_t val) {
return TO_SMALL_INT(val);
}
// args are in reverse order in the array
py_obj_t rt_call_function_n(py_obj_t fun, int n_args, const py_obj_t *args) {
int n_args_fun = 0;
if (IS_O(fun, O_FUN_0)) {
py_obj_base_t *o = fun;
if (n_args != 0) {
n_args_fun = 0;
goto bad_n_args;
}
DEBUG_OP_printf("calling native %p()\n", o->u_fun.fun);
return ((py_fun_0_t)o->u_fun.fun)();
} else if (IS_O(fun, O_FUN_1)) {
py_obj_base_t *o = fun;
if (n_args != 1) {
n_args_fun = 1;
goto bad_n_args;
}
DEBUG_OP_printf("calling native %p(%p)\n", o->u_fun.fun, args[0]);
return ((py_fun_1_t)o->u_fun.fun)(args[0]);
} else if (IS_O(fun, O_FUN_2)) {
py_obj_base_t *o = fun;
if (n_args != 2) {
n_args_fun = 2;
goto bad_n_args;
}
DEBUG_OP_printf("calling native %p(%p, %p)\n", o->u_fun.fun, args[1], args[0]);
return ((py_fun_2_t)o->u_fun.fun)(args[1], args[0]);
// TODO O_FUN_N
} else if (IS_O(fun, O_FUN_VAR)) {
py_obj_base_t *o = fun;
if (n_args < o->u_fun.n_args) {
nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "<fun name>() missing %d required positional arguments: <list of names of params>", (const char*)(machine_int_t)(o->u_fun.n_args - n_args), NULL));
}
// TODO really the args need to be passed in as a Python tuple, as the form f(*[1,2]) can be used to pass var args
py_obj_t *args_ordered = m_new(py_obj_t, n_args);
for (int i = 0; i < n_args; i++) {
args_ordered[i] = args[n_args - i - 1];
}
py_obj_t res = ((py_fun_var_t)o->u_fun.fun)(n_args, args_ordered);
m_free(args_ordered);
return res;
} else if (IS_O(fun, O_FUN_BC)) {
py_obj_base_t *o = fun;
if (n_args != o->u_fun_bc.n_args) {
n_args_fun = o->u_fun_bc.n_args;
goto bad_n_args;
}
DEBUG_OP_printf("calling byte code %p(n_args=%d)\n", o->u_fun_bc.code, n_args);
return py_execute_byte_code(o->u_fun_bc.code, args, n_args, o->u_fun_bc.n_state);
} else if (IS_O(fun, O_FUN_ASM)) {
py_obj_base_t *o = fun;
if (n_args != o->u_fun_asm.n_args) {
n_args_fun = o->u_fun_asm.n_args;
goto bad_n_args;
}
DEBUG_OP_printf("calling inline asm %p(n_args=%d)\n", o->u_fun_asm.fun, n_args);
machine_uint_t ret;
if (n_args == 0) {
ret = ((inline_asm_fun_0_t)o->u_fun_asm.fun)();
} else if (n_args == 1) {
ret = ((inline_asm_fun_1_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[0]));
} else if (n_args == 2) {
ret = ((inline_asm_fun_2_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[1]), rt_convert_obj_for_inline_asm(args[0]));
} else if (n_args == 3) {
ret = ((inline_asm_fun_3_t)o->u_fun_asm.fun)(rt_convert_obj_for_inline_asm(args[2]), rt_convert_obj_for_inline_asm(args[1]), rt_convert_obj_for_inline_asm(args[0]));
} else {
assert(0);
ret = 0;
}
return rt_convert_val_from_inline_asm(ret);
} else if (IS_O(fun, O_GEN_WRAP)) {
py_obj_base_t *o = fun;
py_obj_base_t *o_fun = o->u_gen_wrap.fun;
assert(o_fun->kind == O_FUN_BC); // TODO
if (n_args != o_fun->u_fun_bc.n_args) {
n_args_fun = o_fun->u_fun_bc.n_args;
goto bad_n_args;
}
py_obj_t *state = m_new(py_obj_t, 1 + o->u_gen_wrap.n_state);
// put function object at first slot in state (to keep u_gen_instance small)
state[0] = o_fun;
// init args
for (int i = 0; i < n_args; i++) {
state[1 + i] = args[n_args - 1 - i];
}
py_obj_base_t *o2 = m_new(py_obj_base_t, 1);
o2->kind = O_GEN_INSTANCE;
o2->u_gen_instance.state = state;
o2->u_gen_instance.ip = o_fun->u_fun_bc.code;
o2->u_gen_instance.sp = state + o->u_gen_wrap.n_state;
return o2;
} else if (IS_O(fun, O_BOUND_METH)) {
py_obj_base_t *o = fun;
DEBUG_OP_printf("calling bound method %p(self=%p, n_args=%d)\n", o->u_bound_meth.meth, o->u_bound_meth.self, n_args);
if (n_args == 0) {
return rt_call_function_n(o->u_bound_meth.meth, 1, &o->u_bound_meth.self);
} else if (n_args == 1) {
py_obj_t args2[2];
args2[1] = o->u_bound_meth.self;
args2[0] = args[0];
return rt_call_function_n(o->u_bound_meth.meth, 2, args2);
} else {
// TODO not implemented
assert(0);
return py_const_none;
//return rt_call_function_2(o->u_bound_meth.meth, n_args + 1, o->u_bound_meth.self + args);
}
} else if (IS_O(fun, O_CLASS)) {
// instantiate an instance of a class
DEBUG_OP_printf("instantiate object of class %p with %d args\n", fun, n_args);
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_OBJ;
o->u_obj.class = fun;
o->u_obj.members = py_map_new(MAP_QSTR, 0);
// look for __init__ function
py_obj_base_t *o_class = fun;
py_map_elem_t *init_fn = py_qstr_map_lookup(o_class->u_class.locals, qstr_from_str_static("__init__"), false);
if (init_fn != NULL) {
// call __init__ function
py_obj_t init_ret;
if (n_args == 0) {
init_ret = rt_call_function_n(init_fn->value, 1, (py_obj_t*)&o);
} else {
py_obj_t *args2 = m_new(py_obj_t, n_args + 1);
memcpy(args2, args, n_args * sizeof(py_obj_t));
args2[n_args] = o;
init_ret = rt_call_function_n(init_fn->value, n_args + 1, args2);
m_free(args2);
}
if (init_ret != py_const_none) {
nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "__init__() should return None, not '%s'", py_obj_get_type_str(init_ret), NULL));
}
} else {
// TODO
if (n_args != 0) {
n_args_fun = 0;
goto bad_n_args;
}
}
return o;
} else {
printf("fun %p %d\n", fun, ((py_obj_base_t*)fun)->kind);
assert(0);
return py_const_none;
}
bad_n_args:
nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "function takes %d positional arguments but %d were given", (const char*)(machine_int_t)n_args_fun, (const char*)(machine_int_t)n_args));
}
// args are in reverse order in the array; keyword arguments come first, value then key
// eg: (value1, key1, value0, key0, arg1, arg0)
py_obj_t rt_call_function_n_kw(py_obj_t fun, uint n_args, uint n_kw, const py_obj_t *args) {
// TODO
assert(0);
return py_const_none;
}
// args contains: arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun
// if n_args==0 then there are only self/NULL and fun
py_obj_t rt_call_method_n(uint n_args, const py_obj_t *args) {
DEBUG_OP_printf("call method %p(self=%p, n_args=%u)\n", args[n_args + 1], args[n_args], n_args);
return rt_call_function_n(args[n_args + 1], n_args + ((args[n_args] == NULL) ? 0 : 1), args);
}
// args contains: kw_val(n_kw-1) kw_key(n_kw-1) ... kw_val(0) kw_key(0) arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun
py_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const py_obj_t *args) {
uint n = n_args + 2 * n_kw;
DEBUG_OP_printf("call method %p(self=%p, n_args=%u, n_kw=%u)\n", args[n + 1], args[n], n_args, n_kw);
return rt_call_function_n_kw(args[n + 1], n_args + ((args[n] == NULL) ? 0 : 1), n_kw, args);
}
// items are in reverse order
py_obj_t rt_build_tuple(int n_args, py_obj_t *items) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_TUPLE;
o->u_tuple_list.alloc = n_args < 4 ? 4 : n_args;
o->u_tuple_list.len = n_args;
o->u_tuple_list.items = m_new(py_obj_t, o->u_tuple_list.alloc);
for (int i = 0; i < n_args; i++) {
o->u_tuple_list.items[i] = items[n_args - i - 1];
}
return o;
}
// items are in reverse order
py_obj_t rt_build_list(int n_args, py_obj_t *items) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_LIST;
o->u_tuple_list.alloc = n_args < 4 ? 4 : n_args;
o->u_tuple_list.len = n_args;
o->u_tuple_list.items = m_new(py_obj_t, o->u_tuple_list.alloc);
for (int i = 0; i < n_args; i++) {
o->u_tuple_list.items[i] = items[n_args - i - 1];
}
return o;
}
py_obj_t rt_build_set(int n_args, py_obj_t *items) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_SET;
o->u_set.alloc = get_doubling_prime_greater_or_equal_to(n_args + 1);
o->u_set.used = 0;
o->u_set.table = m_new(py_obj_t, o->u_set.alloc);
for (int i = 0; i < o->u_set.alloc; i++) {
o->u_set.table[i] = NULL;
}
for (int i = 0; i < n_args; i++) {
py_set_lookup(o, items[i], true);
}
return o;
}
py_obj_t rt_store_set(py_obj_t set, py_obj_t item) {
py_set_lookup(set, item, true);
return set;
}
// unpacked items are stored in order into the array pointed to by items
void rt_unpack_sequence(py_obj_t seq_in, uint num, py_obj_t *items) {
if (IS_O(seq_in, O_TUPLE) || IS_O(seq_in, O_LIST)) {
py_obj_base_t *seq = seq_in;
if (seq->u_tuple_list.len < num) {
nlr_jump(py_obj_new_exception_2(rt_q_ValueError, "need more than %d values to unpack", (void*)seq->u_tuple_list.len, NULL));
} else if (seq->u_tuple_list.len > num) {
nlr_jump(py_obj_new_exception_2(rt_q_ValueError, "too many values to unpack (expected %d)", (void*)(machine_uint_t)num, NULL));
}
memcpy(items, seq->u_tuple_list.items, num * sizeof(py_obj_t));
} else {
// TODO call rt_getiter and extract via rt_iternext
nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "'%s' object is not iterable", py_obj_get_type_str(seq_in), NULL));
}
}
py_obj_t rt_build_map(int n_args) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_MAP;
py_map_init(&o->u_map, MAP_PY_OBJ, n_args);
return o;
}
py_obj_t rt_store_map(py_obj_t map, py_obj_t key, py_obj_t value) {
assert(IS_O(map, O_MAP)); // should always be
py_map_lookup(map, key, true)->value = value;
return map;
}
py_obj_t build_bound_method(py_obj_t self, py_obj_t meth) {
py_obj_base_t *o = m_new(py_obj_base_t, 1);
o->kind = O_BOUND_METH;
o->u_bound_meth.meth = meth;
o->u_bound_meth.self = self;
return o;
}
py_obj_t rt_load_attr(py_obj_t base, qstr attr) {
DEBUG_OP_printf("load attr %s\n", qstr_str(attr));
if (IS_O(base, O_LIST) && attr == rt_q_append) {
return build_bound_method(base, fun_list_append);
} else if (IS_O(base, O_LIST) && attr == rt_q_pop) {
return build_bound_method(base, fun_list_pop);
} else if (IS_O(base, O_LIST) && attr == rt_q_sort) {
return build_bound_method(base, fun_list_sort);
} else if (IS_O(base, O_CLASS)) {
py_obj_base_t *o = base;
py_map_elem_t *elem = py_qstr_map_lookup(o->u_class.locals, attr, false);
if (elem == NULL) {
goto no_attr;
}
return elem->value;
} else if (IS_O(base, O_OBJ)) {
// logic: look in obj members then class locals (TODO check this against CPython)
py_obj_base_t *o = base;
py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.members, attr, false);
if (elem != NULL) {
// object member, always treated as a value
return elem->value;
}
elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false);
if (elem != NULL) {
if (py_obj_is_callable(elem->value)) {
// class member is callable so build a bound method
return build_bound_method(base, elem->value);
} else {
// class member is a value, so just return that value
return elem->value;
}
}
goto no_attr;
}
no_attr:
nlr_jump(py_obj_new_exception_2(rt_q_AttributeError, "'%s' object has no attribute '%s'", py_obj_get_type_str(base), qstr_str(attr)));
}
void rt_load_method(py_obj_t base, qstr attr, py_obj_t *dest) {
DEBUG_OP_printf("load method %s\n", qstr_str(attr));
if (IS_O(base, O_STR)) {
if (attr == rt_q_join) {
dest[1] = fun_str_join;
dest[0] = base;
return;
} else if (attr == rt_q_format) {
dest[1] = fun_str_format;
dest[0] = base;
return;
}
} else if (IS_O(base, O_GEN_INSTANCE) && attr == rt_q___next__) {
dest[1] = fun_gen_instance_next;
dest[0] = base;
return;
} else if (IS_O(base, O_LIST) && attr == rt_q_append) {
dest[1] = fun_list_append;
dest[0] = base;
return;
} else if (IS_O(base, O_LIST) && attr == rt_q_pop) {
dest[1] = fun_list_pop;
dest[0] = base;
return;
} else if (IS_O(base, O_LIST) && attr == rt_q_sort) {
dest[1] = fun_list_sort;
dest[0] = base;
return;
} else if (IS_O(base, O_OBJ)) {
// logic: look in obj members then class locals (TODO check this against CPython)
py_obj_base_t *o = base;
py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.members, attr, false);
if (elem != NULL) {
// object member, always treated as a value
dest[1] = elem->value;
dest[0] = NULL;
return;
}
elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false);
if (elem != NULL) {
if (py_obj_is_callable(elem->value)) {
// class member is callable so build a bound method
dest[1] = elem->value;
dest[0] = base;
return;
} else {
// class member is a value, so just return that value
dest[1] = elem->value;
dest[0] = NULL;
return;
}
}
goto no_attr;
} else if (IS_O(base, O_USER)) {
py_obj_base_t *o = base;
const py_user_method_t *meth = &o->u_user.info->methods[0];
for (; meth->name != NULL; meth++) {
if (strcmp(meth->name, qstr_str(attr)) == 0) {
if (meth->kind == 0) {
dest[1] = rt_make_function_1(meth->fun);
} else if (meth->kind == 1) {
dest[1] = rt_make_function_2(meth->fun);
} else {
assert(0);
}
dest[0] = base;
return;
}
}
}
no_attr:
dest[1] = rt_load_attr(base, attr);
dest[0] = NULL;
}
void rt_store_attr(py_obj_t base, qstr attr, py_obj_t value) {
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
if (IS_O(base, O_CLASS)) {
// TODO CPython allows STORE_ATTR to a class, but is this the correct implementation?
py_obj_base_t *o = base;
py_qstr_map_lookup(o->u_class.locals, attr, true)->value = value;
} else if (IS_O(base, O_OBJ)) {
// logic: look in class locals (no add) then obj members (add) (TODO check this against CPython)
py_obj_base_t *o = base;
py_map_elem_t *elem = py_qstr_map_lookup(o->u_obj.class->u_class.locals, attr, false);
if (elem != NULL) {
elem->value = value;
} else {
py_qstr_map_lookup(o->u_obj.members, attr, true)->value = value;
}
} else {
printf("?AttributeError: '%s' object has no attribute '%s'\n", py_obj_get_type_str(base), qstr_str(attr));
assert(0);
}
}
void rt_store_subscr(py_obj_t base, py_obj_t index, py_obj_t value) {
DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value);
if (IS_O(base, O_LIST)) {
// list store
uint i = get_index(base, index);
((py_obj_base_t*)base)->u_tuple_list.items[i] = value;
} else if (IS_O(base, O_MAP)) {
// map store
py_map_lookup(base, index, true)->value = value;
} else {
assert(0);
}
}
py_obj_t rt_getiter(py_obj_t o_in) {
if (IS_O(o_in, O_GEN_INSTANCE)) {
return o_in;
} else if (IS_O(o_in, O_RANGE)) {
py_obj_base_t *o = o_in;
return py_obj_new_range_iterator(o->u_range.start, o->u_range.stop, o->u_range.step);
} else if (IS_O(o_in, O_TUPLE)) {
return py_obj_new_tuple_iterator(o_in, 0);
} else if (IS_O(o_in, O_LIST)) {
return py_obj_new_list_iterator(o_in, 0);
} else {
nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "'%s' object is not iterable", py_obj_get_type_str(o_in), NULL));
}
}
py_obj_t rt_iternext(py_obj_t o_in) {
if (IS_O(o_in, O_GEN_INSTANCE)) {
py_obj_base_t *self = o_in;
//py_obj_base_t *fun = self->u_gen_instance.state[0];
//assert(fun->kind == O_FUN_BC);
bool yield = py_execute_byte_code_2(&self->u_gen_instance.ip, &self->u_gen_instance.state[1], &self->u_gen_instance.sp);
if (yield) {
return *self->u_gen_instance.sp;
} else {
if (*self->u_gen_instance.sp == py_const_none) {
return py_const_stop_iteration;
} else {
// TODO return StopIteration with value *self->u_gen_instance.sp
return py_const_stop_iteration;
}
}
} else if (IS_O(o_in, O_RANGE_IT)) {
py_obj_base_t *o = o_in;
if ((o->u_range_it.step > 0 && o->u_range_it.cur < o->u_range_it.stop) || (o->u_range_it.step < 0 && o->u_range_it.cur > o->u_range_it.stop)) {
py_obj_t o_out = TO_SMALL_INT(o->u_range_it.cur);
o->u_range_it.cur += o->u_range_it.step;
return o_out;
} else {
return py_const_stop_iteration;
}
} else if (IS_O(o_in, O_TUPLE_IT) || IS_O(o_in, O_LIST_IT)) {
py_obj_base_t *o = o_in;
if (o->u_tuple_list_it.cur < o->u_tuple_list_it.obj->u_tuple_list.len) {
py_obj_t o_out = o->u_tuple_list_it.obj->u_tuple_list.items[o->u_tuple_list_it.cur];
o->u_tuple_list_it.cur += 1;
return o_out;
} else {
return py_const_stop_iteration;
}
} else {
nlr_jump(py_obj_new_exception_2(rt_q_TypeError, "? '%s' object is not iterable", py_obj_get_type_str(o_in), NULL));
}
}
py_obj_t py_builtin___import__(int n, py_obj_t *args) {
printf("import:\n");
for (int i = 0; i < n; i++) {
printf(" ");
py_obj_print(args[i]);
printf("\n");
}
return py_const_none;
}
py_obj_t rt_import_name(qstr name, py_obj_t fromlist, py_obj_t level) {
// build args array
py_obj_t args[5];
args[0] = py_obj_new_str(name);
args[1] = py_const_none; // TODO should be globals
args[2] = py_const_none; // TODO should be locals
args[3] = fromlist;
args[4] = level; // must be 0; we don't yet support other values
// TODO lookup __import__ and call that instead of going straight to builtin implementation
return py_builtin___import__(5, args);
}
py_obj_t rt_import_from(py_obj_t module, qstr name) {
py_obj_t x = rt_load_attr(module, name);
/* TODO convert AttributeError to ImportError
if (fail) {
(ImportError, "cannot import name %s", qstr_str(name), NULL)
}
*/
return x;
}
// these must correspond to the respective enum
void *const rt_fun_table[RT_F_NUMBER_OF] = {
rt_load_const_dec,
rt_load_const_str,
rt_load_name,
rt_load_global,
rt_load_build_class,
rt_load_attr,
rt_load_method,
rt_store_name,
rt_store_attr,
rt_store_subscr,
rt_is_true,
rt_unary_op,
rt_build_tuple,
rt_build_list,
rt_list_append,
rt_build_map,
rt_store_map,
rt_build_set,
rt_store_set,
rt_make_function_from_id,
rt_call_function_n,
rt_call_method_n,
rt_binary_op,
rt_compare_op,
rt_getiter,
rt_iternext,
};
/*
void rt_f_vector(rt_fun_kind_t fun_kind) {
(rt_f_table[fun_kind])();
}
*/