micropython/stmhal/modpyb.c

605 lines
22 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include "stm32f4xx_hal.h"
#include "mpconfig.h"
#include "misc.h"
#include "nlr.h"
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
#include "irq.h"
#include "systick.h"
#include "pyexec.h"
#include "led.h"
#include "pin.h"
#include "timer.h"
#include "extint.h"
#include "usrsw.h"
#include "rng.h"
#include "rtc.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "can.h"
#include "adc.h"
#include "storage.h"
#include "sdcard.h"
#include "accel.h"
#include "servo.h"
#include "dac.h"
#include "lcd.h"
#include "usb.h"
#include "pybstdio.h"
#include "ff.h"
#include "portmodules.h"
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
pyb_usb_dev_stop();
storage_flush();
HAL_RCC_DeInit();
HAL_DeInit();
__HAL_REMAPMEMORY_SYSTEMFLASH();
// arm-none-eabi-gcc 4.9.0 does not correctly inline this
// MSP function, so we write it out explicitly here.
//__set_MSP(*((uint32_t*) 0x00000000));
__ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");
((void (*)(void)) *((uint32_t*) 0x00000004))();
while (1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
/// \function hard_reset()
/// Resets the pyboard in a manner similar to pushing the external RESET
/// button.
STATIC mp_obj_t pyb_hard_reset(void) {
NVIC_SystemReset();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
// get and print unique id; 96 bits
{
byte *id = (byte*)0x1fff7a10;
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
}
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
{
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
HAL_RCC_GetSysClockFreq(),
HAL_RCC_GetHCLKFreq(),
HAL_RCC_GetPCLK1Freq(),
HAL_RCC_GetPCLK2Freq());
}
// to print info about memory
{
printf("_etext=%p\n", &_etext);
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_ram_start=%p\n", &_ram_start);
printf("_heap_start=%p\n", &_heap_start);
printf("_heap_end=%p\n", &_heap_end);
printf("_ram_end=%p\n", &_ram_end);
}
// qstr info
{
mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" " UINT_FMT " total\n", info.total);
printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
}
// free space on flash
{
DWORD nclst;
FATFS *fatfs;
f_getfree("/flash", &nclst, &fatfs);
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
}
if (n_args == 1) {
// arg given means dump gc allocation table
gc_dump_alloc_table();
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
STATIC mp_obj_t pyb_unique_id(void) {
byte *id = (byte*)0x1fff7a10;
return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);
// get or set the MCU frequencies
STATIC mp_uint_t pyb_freq_calc_ahb_div(mp_uint_t wanted_div) {
if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
else { return RCC_SYSCLK_DIV512; }
}
STATIC mp_uint_t pyb_freq_calc_apb_div(mp_uint_t wanted_div) {
if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
else { return RCC_SYSCLK_DIV16; }
}
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
// get
mp_obj_t tuple[4] = {
mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
};
return mp_obj_new_tuple(4, tuple);
} else {
// set
mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;
// default PLL parameters that give 48MHz on PLL48CK
uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
uint32_t sysclk_source;
// the following logic assumes HSE < HSI
if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) {
// use HSE as SYSCLK
sysclk_source = RCC_SYSCLKSOURCE_HSE;
} else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) {
// use HSI as SYSCLK
sysclk_source = RCC_SYSCLKSOURCE_HSI;
} else {
// search for a valid PLL configuration that keeps USB at 48MHz
for (; wanted_sysclk > 0; wanted_sysclk--) {
for (p = 2; p <= 8; p += 2) {
// compute VCO_OUT
mp_uint_t vco_out = wanted_sysclk * p;
// make sure VCO_OUT is between 192MHz and 432MHz
if (vco_out < 192 || vco_out > 432) {
continue;
}
// make sure Q is an integer
if (vco_out % 48 != 0) {
continue;
}
// solve for Q to get PLL48CK at 48MHz
q = vco_out / 48;
// make sure Q is in range
if (q < 2 || q > 15) {
continue;
}
// make sure N/M is an integer
if (vco_out % (HSE_VALUE / 1000000) != 0) {
continue;
}
// solve for N/M
mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000);
// solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz
m = 192 / n_by_m;
while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
m += 1;
}
if (m > (HSE_VALUE / 1000000)) {
continue;
}
// solve for N
n = n_by_m * m;
// make sure N is in range
if (n < 192 || n > 432) {
continue;
}
// found values!
sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
goto set_clk;
}
}
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
}
set_clk:
//printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);
// let the USB CDC have a chance to process before we change the clock
HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);
// desired system clock source is in sysclk_source
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
// set HSE as system clock source to allow modification of the PLL configuration
// we then change to PLL after re-configuring PLL
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
} else {
// directly set the system clock source as desired
RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
}
wanted_sysclk *= 1000000;
if (n_args >= 2) {
// note: AHB freq required to be >= 14.2MHz for USB operation
RCC_ClkInitStruct.AHBCLKDivider = pyb_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
} else {
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
}
if (n_args >= 3) {
RCC_ClkInitStruct.APB1CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
} else {
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
}
if (n_args >= 4) {
RCC_ClkInitStruct.APB2CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
} else {
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
}
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
goto fail;
}
// re-configure PLL
// even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = m;
RCC_OscInitStruct.PLL.PLLN = n;
RCC_OscInitStruct.PLL.PLLP = p;
RCC_OscInitStruct.PLL.PLLQ = q;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
goto fail;
}
// set PLL as system clock source if wanted
if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
goto fail;
}
}
// re-init TIM3 for USB CDC rate
timer_tim3_init();
return mp_const_none;
fail:;
void NORETURN __fatal_error(const char *msg);
__fatal_error("can't change freq");
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 4, pyb_freq);
/// \function sync()
/// Sync all file systems.
STATIC mp_obj_t pyb_sync(void) {
storage_flush();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
///
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 milliseconds (about 12.4 days) this will start to return
/// negative numbers.
STATIC mp_obj_t pyb_millis(void) {
// We want to "cast" the 32 bit unsigned into a small-int. This means
// copying the MSB down 1 bit (extending the sign down), which is
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);
/// \function elapsed_millis(start)
/// Returns the number of milliseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 12.4 days.
///
/// Example:
/// start = pyb.millis()
/// while pyb.elapsed_millis(start) < 1000:
/// # Perform some operation
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
uint32_t startMillis = mp_obj_get_int(start);
uint32_t currMillis = HAL_GetTick();
return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);
/// \function micros()
/// Returns the number of microseconds since the board was last reset.
///
/// The result is always a micropython smallint (31-bit signed number), so
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
/// negative numbers.
STATIC mp_obj_t pyb_micros(void) {
// We want to "cast" the 32 bit unsigned into a small-int. This means
// copying the MSB down 1 bit (extending the sign down), which is
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);
/// \function elapsed_micros(start)
/// Returns the number of microseconds which have elapsed since `start`.
///
/// This function takes care of counter wrap, and always returns a positive
/// number. This means it can be used to measure periods upto about 17.8 minutes.
///
/// Example:
/// start = pyb.micros()
/// while pyb.elapsed_micros(start) < 1000:
/// # Perform some operation
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
uint32_t startMicros = mp_obj_get_int(start);
uint32_t currMicros = sys_tick_get_microseconds();
return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);
/// \function delay(ms)
/// Delay for the given number of milliseconds.
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
mp_int_t ms = mp_obj_get_int(ms_in);
if (ms >= 0) {
HAL_Delay(ms);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);
/// \function udelay(us)
/// Delay for the given number of microseconds.
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
mp_int_t usec = mp_obj_get_int(usec_in);
if (usec > 0) {
sys_tick_udelay(usec);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);
/// \function stop()
STATIC mp_obj_t pyb_stop(void) {
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
// reconfigure the system clock after waking up
// enable HSE
__HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
}
// enable PLL
__HAL_RCC_PLL_ENABLE();
while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
}
// select PLL as system clock source
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);
/// \function standby()
STATIC mp_obj_t pyb_standby(void) {
HAL_PWR_EnterSTANDBYMode();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
STATIC mp_obj_t pyb_have_cdc(void ) {
return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
if (n_args == 0) {
if (pyb_stdio_uart == NULL) {
return mp_const_none;
} else {
return pyb_stdio_uart;
}
} else {
if (args[0] == mp_const_none) {
pyb_stdio_uart = NULL;
} else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
pyb_stdio_uart = args[0];
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
}
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
mp_obj_t *items;
mp_obj_get_array_fixed_n(arg, 4, &items);
uint8_t data[4];
data[0] = mp_obj_get_int(items[0]);
data[1] = mp_obj_get_int(items[1]);
data[2] = mp_obj_get_int(items[2]);
data[3] = mp_obj_get_int(items[3]);
usb_hid_send_report(data);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
STATIC const mp_map_elem_t pyb_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },
#if MICROPY_HW_ENABLE_RNG
{ MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
#endif
#if MICROPY_HW_ENABLE_RTC
{ MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
#endif
{ MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },
#if MICROPY_HW_ENABLE_SERVO
{ MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
#endif
#if MICROPY_HW_HAS_SWITCH
{ MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
#endif
#if MICROPY_HW_HAS_SDCARD
{ MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif
{ MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
#if MICROPY_HW_ENABLE_CAN
{ MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
#endif
{ MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
#if MICROPY_HW_ENABLE_DAC
{ MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
#endif
#if MICROPY_HW_HAS_MMA7660
{ MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
#if MICROPY_HW_HAS_LCD
{ MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
};
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
const mp_obj_module_t pyb_module = {
.base = { &mp_type_module },
.name = MP_QSTR_pyb,
.globals = (mp_obj_dict_t*)&pyb_module_globals,
};