605 lines
22 KiB
C
605 lines
22 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
|
|
#include "stm32f4xx_hal.h"
|
|
|
|
#include "mpconfig.h"
|
|
#include "misc.h"
|
|
#include "nlr.h"
|
|
#include "qstr.h"
|
|
#include "obj.h"
|
|
#include "gc.h"
|
|
#include "gccollect.h"
|
|
#include "irq.h"
|
|
#include "systick.h"
|
|
#include "pyexec.h"
|
|
#include "led.h"
|
|
#include "pin.h"
|
|
#include "timer.h"
|
|
#include "extint.h"
|
|
#include "usrsw.h"
|
|
#include "rng.h"
|
|
#include "rtc.h"
|
|
#include "i2c.h"
|
|
#include "spi.h"
|
|
#include "uart.h"
|
|
#include "can.h"
|
|
#include "adc.h"
|
|
#include "storage.h"
|
|
#include "sdcard.h"
|
|
#include "accel.h"
|
|
#include "servo.h"
|
|
#include "dac.h"
|
|
#include "lcd.h"
|
|
#include "usb.h"
|
|
#include "pybstdio.h"
|
|
#include "ff.h"
|
|
#include "portmodules.h"
|
|
|
|
/// \module pyb - functions related to the pyboard
|
|
///
|
|
/// The `pyb` module contains specific functions related to the pyboard.
|
|
|
|
/// \function bootloader()
|
|
/// Activate the bootloader without BOOT* pins.
|
|
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
|
|
pyb_usb_dev_stop();
|
|
storage_flush();
|
|
|
|
HAL_RCC_DeInit();
|
|
HAL_DeInit();
|
|
|
|
__HAL_REMAPMEMORY_SYSTEMFLASH();
|
|
|
|
// arm-none-eabi-gcc 4.9.0 does not correctly inline this
|
|
// MSP function, so we write it out explicitly here.
|
|
//__set_MSP(*((uint32_t*) 0x00000000));
|
|
__ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");
|
|
|
|
((void (*)(void)) *((uint32_t*) 0x00000004))();
|
|
|
|
while (1);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
|
|
|
|
/// \function hard_reset()
|
|
/// Resets the pyboard in a manner similar to pushing the external RESET
|
|
/// button.
|
|
STATIC mp_obj_t pyb_hard_reset(void) {
|
|
NVIC_SystemReset();
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_hard_reset_obj, pyb_hard_reset);
|
|
|
|
/// \function info([dump_alloc_table])
|
|
/// Print out lots of information about the board.
|
|
STATIC mp_obj_t pyb_info(mp_uint_t n_args, const mp_obj_t *args) {
|
|
// get and print unique id; 96 bits
|
|
{
|
|
byte *id = (byte*)0x1fff7a10;
|
|
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
|
|
}
|
|
|
|
// get and print clock speeds
|
|
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
|
|
{
|
|
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
|
|
HAL_RCC_GetSysClockFreq(),
|
|
HAL_RCC_GetHCLKFreq(),
|
|
HAL_RCC_GetPCLK1Freq(),
|
|
HAL_RCC_GetPCLK2Freq());
|
|
}
|
|
|
|
// to print info about memory
|
|
{
|
|
printf("_etext=%p\n", &_etext);
|
|
printf("_sidata=%p\n", &_sidata);
|
|
printf("_sdata=%p\n", &_sdata);
|
|
printf("_edata=%p\n", &_edata);
|
|
printf("_sbss=%p\n", &_sbss);
|
|
printf("_ebss=%p\n", &_ebss);
|
|
printf("_estack=%p\n", &_estack);
|
|
printf("_ram_start=%p\n", &_ram_start);
|
|
printf("_heap_start=%p\n", &_heap_start);
|
|
printf("_heap_end=%p\n", &_heap_end);
|
|
printf("_ram_end=%p\n", &_ram_end);
|
|
}
|
|
|
|
// qstr info
|
|
{
|
|
mp_uint_t n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
|
|
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
|
|
printf("qstr:\n n_pool=" UINT_FMT "\n n_qstr=" UINT_FMT "\n n_str_data_bytes=" UINT_FMT "\n n_total_bytes=" UINT_FMT "\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
|
|
}
|
|
|
|
// GC info
|
|
{
|
|
gc_info_t info;
|
|
gc_info(&info);
|
|
printf("GC:\n");
|
|
printf(" " UINT_FMT " total\n", info.total);
|
|
printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
|
|
printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
|
|
}
|
|
|
|
// free space on flash
|
|
{
|
|
DWORD nclst;
|
|
FATFS *fatfs;
|
|
f_getfree("/flash", &nclst, &fatfs);
|
|
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
|
|
}
|
|
|
|
if (n_args == 1) {
|
|
// arg given means dump gc allocation table
|
|
gc_dump_alloc_table();
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
|
|
|
|
/// \function unique_id()
|
|
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
|
|
STATIC mp_obj_t pyb_unique_id(void) {
|
|
byte *id = (byte*)0x1fff7a10;
|
|
return mp_obj_new_bytes(id, 12);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);
|
|
|
|
// get or set the MCU frequencies
|
|
STATIC mp_uint_t pyb_freq_calc_ahb_div(mp_uint_t wanted_div) {
|
|
if (wanted_div <= 1) { return RCC_SYSCLK_DIV1; }
|
|
else if (wanted_div <= 2) { return RCC_SYSCLK_DIV2; }
|
|
else if (wanted_div <= 4) { return RCC_SYSCLK_DIV4; }
|
|
else if (wanted_div <= 8) { return RCC_SYSCLK_DIV8; }
|
|
else if (wanted_div <= 16) { return RCC_SYSCLK_DIV16; }
|
|
else if (wanted_div <= 64) { return RCC_SYSCLK_DIV64; }
|
|
else if (wanted_div <= 128) { return RCC_SYSCLK_DIV128; }
|
|
else if (wanted_div <= 256) { return RCC_SYSCLK_DIV256; }
|
|
else { return RCC_SYSCLK_DIV512; }
|
|
}
|
|
STATIC mp_uint_t pyb_freq_calc_apb_div(mp_uint_t wanted_div) {
|
|
if (wanted_div <= 1) { return RCC_HCLK_DIV1; }
|
|
else if (wanted_div <= 2) { return RCC_HCLK_DIV2; }
|
|
else if (wanted_div <= 4) { return RCC_HCLK_DIV4; }
|
|
else if (wanted_div <= 8) { return RCC_HCLK_DIV8; }
|
|
else { return RCC_SYSCLK_DIV16; }
|
|
}
|
|
STATIC mp_obj_t pyb_freq(mp_uint_t n_args, const mp_obj_t *args) {
|
|
if (n_args == 0) {
|
|
// get
|
|
mp_obj_t tuple[4] = {
|
|
mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
|
|
mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
|
|
mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
|
|
mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
|
|
};
|
|
return mp_obj_new_tuple(4, tuple);
|
|
} else {
|
|
// set
|
|
mp_int_t wanted_sysclk = mp_obj_get_int(args[0]) / 1000000;
|
|
|
|
// default PLL parameters that give 48MHz on PLL48CK
|
|
uint32_t m = HSE_VALUE / 1000000, n = 336, p = 2, q = 7;
|
|
uint32_t sysclk_source;
|
|
|
|
// the following logic assumes HSE < HSI
|
|
if (HSE_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < HSI_VALUE / 1000000) {
|
|
// use HSE as SYSCLK
|
|
sysclk_source = RCC_SYSCLKSOURCE_HSE;
|
|
} else if (HSI_VALUE / 1000000 <= wanted_sysclk && wanted_sysclk < 24) {
|
|
// use HSI as SYSCLK
|
|
sysclk_source = RCC_SYSCLKSOURCE_HSI;
|
|
} else {
|
|
// search for a valid PLL configuration that keeps USB at 48MHz
|
|
for (; wanted_sysclk > 0; wanted_sysclk--) {
|
|
for (p = 2; p <= 8; p += 2) {
|
|
// compute VCO_OUT
|
|
mp_uint_t vco_out = wanted_sysclk * p;
|
|
// make sure VCO_OUT is between 192MHz and 432MHz
|
|
if (vco_out < 192 || vco_out > 432) {
|
|
continue;
|
|
}
|
|
// make sure Q is an integer
|
|
if (vco_out % 48 != 0) {
|
|
continue;
|
|
}
|
|
// solve for Q to get PLL48CK at 48MHz
|
|
q = vco_out / 48;
|
|
// make sure Q is in range
|
|
if (q < 2 || q > 15) {
|
|
continue;
|
|
}
|
|
// make sure N/M is an integer
|
|
if (vco_out % (HSE_VALUE / 1000000) != 0) {
|
|
continue;
|
|
}
|
|
// solve for N/M
|
|
mp_uint_t n_by_m = vco_out / (HSE_VALUE / 1000000);
|
|
// solve for M, making sure VCO_IN (=HSE/M) is between 1MHz and 2MHz
|
|
m = 192 / n_by_m;
|
|
while (m < (HSE_VALUE / 2000000) || n_by_m * m < 192) {
|
|
m += 1;
|
|
}
|
|
if (m > (HSE_VALUE / 1000000)) {
|
|
continue;
|
|
}
|
|
// solve for N
|
|
n = n_by_m * m;
|
|
// make sure N is in range
|
|
if (n < 192 || n > 432) {
|
|
continue;
|
|
}
|
|
|
|
// found values!
|
|
sysclk_source = RCC_SYSCLKSOURCE_PLLCLK;
|
|
goto set_clk;
|
|
}
|
|
}
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "can't make valid freq"));
|
|
}
|
|
|
|
set_clk:
|
|
//printf("%lu %lu %lu %lu %lu\n", sysclk_source, m, n, p, q);
|
|
|
|
// let the USB CDC have a chance to process before we change the clock
|
|
HAL_Delay(USBD_CDC_POLLING_INTERVAL + 2);
|
|
|
|
// desired system clock source is in sysclk_source
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct;
|
|
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
|
|
if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
|
|
// set HSE as system clock source to allow modification of the PLL configuration
|
|
// we then change to PLL after re-configuring PLL
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSE;
|
|
} else {
|
|
// directly set the system clock source as desired
|
|
RCC_ClkInitStruct.SYSCLKSource = sysclk_source;
|
|
}
|
|
wanted_sysclk *= 1000000;
|
|
if (n_args >= 2) {
|
|
// note: AHB freq required to be >= 14.2MHz for USB operation
|
|
RCC_ClkInitStruct.AHBCLKDivider = pyb_freq_calc_ahb_div(wanted_sysclk / mp_obj_get_int(args[1]));
|
|
} else {
|
|
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
|
}
|
|
if (n_args >= 3) {
|
|
RCC_ClkInitStruct.APB1CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[2]));
|
|
} else {
|
|
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
|
|
}
|
|
if (n_args >= 4) {
|
|
RCC_ClkInitStruct.APB2CLKDivider = pyb_freq_calc_apb_div(wanted_sysclk / mp_obj_get_int(args[3]));
|
|
} else {
|
|
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
|
|
}
|
|
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) {
|
|
goto fail;
|
|
}
|
|
|
|
// re-configure PLL
|
|
// even if we don't use the PLL for the system clock, we still need it for USB, RNG and SDIO
|
|
RCC_OscInitTypeDef RCC_OscInitStruct;
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
|
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
|
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
|
RCC_OscInitStruct.PLL.PLLM = m;
|
|
RCC_OscInitStruct.PLL.PLLN = n;
|
|
RCC_OscInitStruct.PLL.PLLP = p;
|
|
RCC_OscInitStruct.PLL.PLLQ = q;
|
|
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
|
|
goto fail;
|
|
}
|
|
|
|
// set PLL as system clock source if wanted
|
|
if (sysclk_source == RCC_SYSCLKSOURCE_PLLCLK) {
|
|
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_SYSCLK;
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
|
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
// re-init TIM3 for USB CDC rate
|
|
timer_tim3_init();
|
|
|
|
return mp_const_none;
|
|
|
|
fail:;
|
|
void NORETURN __fatal_error(const char *msg);
|
|
__fatal_error("can't change freq");
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_freq_obj, 0, 4, pyb_freq);
|
|
|
|
/// \function sync()
|
|
/// Sync all file systems.
|
|
STATIC mp_obj_t pyb_sync(void) {
|
|
storage_flush();
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);
|
|
|
|
/// \function millis()
|
|
/// Returns the number of milliseconds since the board was last reset.
|
|
///
|
|
/// The result is always a micropython smallint (31-bit signed number), so
|
|
/// after 2^30 milliseconds (about 12.4 days) this will start to return
|
|
/// negative numbers.
|
|
STATIC mp_obj_t pyb_millis(void) {
|
|
// We want to "cast" the 32 bit unsigned into a small-int. This means
|
|
// copying the MSB down 1 bit (extending the sign down), which is
|
|
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
|
|
return MP_OBJ_NEW_SMALL_INT(HAL_GetTick());
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);
|
|
|
|
/// \function elapsed_millis(start)
|
|
/// Returns the number of milliseconds which have elapsed since `start`.
|
|
///
|
|
/// This function takes care of counter wrap, and always returns a positive
|
|
/// number. This means it can be used to measure periods upto about 12.4 days.
|
|
///
|
|
/// Example:
|
|
/// start = pyb.millis()
|
|
/// while pyb.elapsed_millis(start) < 1000:
|
|
/// # Perform some operation
|
|
STATIC mp_obj_t pyb_elapsed_millis(mp_obj_t start) {
|
|
uint32_t startMillis = mp_obj_get_int(start);
|
|
uint32_t currMillis = HAL_GetTick();
|
|
return MP_OBJ_NEW_SMALL_INT((currMillis - startMillis) & 0x3fffffff);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_millis_obj, pyb_elapsed_millis);
|
|
|
|
/// \function micros()
|
|
/// Returns the number of microseconds since the board was last reset.
|
|
///
|
|
/// The result is always a micropython smallint (31-bit signed number), so
|
|
/// after 2^30 microseconds (about 17.8 minutes) this will start to return
|
|
/// negative numbers.
|
|
STATIC mp_obj_t pyb_micros(void) {
|
|
// We want to "cast" the 32 bit unsigned into a small-int. This means
|
|
// copying the MSB down 1 bit (extending the sign down), which is
|
|
// equivalent to just using the MP_OBJ_NEW_SMALL_INT macro.
|
|
return MP_OBJ_NEW_SMALL_INT(sys_tick_get_microseconds());
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_micros_obj, pyb_micros);
|
|
|
|
/// \function elapsed_micros(start)
|
|
/// Returns the number of microseconds which have elapsed since `start`.
|
|
///
|
|
/// This function takes care of counter wrap, and always returns a positive
|
|
/// number. This means it can be used to measure periods upto about 17.8 minutes.
|
|
///
|
|
/// Example:
|
|
/// start = pyb.micros()
|
|
/// while pyb.elapsed_micros(start) < 1000:
|
|
/// # Perform some operation
|
|
STATIC mp_obj_t pyb_elapsed_micros(mp_obj_t start) {
|
|
uint32_t startMicros = mp_obj_get_int(start);
|
|
uint32_t currMicros = sys_tick_get_microseconds();
|
|
return MP_OBJ_NEW_SMALL_INT((currMicros - startMicros) & 0x3fffffff);
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_elapsed_micros_obj, pyb_elapsed_micros);
|
|
|
|
/// \function delay(ms)
|
|
/// Delay for the given number of milliseconds.
|
|
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
|
|
mp_int_t ms = mp_obj_get_int(ms_in);
|
|
if (ms >= 0) {
|
|
HAL_Delay(ms);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);
|
|
|
|
/// \function udelay(us)
|
|
/// Delay for the given number of microseconds.
|
|
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
|
|
mp_int_t usec = mp_obj_get_int(usec_in);
|
|
if (usec > 0) {
|
|
sys_tick_udelay(usec);
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);
|
|
|
|
/// \function stop()
|
|
STATIC mp_obj_t pyb_stop(void) {
|
|
HAL_PWR_EnterSTOPMode(PWR_LOWPOWERREGULATOR_ON, PWR_STOPENTRY_WFI);
|
|
|
|
// reconfigure the system clock after waking up
|
|
|
|
// enable HSE
|
|
__HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
|
|
while (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY)) {
|
|
}
|
|
|
|
// enable PLL
|
|
__HAL_RCC_PLL_ENABLE();
|
|
while (!__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY)) {
|
|
}
|
|
|
|
// select PLL as system clock source
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL) {
|
|
}
|
|
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);
|
|
|
|
/// \function standby()
|
|
STATIC mp_obj_t pyb_standby(void) {
|
|
HAL_PWR_EnterSTANDBYMode();
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);
|
|
|
|
/// \function have_cdc()
|
|
/// Return True if USB is connected as a serial device, False otherwise.
|
|
STATIC mp_obj_t pyb_have_cdc(void ) {
|
|
return MP_BOOL(usb_vcp_is_connected());
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);
|
|
|
|
/// \function repl_uart(uart)
|
|
/// Get or set the UART object that the REPL is repeated on.
|
|
STATIC mp_obj_t pyb_repl_uart(mp_uint_t n_args, const mp_obj_t *args) {
|
|
if (n_args == 0) {
|
|
if (pyb_stdio_uart == NULL) {
|
|
return mp_const_none;
|
|
} else {
|
|
return pyb_stdio_uart;
|
|
}
|
|
} else {
|
|
if (args[0] == mp_const_none) {
|
|
pyb_stdio_uart = NULL;
|
|
} else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
|
|
pyb_stdio_uart = args[0];
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);
|
|
|
|
/// \function hid((buttons, x, y, z))
|
|
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
|
|
/// signal a HID mouse-motion event.
|
|
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
|
|
mp_obj_t *items;
|
|
mp_obj_get_array_fixed_n(arg, 4, &items);
|
|
uint8_t data[4];
|
|
data[0] = mp_obj_get_int(items[0]);
|
|
data[1] = mp_obj_get_int(items[1]);
|
|
data[2] = mp_obj_get_int(items[2]);
|
|
data[3] = mp_obj_get_int(items[3]);
|
|
usb_hid_send_report(data);
|
|
return mp_const_none;
|
|
}
|
|
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
|
|
|
|
MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
|
|
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
|
|
|
|
STATIC const mp_map_elem_t pyb_module_globals_table[] = {
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_hard_reset), (mp_obj_t)&pyb_hard_reset_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_USB_VCP), (mp_obj_t)&pyb_usb_vcp_type },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_millis), (mp_obj_t)&pyb_elapsed_millis_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_micros), (mp_obj_t)&pyb_micros_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_elapsed_micros), (mp_obj_t)&pyb_elapsed_micros_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },
|
|
|
|
#if MICROPY_HW_ENABLE_RNG
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_RTC
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
|
|
#endif
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },
|
|
|
|
#if MICROPY_HW_ENABLE_SERVO
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
|
|
#endif
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
|
|
#if MICROPY_HW_ENABLE_CAN
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_CAN), (mp_obj_t)&pyb_can_type },
|
|
#endif
|
|
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
|
|
|
|
#if MICROPY_HW_ENABLE_DAC
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_MMA7660
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_LCD
|
|
{ MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
|
|
#endif
|
|
};
|
|
|
|
STATIC MP_DEFINE_CONST_DICT(pyb_module_globals, pyb_module_globals_table);
|
|
|
|
const mp_obj_module_t pyb_module = {
|
|
.base = { &mp_type_module },
|
|
.name = MP_QSTR_pyb,
|
|
.globals = (mp_obj_dict_t*)&pyb_module_globals,
|
|
};
|