1425 lines
54 KiB
C
1425 lines
54 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "py/mpstate.h"
|
|
#include "py/nlr.h"
|
|
#include "py/parsenum.h"
|
|
#include "py/compile.h"
|
|
#include "py/objstr.h"
|
|
#include "py/objtuple.h"
|
|
#include "py/objlist.h"
|
|
#include "py/objmodule.h"
|
|
#include "py/objgenerator.h"
|
|
#include "py/smallint.h"
|
|
#include "py/runtime0.h"
|
|
#include "py/runtime.h"
|
|
#include "py/builtin.h"
|
|
#include "py/stackctrl.h"
|
|
#include "py/gc.h"
|
|
|
|
#if 0 // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#define DEBUG_printf DEBUG_printf
|
|
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
|
|
#else // don't print debugging info
|
|
#define DEBUG_printf(...) (void)0
|
|
#define DEBUG_OP_printf(...) (void)0
|
|
#endif
|
|
|
|
const mp_obj_module_t mp_module___main__ = {
|
|
.base = { &mp_type_module },
|
|
.globals = (mp_obj_dict_t*)&MP_STATE_VM(dict_main),
|
|
};
|
|
|
|
void mp_init(void) {
|
|
qstr_init();
|
|
|
|
// no pending exceptions to start with
|
|
MP_STATE_VM(mp_pending_exception) = MP_OBJ_NULL;
|
|
|
|
#if MICROPY_ENABLE_EMERGENCY_EXCEPTION_BUF
|
|
mp_init_emergency_exception_buf();
|
|
#endif
|
|
|
|
// call port specific initialization if any
|
|
#ifdef MICROPY_PORT_INIT_FUNC
|
|
MICROPY_PORT_INIT_FUNC;
|
|
#endif
|
|
|
|
// optimization disabled by default
|
|
MP_STATE_VM(mp_optimise_value) = 0;
|
|
|
|
// init global module stuff
|
|
mp_module_init();
|
|
|
|
// initialise the __main__ module
|
|
mp_obj_dict_init(&MP_STATE_VM(dict_main), 1);
|
|
mp_obj_dict_store(MP_OBJ_FROM_PTR(&MP_STATE_VM(dict_main)), MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR___main__));
|
|
|
|
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
|
|
MP_STATE_CTX(dict_locals) = MP_STATE_CTX(dict_globals) = &MP_STATE_VM(dict_main);
|
|
|
|
#if MICROPY_CAN_OVERRIDE_BUILTINS
|
|
// start with no extensions to builtins
|
|
MP_STATE_VM(mp_module_builtins_override_dict) = NULL;
|
|
#endif
|
|
|
|
#if MICROPY_FSUSERMOUNT
|
|
// zero out the pointers to the user-mounted devices
|
|
memset(MP_STATE_VM(fs_user_mount), 0, sizeof(MP_STATE_VM(fs_user_mount)));
|
|
#endif
|
|
|
|
#if MICROPY_PY_THREAD_GIL
|
|
mp_thread_mutex_init(&MP_STATE_VM(gil_mutex));
|
|
#endif
|
|
|
|
MP_THREAD_GIL_ENTER();
|
|
}
|
|
|
|
void mp_deinit(void) {
|
|
//mp_obj_dict_free(&dict_main);
|
|
mp_module_deinit();
|
|
|
|
// call port specific deinitialization if any
|
|
#ifdef MICROPY_PORT_INIT_FUNC
|
|
MICROPY_PORT_DEINIT_FUNC;
|
|
#endif
|
|
}
|
|
|
|
mp_obj_t mp_load_name(qstr qst) {
|
|
// logic: search locals, globals, builtins
|
|
DEBUG_OP_printf("load name %s\n", qstr_str(qst));
|
|
// If we're at the outer scope (locals == globals), dispatch to load_global right away
|
|
if (MP_STATE_CTX(dict_locals) != MP_STATE_CTX(dict_globals)) {
|
|
mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_locals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
|
|
if (elem != NULL) {
|
|
return elem->value;
|
|
}
|
|
}
|
|
return mp_load_global(qst);
|
|
}
|
|
|
|
mp_obj_t mp_load_global(qstr qst) {
|
|
// logic: search globals, builtins
|
|
DEBUG_OP_printf("load global %s\n", qstr_str(qst));
|
|
mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_CTX(dict_globals)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
#if MICROPY_CAN_OVERRIDE_BUILTINS
|
|
if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
|
|
// lookup in additional dynamic table of builtins first
|
|
elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
|
|
if (elem != NULL) {
|
|
return elem->value;
|
|
}
|
|
}
|
|
#endif
|
|
elem = mp_map_lookup((mp_map_t*)&mp_module_builtins_globals.map, MP_OBJ_NEW_QSTR(qst), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_NameError, "name not defined");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_NameError,
|
|
"name '%q' is not defined", qst));
|
|
}
|
|
}
|
|
}
|
|
return elem->value;
|
|
}
|
|
|
|
mp_obj_t mp_load_build_class(void) {
|
|
DEBUG_OP_printf("load_build_class\n");
|
|
#if MICROPY_CAN_OVERRIDE_BUILTINS
|
|
if (MP_STATE_VM(mp_module_builtins_override_dict) != NULL) {
|
|
// lookup in additional dynamic table of builtins first
|
|
mp_map_elem_t *elem = mp_map_lookup(&MP_STATE_VM(mp_module_builtins_override_dict)->map, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
|
|
if (elem != NULL) {
|
|
return elem->value;
|
|
}
|
|
}
|
|
#endif
|
|
return MP_OBJ_FROM_PTR(&mp_builtin___build_class___obj);
|
|
}
|
|
|
|
void mp_store_name(qstr qst, mp_obj_t obj) {
|
|
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qst), obj);
|
|
mp_obj_dict_store(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_locals)), MP_OBJ_NEW_QSTR(qst), obj);
|
|
}
|
|
|
|
void mp_delete_name(qstr qst) {
|
|
DEBUG_OP_printf("delete name %s\n", qstr_str(qst));
|
|
// TODO convert KeyError to NameError if qst not found
|
|
mp_obj_dict_delete(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_locals)), MP_OBJ_NEW_QSTR(qst));
|
|
}
|
|
|
|
void mp_store_global(qstr qst, mp_obj_t obj) {
|
|
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qst), obj);
|
|
mp_obj_dict_store(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_globals)), MP_OBJ_NEW_QSTR(qst), obj);
|
|
}
|
|
|
|
void mp_delete_global(qstr qst) {
|
|
DEBUG_OP_printf("delete global %s\n", qstr_str(qst));
|
|
// TODO convert KeyError to NameError if qst not found
|
|
mp_obj_dict_delete(MP_OBJ_FROM_PTR(MP_STATE_CTX(dict_globals)), MP_OBJ_NEW_QSTR(qst));
|
|
}
|
|
|
|
mp_obj_t mp_unary_op(mp_uint_t op, mp_obj_t arg) {
|
|
DEBUG_OP_printf("unary " UINT_FMT " %p\n", op, arg);
|
|
|
|
if (op == MP_UNARY_OP_NOT) {
|
|
// "not x" is the negative of whether "x" is true per Python semantics
|
|
return mp_obj_new_bool(mp_obj_is_true(arg) == 0);
|
|
} else if (MP_OBJ_IS_SMALL_INT(arg)) {
|
|
mp_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
|
|
switch (op) {
|
|
case MP_UNARY_OP_BOOL:
|
|
return mp_obj_new_bool(val != 0);
|
|
case MP_UNARY_OP_HASH:
|
|
return arg;
|
|
case MP_UNARY_OP_POSITIVE:
|
|
return arg;
|
|
case MP_UNARY_OP_NEGATIVE:
|
|
// check for overflow
|
|
if (val == MP_SMALL_INT_MIN) {
|
|
return mp_obj_new_int(-val);
|
|
} else {
|
|
return MP_OBJ_NEW_SMALL_INT(-val);
|
|
}
|
|
case MP_UNARY_OP_INVERT:
|
|
return MP_OBJ_NEW_SMALL_INT(~val);
|
|
default:
|
|
assert(0);
|
|
return arg;
|
|
}
|
|
} else if (op == MP_UNARY_OP_HASH && MP_OBJ_IS_STR_OR_BYTES(arg)) {
|
|
// fast path for hashing str/bytes
|
|
GET_STR_HASH(arg, h);
|
|
if (h == 0) {
|
|
GET_STR_DATA_LEN(arg, data, len);
|
|
h = qstr_compute_hash(data, len);
|
|
}
|
|
return MP_OBJ_NEW_SMALL_INT(h);
|
|
} else {
|
|
mp_obj_type_t *type = mp_obj_get_type(arg);
|
|
if (type->unary_op != NULL) {
|
|
mp_obj_t result = type->unary_op(op, arg);
|
|
if (result != MP_OBJ_NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_TypeError, "unsupported type for operator");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"unsupported type for %q: '%s'",
|
|
mp_unary_op_method_name[op], mp_obj_get_type_str(arg)));
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_obj_t mp_binary_op(mp_uint_t op, mp_obj_t lhs, mp_obj_t rhs) {
|
|
DEBUG_OP_printf("binary " UINT_FMT " %p %p\n", op, lhs, rhs);
|
|
|
|
// TODO correctly distinguish inplace operators for mutable objects
|
|
// lookup logic that CPython uses for +=:
|
|
// check for implemented +=
|
|
// then check for implemented +
|
|
// then check for implemented seq.inplace_concat
|
|
// then check for implemented seq.concat
|
|
// then fail
|
|
// note that list does not implement + or +=, so that inplace_concat is reached first for +=
|
|
|
|
// deal with is
|
|
if (op == MP_BINARY_OP_IS) {
|
|
return mp_obj_new_bool(lhs == rhs);
|
|
}
|
|
|
|
// deal with == and != for all types
|
|
if (op == MP_BINARY_OP_EQUAL || op == MP_BINARY_OP_NOT_EQUAL) {
|
|
if (mp_obj_equal(lhs, rhs)) {
|
|
if (op == MP_BINARY_OP_EQUAL) {
|
|
return mp_const_true;
|
|
} else {
|
|
return mp_const_false;
|
|
}
|
|
} else {
|
|
if (op == MP_BINARY_OP_EQUAL) {
|
|
return mp_const_false;
|
|
} else {
|
|
return mp_const_true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// deal with exception_match for all types
|
|
if (op == MP_BINARY_OP_EXCEPTION_MATCH) {
|
|
// rhs must be issubclass(rhs, BaseException)
|
|
if (mp_obj_is_exception_type(rhs)) {
|
|
if (mp_obj_exception_match(lhs, rhs)) {
|
|
return mp_const_true;
|
|
} else {
|
|
return mp_const_false;
|
|
}
|
|
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_tuple)) {
|
|
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(rhs);
|
|
for (mp_uint_t i = 0; i < tuple->len; i++) {
|
|
rhs = tuple->items[i];
|
|
if (!mp_obj_is_exception_type(rhs)) {
|
|
goto unsupported_op;
|
|
}
|
|
if (mp_obj_exception_match(lhs, rhs)) {
|
|
return mp_const_true;
|
|
}
|
|
}
|
|
return mp_const_false;
|
|
}
|
|
goto unsupported_op;
|
|
}
|
|
|
|
if (MP_OBJ_IS_SMALL_INT(lhs)) {
|
|
mp_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
|
|
if (MP_OBJ_IS_SMALL_INT(rhs)) {
|
|
mp_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
|
|
// This is a binary operation: lhs_val op rhs_val
|
|
// We need to be careful to handle overflow; see CERT INT32-C
|
|
// Operations that can overflow:
|
|
// + result always fits in mp_int_t, then handled by SMALL_INT check
|
|
// - result always fits in mp_int_t, then handled by SMALL_INT check
|
|
// * checked explicitly
|
|
// / if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
|
|
// % if lhs=MIN and rhs=-1; result always fits in mp_int_t, then handled by SMALL_INT check
|
|
// << checked explicitly
|
|
switch (op) {
|
|
case MP_BINARY_OP_OR:
|
|
case MP_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
|
|
case MP_BINARY_OP_XOR:
|
|
case MP_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
|
|
case MP_BINARY_OP_AND:
|
|
case MP_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
|
|
case MP_BINARY_OP_LSHIFT:
|
|
case MP_BINARY_OP_INPLACE_LSHIFT: {
|
|
if (rhs_val < 0) {
|
|
// negative shift not allowed
|
|
mp_raise_msg(&mp_type_ValueError, "negative shift count");
|
|
} else if (rhs_val >= (mp_int_t)BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
|
|
// left-shift will overflow, so use higher precision integer
|
|
lhs = mp_obj_new_int_from_ll(lhs_val);
|
|
goto generic_binary_op;
|
|
} else {
|
|
// use standard precision
|
|
lhs_val <<= rhs_val;
|
|
}
|
|
break;
|
|
}
|
|
case MP_BINARY_OP_RSHIFT:
|
|
case MP_BINARY_OP_INPLACE_RSHIFT:
|
|
if (rhs_val < 0) {
|
|
// negative shift not allowed
|
|
mp_raise_msg(&mp_type_ValueError, "negative shift count");
|
|
} else {
|
|
// standard precision is enough for right-shift
|
|
if (rhs_val >= (mp_int_t)BITS_PER_WORD) {
|
|
// Shifting to big amounts is underfined behavior
|
|
// in C and is CPU-dependent; propagate sign bit.
|
|
rhs_val = BITS_PER_WORD - 1;
|
|
}
|
|
lhs_val >>= rhs_val;
|
|
}
|
|
break;
|
|
case MP_BINARY_OP_ADD:
|
|
case MP_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
|
|
case MP_BINARY_OP_SUBTRACT:
|
|
case MP_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
|
|
case MP_BINARY_OP_MULTIPLY:
|
|
case MP_BINARY_OP_INPLACE_MULTIPLY: {
|
|
|
|
// If long long type exists and is larger than mp_int_t, then
|
|
// we can use the following code to perform overflow-checked multiplication.
|
|
// Otherwise (eg in x64 case) we must use mp_small_int_mul_overflow.
|
|
#if 0
|
|
// compute result using long long precision
|
|
long long res = (long long)lhs_val * (long long)rhs_val;
|
|
if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
|
|
// result overflowed SMALL_INT, so return higher precision integer
|
|
return mp_obj_new_int_from_ll(res);
|
|
} else {
|
|
// use standard precision
|
|
lhs_val = (mp_int_t)res;
|
|
}
|
|
#endif
|
|
|
|
if (mp_small_int_mul_overflow(lhs_val, rhs_val)) {
|
|
// use higher precision
|
|
lhs = mp_obj_new_int_from_ll(lhs_val);
|
|
goto generic_binary_op;
|
|
} else {
|
|
// use standard precision
|
|
return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
|
|
}
|
|
break;
|
|
}
|
|
case MP_BINARY_OP_FLOOR_DIVIDE:
|
|
case MP_BINARY_OP_INPLACE_FLOOR_DIVIDE:
|
|
if (rhs_val == 0) {
|
|
goto zero_division;
|
|
}
|
|
lhs_val = mp_small_int_floor_divide(lhs_val, rhs_val);
|
|
break;
|
|
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
case MP_BINARY_OP_TRUE_DIVIDE:
|
|
case MP_BINARY_OP_INPLACE_TRUE_DIVIDE:
|
|
if (rhs_val == 0) {
|
|
goto zero_division;
|
|
}
|
|
return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
|
|
#endif
|
|
|
|
case MP_BINARY_OP_MODULO:
|
|
case MP_BINARY_OP_INPLACE_MODULO: {
|
|
if (rhs_val == 0) {
|
|
goto zero_division;
|
|
}
|
|
lhs_val = mp_small_int_modulo(lhs_val, rhs_val);
|
|
break;
|
|
}
|
|
|
|
case MP_BINARY_OP_POWER:
|
|
case MP_BINARY_OP_INPLACE_POWER:
|
|
if (rhs_val < 0) {
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
lhs = mp_obj_new_float(lhs_val);
|
|
goto generic_binary_op;
|
|
#else
|
|
mp_raise_msg(&mp_type_ValueError, "negative power with no float support");
|
|
#endif
|
|
} else {
|
|
mp_int_t ans = 1;
|
|
while (rhs_val > 0) {
|
|
if (rhs_val & 1) {
|
|
if (mp_small_int_mul_overflow(ans, lhs_val)) {
|
|
goto power_overflow;
|
|
}
|
|
ans *= lhs_val;
|
|
}
|
|
if (rhs_val == 1) {
|
|
break;
|
|
}
|
|
rhs_val /= 2;
|
|
if (mp_small_int_mul_overflow(lhs_val, lhs_val)) {
|
|
goto power_overflow;
|
|
}
|
|
lhs_val *= lhs_val;
|
|
}
|
|
lhs_val = ans;
|
|
}
|
|
break;
|
|
|
|
power_overflow:
|
|
// use higher precision
|
|
lhs = mp_obj_new_int_from_ll(MP_OBJ_SMALL_INT_VALUE(lhs));
|
|
goto generic_binary_op;
|
|
|
|
case MP_BINARY_OP_DIVMOD: {
|
|
if (rhs_val == 0) {
|
|
goto zero_division;
|
|
}
|
|
// to reduce stack usage we don't pass a temp array of the 2 items
|
|
mp_obj_tuple_t *tuple = MP_OBJ_TO_PTR(mp_obj_new_tuple(2, NULL));
|
|
tuple->items[0] = MP_OBJ_NEW_SMALL_INT(mp_small_int_floor_divide(lhs_val, rhs_val));
|
|
tuple->items[1] = MP_OBJ_NEW_SMALL_INT(mp_small_int_modulo(lhs_val, rhs_val));
|
|
return MP_OBJ_FROM_PTR(tuple);
|
|
}
|
|
|
|
case MP_BINARY_OP_LESS: return mp_obj_new_bool(lhs_val < rhs_val); break;
|
|
case MP_BINARY_OP_MORE: return mp_obj_new_bool(lhs_val > rhs_val); break;
|
|
case MP_BINARY_OP_LESS_EQUAL: return mp_obj_new_bool(lhs_val <= rhs_val); break;
|
|
case MP_BINARY_OP_MORE_EQUAL: return mp_obj_new_bool(lhs_val >= rhs_val); break;
|
|
|
|
default:
|
|
goto unsupported_op;
|
|
}
|
|
// TODO: We just should make mp_obj_new_int() inline and use that
|
|
if (MP_SMALL_INT_FITS(lhs_val)) {
|
|
return MP_OBJ_NEW_SMALL_INT(lhs_val);
|
|
} else {
|
|
return mp_obj_new_int(lhs_val);
|
|
}
|
|
#if MICROPY_PY_BUILTINS_FLOAT
|
|
} else if (mp_obj_is_float(rhs)) {
|
|
mp_obj_t res = mp_obj_float_binary_op(op, lhs_val, rhs);
|
|
if (res == MP_OBJ_NULL) {
|
|
goto unsupported_op;
|
|
} else {
|
|
return res;
|
|
}
|
|
#if MICROPY_PY_BUILTINS_COMPLEX
|
|
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
|
|
mp_obj_t res = mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
|
|
if (res == MP_OBJ_NULL) {
|
|
goto unsupported_op;
|
|
} else {
|
|
return res;
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* deal with `in`
|
|
*
|
|
* NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
|
|
* needs to go below with swapped arguments
|
|
*/
|
|
if (op == MP_BINARY_OP_IN) {
|
|
mp_obj_type_t *type = mp_obj_get_type(rhs);
|
|
if (type->binary_op != NULL) {
|
|
mp_obj_t res = type->binary_op(op, rhs, lhs);
|
|
if (res != MP_OBJ_NULL) {
|
|
return res;
|
|
}
|
|
}
|
|
if (type->getiter != NULL) {
|
|
/* second attempt, walk the iterator */
|
|
mp_obj_t iter = mp_getiter(rhs);
|
|
mp_obj_t next;
|
|
while ((next = mp_iternext(iter)) != MP_OBJ_STOP_ITERATION) {
|
|
if (mp_obj_equal(next, lhs)) {
|
|
return mp_const_true;
|
|
}
|
|
}
|
|
return mp_const_false;
|
|
}
|
|
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_TypeError, "object not iterable");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"'%s' object is not iterable", mp_obj_get_type_str(rhs)));
|
|
}
|
|
}
|
|
|
|
// generic binary_op supplied by type
|
|
mp_obj_type_t *type;
|
|
generic_binary_op:
|
|
type = mp_obj_get_type(lhs);
|
|
if (type->binary_op != NULL) {
|
|
mp_obj_t result = type->binary_op(op, lhs, rhs);
|
|
if (result != MP_OBJ_NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// TODO implement dispatch for reverse binary ops
|
|
|
|
unsupported_op:
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_TypeError, "unsupported type for operator");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"unsupported types for %q: '%s', '%s'",
|
|
mp_binary_op_method_name[op], mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
|
|
}
|
|
|
|
zero_division:
|
|
mp_raise_msg(&mp_type_ZeroDivisionError, "division by zero");
|
|
}
|
|
|
|
mp_obj_t mp_call_function_0(mp_obj_t fun) {
|
|
return mp_call_function_n_kw(fun, 0, 0, NULL);
|
|
}
|
|
|
|
mp_obj_t mp_call_function_1(mp_obj_t fun, mp_obj_t arg) {
|
|
return mp_call_function_n_kw(fun, 1, 0, &arg);
|
|
}
|
|
|
|
mp_obj_t mp_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
|
|
mp_obj_t args[2];
|
|
args[0] = arg1;
|
|
args[1] = arg2;
|
|
return mp_call_function_n_kw(fun, 2, 0, args);
|
|
}
|
|
|
|
// args contains, eg: arg0 arg1 key0 value0 key1 value1
|
|
mp_obj_t mp_call_function_n_kw(mp_obj_t fun_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
|
|
// TODO improve this: fun object can specify its type and we parse here the arguments,
|
|
// passing to the function arrays of fixed and keyword arguments
|
|
|
|
DEBUG_OP_printf("calling function %p(n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", fun_in, n_args, n_kw, args);
|
|
|
|
// get the type
|
|
mp_obj_type_t *type = mp_obj_get_type(fun_in);
|
|
|
|
// do the call
|
|
if (type->call != NULL) {
|
|
return type->call(fun_in, n_args, n_kw, args);
|
|
}
|
|
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_TypeError, "object not callable");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"'%s' object is not callable", mp_obj_get_type_str(fun_in)));
|
|
}
|
|
}
|
|
|
|
// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1)
|
|
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
|
|
mp_obj_t mp_call_method_n_kw(mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
|
|
DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=" UINT_FMT ", n_kw=" UINT_FMT ", args=%p)\n", args[0], args[1], n_args, n_kw, args);
|
|
int adjust = (args[1] == MP_OBJ_NULL) ? 0 : 1;
|
|
return mp_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
|
|
}
|
|
|
|
// This function only needs to be exposed externally when in stackless mode.
|
|
#if !MICROPY_STACKLESS
|
|
STATIC
|
|
#endif
|
|
void mp_call_prepare_args_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args, mp_call_args_t *out_args) {
|
|
mp_obj_t fun = *args++;
|
|
mp_obj_t self = MP_OBJ_NULL;
|
|
if (have_self) {
|
|
self = *args++; // may be MP_OBJ_NULL
|
|
}
|
|
uint n_args = n_args_n_kw & 0xff;
|
|
uint n_kw = (n_args_n_kw >> 8) & 0xff;
|
|
mp_obj_t pos_seq = args[n_args + 2 * n_kw]; // may be MP_OBJ_NULL
|
|
mp_obj_t kw_dict = args[n_args + 2 * n_kw + 1]; // may be MP_OBJ_NULL
|
|
|
|
DEBUG_OP_printf("call method var (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p, seq=%p, dict=%p)\n", fun, self, n_args, n_kw, args, pos_seq, kw_dict);
|
|
|
|
// We need to create the following array of objects:
|
|
// args[0 .. n_args] unpacked(pos_seq) args[n_args .. n_args + 2 * n_kw] unpacked(kw_dict)
|
|
// TODO: optimize one day to avoid constructing new arg array? Will be hard.
|
|
|
|
// The new args array
|
|
mp_obj_t *args2;
|
|
uint args2_alloc;
|
|
uint args2_len = 0;
|
|
|
|
// Try to get a hint for the size of the kw_dict
|
|
uint kw_dict_len = 0;
|
|
if (kw_dict != MP_OBJ_NULL && MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
|
|
kw_dict_len = mp_obj_dict_len(kw_dict);
|
|
}
|
|
|
|
// Extract the pos_seq sequence to the new args array.
|
|
// Note that it can be arbitrary iterator.
|
|
if (pos_seq == MP_OBJ_NULL) {
|
|
// no sequence
|
|
|
|
// allocate memory for the new array of args
|
|
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len);
|
|
args2 = m_new(mp_obj_t, args2_alloc);
|
|
|
|
// copy the self
|
|
if (self != MP_OBJ_NULL) {
|
|
args2[args2_len++] = self;
|
|
}
|
|
|
|
// copy the fixed pos args
|
|
mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
|
|
args2_len += n_args;
|
|
|
|
} else if (MP_OBJ_IS_TYPE(pos_seq, &mp_type_tuple) || MP_OBJ_IS_TYPE(pos_seq, &mp_type_list)) {
|
|
// optimise the case of a tuple and list
|
|
|
|
// get the items
|
|
mp_uint_t len;
|
|
mp_obj_t *items;
|
|
mp_obj_get_array(pos_seq, &len, &items);
|
|
|
|
// allocate memory for the new array of args
|
|
args2_alloc = 1 + n_args + len + 2 * (n_kw + kw_dict_len);
|
|
args2 = m_new(mp_obj_t, args2_alloc);
|
|
|
|
// copy the self
|
|
if (self != MP_OBJ_NULL) {
|
|
args2[args2_len++] = self;
|
|
}
|
|
|
|
// copy the fixed and variable position args
|
|
mp_seq_cat(args2 + args2_len, args, n_args, items, len, mp_obj_t);
|
|
args2_len += n_args + len;
|
|
|
|
} else {
|
|
// generic iterator
|
|
|
|
// allocate memory for the new array of args
|
|
args2_alloc = 1 + n_args + 2 * (n_kw + kw_dict_len) + 3;
|
|
args2 = m_new(mp_obj_t, args2_alloc);
|
|
|
|
// copy the self
|
|
if (self != MP_OBJ_NULL) {
|
|
args2[args2_len++] = self;
|
|
}
|
|
|
|
// copy the fixed position args
|
|
mp_seq_copy(args2 + args2_len, args, n_args, mp_obj_t);
|
|
args2_len += n_args;
|
|
|
|
// extract the variable position args from the iterator
|
|
mp_obj_t iterable = mp_getiter(pos_seq);
|
|
mp_obj_t item;
|
|
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
if (args2_len >= args2_alloc) {
|
|
args2 = m_renew(mp_obj_t, args2, args2_alloc, args2_alloc * 2);
|
|
args2_alloc *= 2;
|
|
}
|
|
args2[args2_len++] = item;
|
|
}
|
|
}
|
|
|
|
// The size of the args2 array now is the number of positional args.
|
|
uint pos_args_len = args2_len;
|
|
|
|
// Copy the fixed kw args.
|
|
mp_seq_copy(args2 + args2_len, args + n_args, 2 * n_kw, mp_obj_t);
|
|
args2_len += 2 * n_kw;
|
|
|
|
// Extract (key,value) pairs from kw_dict dictionary and append to args2.
|
|
// Note that it can be arbitrary iterator.
|
|
if (kw_dict == MP_OBJ_NULL) {
|
|
// pass
|
|
} else if (MP_OBJ_IS_TYPE(kw_dict, &mp_type_dict)) {
|
|
// dictionary
|
|
mp_map_t *map = mp_obj_dict_get_map(kw_dict);
|
|
assert(args2_len + 2 * map->used <= args2_alloc); // should have enough, since kw_dict_len is in this case hinted correctly above
|
|
for (mp_uint_t i = 0; i < map->alloc; i++) {
|
|
if (MP_MAP_SLOT_IS_FILLED(map, i)) {
|
|
// the key must be a qstr, so intern it if it's a string
|
|
mp_obj_t key = map->table[i].key;
|
|
if (MP_OBJ_IS_TYPE(key, &mp_type_str)) {
|
|
key = mp_obj_str_intern(key);
|
|
}
|
|
args2[args2_len++] = key;
|
|
args2[args2_len++] = map->table[i].value;
|
|
}
|
|
}
|
|
} else {
|
|
// generic mapping:
|
|
// - call keys() to get an iterable of all keys in the mapping
|
|
// - call __getitem__ for each key to get the corresponding value
|
|
|
|
// get the keys iterable
|
|
mp_obj_t dest[3];
|
|
mp_load_method(kw_dict, MP_QSTR_keys, dest);
|
|
mp_obj_t iterable = mp_getiter(mp_call_method_n_kw(0, 0, dest));
|
|
|
|
mp_obj_t key;
|
|
while ((key = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
// expand size of args array if needed
|
|
if (args2_len + 1 >= args2_alloc) {
|
|
uint new_alloc = args2_alloc * 2;
|
|
if (new_alloc < 4) {
|
|
new_alloc = 4;
|
|
}
|
|
args2 = m_renew(mp_obj_t, args2, args2_alloc, new_alloc);
|
|
args2_alloc = new_alloc;
|
|
}
|
|
|
|
// the key must be a qstr, so intern it if it's a string
|
|
if (MP_OBJ_IS_TYPE(key, &mp_type_str)) {
|
|
key = mp_obj_str_intern(key);
|
|
}
|
|
|
|
// get the value corresponding to the key
|
|
mp_load_method(kw_dict, MP_QSTR___getitem__, dest);
|
|
dest[2] = key;
|
|
mp_obj_t value = mp_call_method_n_kw(1, 0, dest);
|
|
|
|
// store the key/value pair in the argument array
|
|
args2[args2_len++] = key;
|
|
args2[args2_len++] = value;
|
|
}
|
|
}
|
|
|
|
out_args->fun = fun;
|
|
out_args->args = args2;
|
|
out_args->n_args = pos_args_len;
|
|
out_args->n_kw = (args2_len - pos_args_len) / 2;
|
|
out_args->n_alloc = args2_alloc;
|
|
}
|
|
|
|
mp_obj_t mp_call_method_n_kw_var(bool have_self, mp_uint_t n_args_n_kw, const mp_obj_t *args) {
|
|
mp_call_args_t out_args;
|
|
mp_call_prepare_args_n_kw_var(have_self, n_args_n_kw, args, &out_args);
|
|
|
|
mp_obj_t res = mp_call_function_n_kw(out_args.fun, out_args.n_args, out_args.n_kw, out_args.args);
|
|
m_del(mp_obj_t, out_args.args, out_args.n_alloc);
|
|
|
|
return res;
|
|
}
|
|
|
|
// unpacked items are stored in reverse order into the array pointed to by items
|
|
void mp_unpack_sequence(mp_obj_t seq_in, mp_uint_t num, mp_obj_t *items) {
|
|
mp_uint_t seq_len;
|
|
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
|
|
mp_obj_t *seq_items;
|
|
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
|
|
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
|
|
} else {
|
|
mp_obj_list_get(seq_in, &seq_len, &seq_items);
|
|
}
|
|
if (seq_len < num) {
|
|
goto too_short;
|
|
} else if (seq_len > num) {
|
|
goto too_long;
|
|
}
|
|
for (mp_uint_t i = 0; i < num; i++) {
|
|
items[i] = seq_items[num - 1 - i];
|
|
}
|
|
} else {
|
|
mp_obj_t iterable = mp_getiter(seq_in);
|
|
|
|
for (seq_len = 0; seq_len < num; seq_len++) {
|
|
mp_obj_t el = mp_iternext(iterable);
|
|
if (el == MP_OBJ_STOP_ITERATION) {
|
|
goto too_short;
|
|
}
|
|
items[num - 1 - seq_len] = el;
|
|
}
|
|
if (mp_iternext(iterable) != MP_OBJ_STOP_ITERATION) {
|
|
goto too_long;
|
|
}
|
|
}
|
|
return;
|
|
|
|
too_short:
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_ValueError, "wrong number of values to unpack");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
|
"need more than %d values to unpack", (int)seq_len));
|
|
}
|
|
too_long:
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_ValueError, "wrong number of values to unpack");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
|
"too many values to unpack (expected %d)", (int)num));
|
|
}
|
|
}
|
|
|
|
// unpacked items are stored in reverse order into the array pointed to by items
|
|
void mp_unpack_ex(mp_obj_t seq_in, mp_uint_t num_in, mp_obj_t *items) {
|
|
mp_uint_t num_left = num_in & 0xff;
|
|
mp_uint_t num_right = (num_in >> 8) & 0xff;
|
|
DEBUG_OP_printf("unpack ex " UINT_FMT " " UINT_FMT "\n", num_left, num_right);
|
|
mp_uint_t seq_len;
|
|
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple) || MP_OBJ_IS_TYPE(seq_in, &mp_type_list)) {
|
|
mp_obj_t *seq_items;
|
|
if (MP_OBJ_IS_TYPE(seq_in, &mp_type_tuple)) {
|
|
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
|
|
} else {
|
|
if (num_left == 0 && num_right == 0) {
|
|
// *a, = b # sets a to b if b is a list
|
|
items[0] = seq_in;
|
|
return;
|
|
}
|
|
mp_obj_list_get(seq_in, &seq_len, &seq_items);
|
|
}
|
|
if (seq_len < num_left + num_right) {
|
|
goto too_short;
|
|
}
|
|
for (mp_uint_t i = 0; i < num_right; i++) {
|
|
items[i] = seq_items[seq_len - 1 - i];
|
|
}
|
|
items[num_right] = mp_obj_new_list(seq_len - num_left - num_right, seq_items + num_left);
|
|
for (mp_uint_t i = 0; i < num_left; i++) {
|
|
items[num_right + 1 + i] = seq_items[num_left - 1 - i];
|
|
}
|
|
} else {
|
|
// Generic iterable; this gets a bit messy: we unpack known left length to the
|
|
// items destination array, then the rest to a dynamically created list. Once the
|
|
// iterable is exhausted, we take from this list for the right part of the items.
|
|
// TODO Improve to waste less memory in the dynamically created list.
|
|
mp_obj_t iterable = mp_getiter(seq_in);
|
|
mp_obj_t item;
|
|
for (seq_len = 0; seq_len < num_left; seq_len++) {
|
|
item = mp_iternext(iterable);
|
|
if (item == MP_OBJ_STOP_ITERATION) {
|
|
goto too_short;
|
|
}
|
|
items[num_left + num_right + 1 - 1 - seq_len] = item;
|
|
}
|
|
mp_obj_list_t *rest = MP_OBJ_TO_PTR(mp_obj_new_list(0, NULL));
|
|
while ((item = mp_iternext(iterable)) != MP_OBJ_STOP_ITERATION) {
|
|
mp_obj_list_append(MP_OBJ_FROM_PTR(rest), item);
|
|
}
|
|
if (rest->len < num_right) {
|
|
goto too_short;
|
|
}
|
|
items[num_right] = MP_OBJ_FROM_PTR(rest);
|
|
for (mp_uint_t i = 0; i < num_right; i++) {
|
|
items[num_right - 1 - i] = rest->items[rest->len - num_right + i];
|
|
}
|
|
mp_obj_list_set_len(MP_OBJ_FROM_PTR(rest), rest->len - num_right);
|
|
}
|
|
return;
|
|
|
|
too_short:
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_ValueError, "wrong number of values to unpack");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError,
|
|
"need more than %d values to unpack", (int)seq_len));
|
|
}
|
|
}
|
|
|
|
mp_obj_t mp_load_attr(mp_obj_t base, qstr attr) {
|
|
DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
|
|
// use load_method
|
|
mp_obj_t dest[2];
|
|
mp_load_method(base, attr, dest);
|
|
if (dest[1] == MP_OBJ_NULL) {
|
|
// load_method returned just a normal attribute
|
|
return dest[0];
|
|
} else {
|
|
// load_method returned a method, so build a bound method object
|
|
return mp_obj_new_bound_meth(dest[0], dest[1]);
|
|
}
|
|
}
|
|
|
|
#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
|
|
|
|
// The following "checked fun" type is local to the mp_convert_member_lookup
|
|
// function, and serves to check that the first argument to a builtin function
|
|
// has the correct type.
|
|
|
|
typedef struct _mp_obj_checked_fun_t {
|
|
mp_obj_base_t base;
|
|
const mp_obj_type_t *type;
|
|
mp_obj_t fun;
|
|
} mp_obj_checked_fun_t;
|
|
|
|
STATIC mp_obj_t checked_fun_call(mp_obj_t self_in, size_t n_args, size_t n_kw, const mp_obj_t *args) {
|
|
mp_obj_checked_fun_t *self = MP_OBJ_TO_PTR(self_in);
|
|
if (n_args > 0) {
|
|
const mp_obj_type_t *arg0_type = mp_obj_get_type(args[0]);
|
|
if (arg0_type != self->type) {
|
|
if (MICROPY_ERROR_REPORTING != MICROPY_ERROR_REPORTING_DETAILED) {
|
|
mp_raise_msg(&mp_type_TypeError, "argument has wrong type");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"argument should be a '%q' not a '%q'", self->type->name, arg0_type->name));
|
|
}
|
|
}
|
|
}
|
|
return mp_call_function_n_kw(self->fun, n_args, n_kw, args);
|
|
}
|
|
|
|
STATIC const mp_obj_type_t mp_type_checked_fun = {
|
|
{ &mp_type_type },
|
|
.name = MP_QSTR_function,
|
|
.call = checked_fun_call,
|
|
};
|
|
|
|
STATIC mp_obj_t mp_obj_new_checked_fun(const mp_obj_type_t *type, mp_obj_t fun) {
|
|
mp_obj_checked_fun_t *o = m_new_obj(mp_obj_checked_fun_t);
|
|
o->base.type = &mp_type_checked_fun;
|
|
o->type = type;
|
|
o->fun = fun;
|
|
return MP_OBJ_FROM_PTR(o);
|
|
}
|
|
|
|
#endif // MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
|
|
|
|
// Given a member that was extracted from an instance, convert it correctly
|
|
// and put the result in the dest[] array for a possible method call.
|
|
// Conversion means dealing with static/class methods, callables, and values.
|
|
// see http://docs.python.org/3/howto/descriptor.html
|
|
void mp_convert_member_lookup(mp_obj_t self, const mp_obj_type_t *type, mp_obj_t member, mp_obj_t *dest) {
|
|
if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
|
|
// return just the function
|
|
dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun;
|
|
} else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
|
|
// return a bound method, with self being the type of this object
|
|
// this type should be the type of the original instance, not the base
|
|
// type (which is what is passed in the 'type' argument to this function)
|
|
if (self != MP_OBJ_NULL) {
|
|
type = mp_obj_get_type(self);
|
|
}
|
|
dest[0] = ((mp_obj_static_class_method_t*)MP_OBJ_TO_PTR(member))->fun;
|
|
dest[1] = MP_OBJ_FROM_PTR(type);
|
|
} else if (MP_OBJ_IS_TYPE(member, &mp_type_type)) {
|
|
// Don't try to bind types (even though they're callable)
|
|
dest[0] = member;
|
|
} else if (MP_OBJ_IS_FUN(member)
|
|
|| (MP_OBJ_IS_OBJ(member)
|
|
&& (((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_closure
|
|
|| ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type->name == MP_QSTR_generator))) {
|
|
// only functions, closures and generators objects can be bound to self
|
|
#if MICROPY_BUILTIN_METHOD_CHECK_SELF_ARG
|
|
const mp_obj_type_t *m_type = ((mp_obj_base_t*)MP_OBJ_TO_PTR(member))->type;
|
|
if (self == MP_OBJ_NULL
|
|
&& (m_type == &mp_type_fun_builtin_0
|
|
|| m_type == &mp_type_fun_builtin_1
|
|
|| m_type == &mp_type_fun_builtin_2
|
|
|| m_type == &mp_type_fun_builtin_3
|
|
|| m_type == &mp_type_fun_builtin_var)) {
|
|
// we extracted a builtin method without a first argument, so we must
|
|
// wrap this function in a type checker
|
|
dest[0] = mp_obj_new_checked_fun(type, member);
|
|
} else
|
|
#endif
|
|
{
|
|
// return a bound method, with self being this object
|
|
dest[0] = member;
|
|
dest[1] = self;
|
|
}
|
|
} else {
|
|
// class member is a value, so just return that value
|
|
dest[0] = member;
|
|
}
|
|
}
|
|
|
|
// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
|
|
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
|
|
// method attribute found, returns: dest[0] == <method>, dest[1] == <self>
|
|
void mp_load_method_maybe(mp_obj_t obj, qstr attr, mp_obj_t *dest) {
|
|
// clear output to indicate no attribute/method found yet
|
|
dest[0] = MP_OBJ_NULL;
|
|
dest[1] = MP_OBJ_NULL;
|
|
|
|
// get the type
|
|
mp_obj_type_t *type = mp_obj_get_type(obj);
|
|
|
|
// look for built-in names
|
|
if (0) {
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
} else if (attr == MP_QSTR___class__) {
|
|
// a.__class__ is equivalent to type(a)
|
|
dest[0] = MP_OBJ_FROM_PTR(type);
|
|
#endif
|
|
|
|
} else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
|
|
dest[0] = MP_OBJ_FROM_PTR(&mp_builtin_next_obj);
|
|
dest[1] = obj;
|
|
|
|
} else if (type->attr != NULL) {
|
|
// this type can do its own load, so call it
|
|
type->attr(obj, attr, dest);
|
|
|
|
} else if (type->locals_dict != NULL) {
|
|
// generic method lookup
|
|
// this is a lookup in the object (ie not class or type)
|
|
assert(type->locals_dict->base.type == &mp_type_dict); // Micro Python restriction, for now
|
|
mp_map_t *locals_map = &type->locals_dict->map;
|
|
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
|
|
if (elem != NULL) {
|
|
mp_convert_member_lookup(obj, type, elem->value, dest);
|
|
}
|
|
}
|
|
}
|
|
|
|
void mp_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
|
|
DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
|
|
|
|
mp_load_method_maybe(base, attr, dest);
|
|
|
|
if (dest[0] == MP_OBJ_NULL) {
|
|
// no attribute/method called attr
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_AttributeError, "no such attribute");
|
|
} else {
|
|
// following CPython, we give a more detailed error message for type objects
|
|
if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
|
|
"type object '%q' has no attribute '%q'",
|
|
((mp_obj_type_t*)MP_OBJ_TO_PTR(base))->name, attr));
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
|
|
"'%s' object has no attribute '%q'",
|
|
mp_obj_get_type_str(base), attr));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void mp_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
|
|
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
|
|
mp_obj_type_t *type = mp_obj_get_type(base);
|
|
if (type->attr != NULL) {
|
|
mp_obj_t dest[2] = {MP_OBJ_SENTINEL, value};
|
|
type->attr(base, attr, dest);
|
|
if (dest[0] == MP_OBJ_NULL) {
|
|
// success
|
|
return;
|
|
}
|
|
}
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_AttributeError, "no such attribute");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_AttributeError,
|
|
"'%s' object has no attribute '%q'",
|
|
mp_obj_get_type_str(base), attr));
|
|
}
|
|
}
|
|
|
|
mp_obj_t mp_getiter(mp_obj_t o_in) {
|
|
assert(o_in);
|
|
|
|
// check for native getiter (corresponds to __iter__)
|
|
mp_obj_type_t *type = mp_obj_get_type(o_in);
|
|
if (type->getiter != NULL) {
|
|
mp_obj_t iter = type->getiter(o_in);
|
|
if (iter != MP_OBJ_NULL) {
|
|
return iter;
|
|
}
|
|
}
|
|
|
|
// check for __getitem__
|
|
mp_obj_t dest[2];
|
|
mp_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
// __getitem__ exists, create and return an iterator
|
|
return mp_obj_new_getitem_iter(dest);
|
|
}
|
|
|
|
// object not iterable
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_TypeError, "object not iterable");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"'%s' object is not iterable", mp_obj_get_type_str(o_in)));
|
|
}
|
|
}
|
|
|
|
// may return MP_OBJ_STOP_ITERATION as an optimisation instead of raise StopIteration()
|
|
// may also raise StopIteration()
|
|
mp_obj_t mp_iternext_allow_raise(mp_obj_t o_in) {
|
|
mp_obj_type_t *type = mp_obj_get_type(o_in);
|
|
if (type->iternext != NULL) {
|
|
return type->iternext(o_in);
|
|
} else {
|
|
// check for __next__ method
|
|
mp_obj_t dest[2];
|
|
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
// __next__ exists, call it and return its result
|
|
return mp_call_method_n_kw(0, 0, dest);
|
|
} else {
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_TypeError, "object not an iterator");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// will always return MP_OBJ_STOP_ITERATION instead of raising StopIteration() (or any subclass thereof)
|
|
// may raise other exceptions
|
|
mp_obj_t mp_iternext(mp_obj_t o_in) {
|
|
MP_STACK_CHECK(); // enumerate, filter, map and zip can recursively call mp_iternext
|
|
mp_obj_type_t *type = mp_obj_get_type(o_in);
|
|
if (type->iternext != NULL) {
|
|
return type->iternext(o_in);
|
|
} else {
|
|
// check for __next__ method
|
|
mp_obj_t dest[2];
|
|
mp_load_method_maybe(o_in, MP_QSTR___next__, dest);
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
// __next__ exists, call it and return its result
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
mp_obj_t ret = mp_call_method_n_kw(0, 0, dest);
|
|
nlr_pop();
|
|
return ret;
|
|
} else {
|
|
if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(((mp_obj_base_t*)nlr.ret_val)->type), MP_OBJ_FROM_PTR(&mp_type_StopIteration))) {
|
|
return MP_OBJ_STOP_ITERATION;
|
|
} else {
|
|
nlr_jump(nlr.ret_val);
|
|
}
|
|
}
|
|
} else {
|
|
if (MICROPY_ERROR_REPORTING == MICROPY_ERROR_REPORTING_TERSE) {
|
|
mp_raise_msg(&mp_type_TypeError, "object not an iterator");
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// TODO: Unclear what to do with StopIterarion exception here.
|
|
mp_vm_return_kind_t mp_resume(mp_obj_t self_in, mp_obj_t send_value, mp_obj_t throw_value, mp_obj_t *ret_val) {
|
|
assert((send_value != MP_OBJ_NULL) ^ (throw_value != MP_OBJ_NULL));
|
|
mp_obj_type_t *type = mp_obj_get_type(self_in);
|
|
|
|
if (type == &mp_type_gen_instance) {
|
|
return mp_obj_gen_resume(self_in, send_value, throw_value, ret_val);
|
|
}
|
|
|
|
if (type->iternext != NULL && send_value == mp_const_none) {
|
|
mp_obj_t ret = type->iternext(self_in);
|
|
if (ret != MP_OBJ_STOP_ITERATION) {
|
|
*ret_val = ret;
|
|
return MP_VM_RETURN_YIELD;
|
|
} else {
|
|
// Emulate raise StopIteration()
|
|
// Special case, handled in vm.c
|
|
*ret_val = MP_OBJ_NULL;
|
|
return MP_VM_RETURN_NORMAL;
|
|
}
|
|
}
|
|
|
|
mp_obj_t dest[3]; // Reserve slot for send() arg
|
|
|
|
// Python instance iterator protocol
|
|
if (send_value == mp_const_none) {
|
|
mp_load_method_maybe(self_in, MP_QSTR___next__, dest);
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
*ret_val = mp_call_method_n_kw(0, 0, dest);
|
|
nlr_pop();
|
|
return MP_VM_RETURN_YIELD;
|
|
} else {
|
|
*ret_val = MP_OBJ_FROM_PTR(nlr.ret_val);
|
|
return MP_VM_RETURN_EXCEPTION;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Either python instance generator protocol, or native object
|
|
// generator protocol.
|
|
if (send_value != MP_OBJ_NULL) {
|
|
mp_load_method(self_in, MP_QSTR_send, dest);
|
|
dest[2] = send_value;
|
|
// TODO: This should have exception wrapping like __next__ case
|
|
// above. Not done right away to think how to optimize native
|
|
// generators better, see:
|
|
// https://github.com/micropython/micropython/issues/2628
|
|
*ret_val = mp_call_method_n_kw(1, 0, dest);
|
|
return MP_VM_RETURN_YIELD;
|
|
}
|
|
|
|
if (throw_value != MP_OBJ_NULL) {
|
|
if (mp_obj_is_subclass_fast(MP_OBJ_FROM_PTR(mp_obj_get_type(throw_value)), MP_OBJ_FROM_PTR(&mp_type_GeneratorExit))) {
|
|
mp_load_method_maybe(self_in, MP_QSTR_close, dest);
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
// TODO: Exceptions raised in close() are not propagated,
|
|
// printed to sys.stderr
|
|
*ret_val = mp_call_method_n_kw(0, 0, dest);
|
|
// We assume one can't "yield" from close()
|
|
return MP_VM_RETURN_NORMAL;
|
|
}
|
|
}
|
|
mp_load_method_maybe(self_in, MP_QSTR_throw, dest);
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
*ret_val = mp_call_method_n_kw(1, 0, &throw_value);
|
|
// If .throw() method returned, we assume it's value to yield
|
|
// - any exception would be thrown with nlr_raise().
|
|
return MP_VM_RETURN_YIELD;
|
|
}
|
|
// If there's nowhere to throw exception into, then we assume that object
|
|
// is just incapable to handle it, so any exception thrown into it
|
|
// will be propagated up. This behavior is approved by test_pep380.py
|
|
// test_delegation_of_close_to_non_generator(),
|
|
// test_delegating_throw_to_non_generator()
|
|
*ret_val = throw_value;
|
|
return MP_VM_RETURN_EXCEPTION;
|
|
}
|
|
|
|
assert(0);
|
|
return MP_VM_RETURN_NORMAL; // Should be unreachable
|
|
}
|
|
|
|
mp_obj_t mp_make_raise_obj(mp_obj_t o) {
|
|
DEBUG_printf("raise %p\n", o);
|
|
if (mp_obj_is_exception_type(o)) {
|
|
// o is an exception type (it is derived from BaseException (or is BaseException))
|
|
// create and return a new exception instance by calling o
|
|
// TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
|
|
// could have const instances in ROM which we return here instead
|
|
return mp_call_function_n_kw(o, 0, 0, NULL);
|
|
} else if (mp_obj_is_exception_instance(o)) {
|
|
// o is an instance of an exception, so use it as the exception
|
|
return o;
|
|
} else {
|
|
// o cannot be used as an exception, so return a type error (which will be raised by the caller)
|
|
return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
|
|
}
|
|
}
|
|
|
|
mp_obj_t mp_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
|
|
DEBUG_printf("import name '%s' level=%d\n", qstr_str(name), MP_OBJ_SMALL_INT_VALUE(level));
|
|
|
|
// build args array
|
|
mp_obj_t args[5];
|
|
args[0] = MP_OBJ_NEW_QSTR(name);
|
|
args[1] = mp_const_none; // TODO should be globals
|
|
args[2] = mp_const_none; // TODO should be locals
|
|
args[3] = fromlist;
|
|
args[4] = level; // must be 0; we don't yet support other values
|
|
|
|
// TODO lookup __import__ and call that instead of going straight to builtin implementation
|
|
return mp_builtin___import__(5, args);
|
|
}
|
|
|
|
mp_obj_t mp_import_from(mp_obj_t module, qstr name) {
|
|
DEBUG_printf("import from %p %s\n", module, qstr_str(name));
|
|
|
|
mp_obj_t dest[2];
|
|
|
|
mp_load_method_maybe(module, name, dest);
|
|
|
|
if (dest[1] != MP_OBJ_NULL) {
|
|
// Hopefully we can't import bound method from an object
|
|
import_error:
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ImportError, "cannot import name %q", name));
|
|
}
|
|
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
return dest[0];
|
|
}
|
|
|
|
// See if it's a package, then can try FS import
|
|
if (!mp_obj_is_package(module)) {
|
|
goto import_error;
|
|
}
|
|
|
|
mp_load_method_maybe(module, MP_QSTR___name__, dest);
|
|
mp_uint_t pkg_name_len;
|
|
const char *pkg_name = mp_obj_str_get_data(dest[0], &pkg_name_len);
|
|
|
|
const uint dot_name_len = pkg_name_len + 1 + qstr_len(name);
|
|
char *dot_name = alloca(dot_name_len);
|
|
memcpy(dot_name, pkg_name, pkg_name_len);
|
|
dot_name[pkg_name_len] = '.';
|
|
memcpy(dot_name + pkg_name_len + 1, qstr_str(name), qstr_len(name));
|
|
qstr dot_name_q = qstr_from_strn(dot_name, dot_name_len);
|
|
|
|
mp_obj_t args[5];
|
|
args[0] = MP_OBJ_NEW_QSTR(dot_name_q);
|
|
args[1] = mp_const_none; // TODO should be globals
|
|
args[2] = mp_const_none; // TODO should be locals
|
|
args[3] = mp_const_true; // Pass sentinel "non empty" value to force returning of leaf module
|
|
args[4] = MP_OBJ_NEW_SMALL_INT(0);
|
|
|
|
// TODO lookup __import__ and call that instead of going straight to builtin implementation
|
|
return mp_builtin___import__(5, args);
|
|
}
|
|
|
|
void mp_import_all(mp_obj_t module) {
|
|
DEBUG_printf("import all %p\n", module);
|
|
|
|
// TODO: Support __all__
|
|
mp_map_t *map = mp_obj_dict_get_map(MP_OBJ_FROM_PTR(mp_obj_module_get_globals(module)));
|
|
for (mp_uint_t i = 0; i < map->alloc; i++) {
|
|
if (MP_MAP_SLOT_IS_FILLED(map, i)) {
|
|
qstr name = MP_OBJ_QSTR_VALUE(map->table[i].key);
|
|
if (*qstr_str(name) != '_') {
|
|
mp_store_name(name, map->table[i].value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#if MICROPY_ENABLE_COMPILER
|
|
|
|
// this is implemented in this file so it can optimise access to locals/globals
|
|
mp_obj_t mp_parse_compile_execute(mp_lexer_t *lex, mp_parse_input_kind_t parse_input_kind, mp_obj_dict_t *globals, mp_obj_dict_t *locals) {
|
|
// save context
|
|
mp_obj_dict_t *volatile old_globals = mp_globals_get();
|
|
mp_obj_dict_t *volatile old_locals = mp_locals_get();
|
|
|
|
// set new context
|
|
mp_globals_set(globals);
|
|
mp_locals_set(locals);
|
|
|
|
nlr_buf_t nlr;
|
|
if (nlr_push(&nlr) == 0) {
|
|
qstr source_name = lex->source_name;
|
|
mp_parse_tree_t parse_tree = mp_parse(lex, parse_input_kind);
|
|
mp_obj_t module_fun = mp_compile(&parse_tree, source_name, MP_EMIT_OPT_NONE, false);
|
|
|
|
mp_obj_t ret;
|
|
if (MICROPY_PY_BUILTINS_COMPILE && globals == NULL) {
|
|
// for compile only, return value is the module function
|
|
ret = module_fun;
|
|
} else {
|
|
// execute module function and get return value
|
|
ret = mp_call_function_0(module_fun);
|
|
}
|
|
|
|
// finish nlr block, restore context and return value
|
|
nlr_pop();
|
|
mp_globals_set(old_globals);
|
|
mp_locals_set(old_locals);
|
|
return ret;
|
|
} else {
|
|
// exception; restore context and re-raise same exception
|
|
mp_globals_set(old_globals);
|
|
mp_locals_set(old_locals);
|
|
nlr_jump(nlr.ret_val);
|
|
}
|
|
}
|
|
|
|
#endif // MICROPY_ENABLE_COMPILER
|
|
|
|
void *m_malloc_fail(size_t num_bytes) {
|
|
DEBUG_printf("memory allocation failed, allocating %u bytes\n", (uint)num_bytes);
|
|
if (0) {
|
|
// dummy
|
|
#if MICROPY_ENABLE_GC
|
|
} else if (gc_is_locked()) {
|
|
mp_raise_msg(&mp_type_MemoryError, "memory allocation failed, heap is locked");
|
|
#endif
|
|
} else {
|
|
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_MemoryError,
|
|
"memory allocation failed, allocating %u bytes", (uint)num_bytes));
|
|
}
|
|
}
|
|
|
|
NORETURN void mp_raise_msg(const mp_obj_type_t *exc_type, const char *msg) {
|
|
nlr_raise(mp_obj_new_exception_msg(exc_type, msg));
|
|
}
|
|
|
|
NORETURN void mp_raise_ValueError(const char *msg) {
|
|
mp_raise_msg(&mp_type_ValueError, msg);
|
|
}
|
|
|
|
NORETURN void mp_raise_TypeError(const char *msg) {
|
|
mp_raise_msg(&mp_type_TypeError, msg);
|
|
}
|
|
|
|
NORETURN void mp_raise_OSError(int errno_) {
|
|
nlr_raise(mp_obj_new_exception_arg1(&mp_type_OSError, MP_OBJ_NEW_SMALL_INT(errno_)));
|
|
}
|
|
|
|
NORETURN void mp_not_implemented(const char *msg) {
|
|
mp_raise_msg(&mp_type_NotImplementedError, msg);
|
|
}
|