micropython/ports/cc3200/mods/pybtimer.c

732 lines
27 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
* Copyright (c) 2015 Daniel Campora
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "inc/hw_types.h"
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_timer.h"
#include "rom_map.h"
#include "interrupt.h"
#include "prcm.h"
#include "timer.h"
#include "pin.h"
#include "pybtimer.h"
#include "pybpin.h"
#include "pins.h"
#include "mpirq.h"
#include "pybsleep.h"
/// \moduleref pyb
/// \class Timer - generate periodic events, count events, and create PWM signals.
///
/// Each timer consists of a counter that counts up at a certain rate. The rate
/// at which it counts is the peripheral clock frequency (in Hz) divided by the
/// timer prescaler. When the counter reaches the timer period it triggers an
/// event, and the counter resets back to zero. By using the irq method,
/// the timer event can call a Python function.
/******************************************************************************
DECLARE PRIVATE CONSTANTS
******************************************************************************/
#define PYBTIMER_NUM_TIMERS (4)
#define PYBTIMER_POLARITY_POS (0x01)
#define PYBTIMER_POLARITY_NEG (0x02)
#define PYBTIMER_TIMEOUT_TRIGGER (0x01)
#define PYBTIMER_MATCH_TRIGGER (0x02)
#define PYBTIMER_SRC_FREQ_HZ HAL_FCPU_HZ
/******************************************************************************
DEFINE PRIVATE TYPES
******************************************************************************/
typedef struct _pyb_timer_obj_t {
mp_obj_base_t base;
uint32_t timer;
uint32_t config;
uint16_t irq_trigger;
uint16_t irq_flags;
uint8_t peripheral;
uint8_t id;
} pyb_timer_obj_t;
typedef struct _pyb_timer_channel_obj_t {
mp_obj_base_t base;
struct _pyb_timer_obj_t *timer;
uint32_t frequency;
uint32_t period;
uint16_t channel;
uint16_t duty_cycle;
uint8_t polarity;
} pyb_timer_channel_obj_t;
/******************************************************************************
DEFINE PRIVATE DATA
******************************************************************************/
STATIC const mp_irq_methods_t pyb_timer_channel_irq_methods;
STATIC pyb_timer_obj_t pyb_timer_obj[PYBTIMER_NUM_TIMERS] = {{.timer = TIMERA0_BASE, .peripheral = PRCM_TIMERA0},
{.timer = TIMERA1_BASE, .peripheral = PRCM_TIMERA1},
{.timer = TIMERA2_BASE, .peripheral = PRCM_TIMERA2},
{.timer = TIMERA3_BASE, .peripheral = PRCM_TIMERA3}};
STATIC const mp_obj_type_t pyb_timer_channel_type;
STATIC const mp_obj_t pyb_timer_pwm_pin[8] = {&pin_GP24, MP_OBJ_NULL, &pin_GP25, MP_OBJ_NULL, MP_OBJ_NULL, &pin_GP9, &pin_GP10, &pin_GP11};
/******************************************************************************
DECLARE PRIVATE FUNCTIONS
******************************************************************************/
STATIC mp_obj_t pyb_timer_channel_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args);
STATIC void timer_disable (pyb_timer_obj_t *tim);
STATIC void timer_channel_init (pyb_timer_channel_obj_t *ch);
STATIC void TIMER0AIntHandler(void);
STATIC void TIMER0BIntHandler(void);
STATIC void TIMER1AIntHandler(void);
STATIC void TIMER1BIntHandler(void);
STATIC void TIMER2AIntHandler(void);
STATIC void TIMER2BIntHandler(void);
STATIC void TIMER3AIntHandler(void);
STATIC void TIMER3BIntHandler(void);
/******************************************************************************
DEFINE PUBLIC FUNCTIONS
******************************************************************************/
void timer_init0 (void) {
mp_obj_list_init(&MP_STATE_PORT(pyb_timer_channel_obj_list), 0);
}
/******************************************************************************
DEFINE PRIVATE FUNCTIONS
******************************************************************************/
STATIC void pyb_timer_channel_irq_enable (mp_obj_t self_in) {
pyb_timer_channel_obj_t *self = self_in;
MAP_TimerIntClear(self->timer->timer, self->timer->irq_trigger & self->channel);
MAP_TimerIntEnable(self->timer->timer, self->timer->irq_trigger & self->channel);
}
STATIC void pyb_timer_channel_irq_disable (mp_obj_t self_in) {
pyb_timer_channel_obj_t *self = self_in;
MAP_TimerIntDisable(self->timer->timer, self->timer->irq_trigger & self->channel);
}
STATIC int pyb_timer_channel_irq_flags (mp_obj_t self_in) {
pyb_timer_channel_obj_t *self = self_in;
return self->timer->irq_flags;
}
STATIC pyb_timer_channel_obj_t *pyb_timer_channel_find (uint32_t timer, uint16_t channel_n) {
for (mp_uint_t i = 0; i < MP_STATE_PORT(pyb_timer_channel_obj_list).len; i++) {
pyb_timer_channel_obj_t *ch = ((pyb_timer_channel_obj_t *)(MP_STATE_PORT(pyb_timer_channel_obj_list).items[i]));
// any 32-bit timer must be matched by any of its 16-bit versions
if (ch->timer->timer == timer && ((ch->channel & TIMER_A) == channel_n || (ch->channel & TIMER_B) == channel_n)) {
return ch;
}
}
return MP_OBJ_NULL;
}
STATIC void pyb_timer_channel_remove (pyb_timer_channel_obj_t *ch) {
pyb_timer_channel_obj_t *channel;
if ((channel = pyb_timer_channel_find(ch->timer->timer, ch->channel))) {
mp_obj_list_remove(&MP_STATE_PORT(pyb_timer_channel_obj_list), channel);
// unregister it with the sleep module
pyb_sleep_remove((const mp_obj_t)channel);
}
}
STATIC void pyb_timer_channel_add (pyb_timer_channel_obj_t *ch) {
// remove it in case it already exists
pyb_timer_channel_remove(ch);
mp_obj_list_append(&MP_STATE_PORT(pyb_timer_channel_obj_list), ch);
// register it with the sleep module
pyb_sleep_add((const mp_obj_t)ch, (WakeUpCB_t)timer_channel_init);
}
STATIC void timer_disable (pyb_timer_obj_t *tim) {
// disable all timers and it's interrupts
MAP_TimerDisable(tim->timer, TIMER_A | TIMER_B);
MAP_TimerIntDisable(tim->timer, tim->irq_trigger);
MAP_TimerIntClear(tim->timer, tim->irq_trigger);
pyb_timer_channel_obj_t *ch;
// disable its channels
if ((ch = pyb_timer_channel_find (tim->timer, TIMER_A))) {
pyb_sleep_remove(ch);
}
if ((ch = pyb_timer_channel_find (tim->timer, TIMER_B))) {
pyb_sleep_remove(ch);
}
MAP_PRCMPeripheralClkDisable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
}
// computes prescaler period and match value so timer triggers at freq-Hz
STATIC uint32_t compute_prescaler_period_and_match_value(pyb_timer_channel_obj_t *ch, uint32_t *period_out, uint32_t *match_out) {
uint32_t maxcount = (ch->channel == (TIMER_A | TIMER_B)) ? 0xFFFFFFFF : 0xFFFF;
uint32_t prescaler;
uint32_t period_c = (ch->frequency > 0) ? PYBTIMER_SRC_FREQ_HZ / ch->frequency : ((PYBTIMER_SRC_FREQ_HZ / 1000000) * ch->period);
period_c = MAX(1, period_c) - 1;
if (period_c == 0) {
goto error;
}
prescaler = period_c >> 16; // The prescaler is an extension of the timer counter
*period_out = period_c;
if (prescaler > 0xFF && maxcount == 0xFFFF) {
goto error;
}
// check limit values for the duty cycle
if (ch->duty_cycle == 0) {
*match_out = period_c - 1;
} else {
if (period_c > 0xFFFF) {
uint32_t match = (period_c * 100) / 10000;
*match_out = period_c - ((match * ch->duty_cycle) / 100);
} else {
*match_out = period_c - ((period_c * ch->duty_cycle) / 10000);
}
}
return prescaler;
error:
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
STATIC void timer_init (pyb_timer_obj_t *tim) {
MAP_PRCMPeripheralClkEnable(tim->peripheral, PRCM_RUN_MODE_CLK | PRCM_SLP_MODE_CLK);
MAP_PRCMPeripheralReset(tim->peripheral);
MAP_TimerConfigure(tim->timer, tim->config);
}
STATIC void timer_channel_init (pyb_timer_channel_obj_t *ch) {
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
uint32_t prescaler = compute_prescaler_period_and_match_value(ch, &period_c, &match);
// set the prescaler
MAP_TimerPrescaleSet(ch->timer->timer, ch->channel, (prescaler < 0xFF) ? prescaler : 0);
// set the load value
MAP_TimerLoadSet(ch->timer->timer, ch->channel, period_c);
// configure the pwm if we are in such mode
if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM) {
// invert the timer output if required
MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
// set the match value (which is simply the duty cycle translated to ticks)
MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
MAP_TimerPrescaleMatchSet(ch->timer->timer, ch->channel, match >> 16);
}
#ifdef DEBUG
// stall the timer when the processor is halted while debugging
MAP_TimerControlStall(ch->timer->timer, ch->channel, true);
#endif
// now enable the timer channel
MAP_TimerEnable(ch->timer->timer, ch->channel);
}
/******************************************************************************/
/* MicroPython bindings */
STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_obj_t *tim = self_in;
uint32_t mode = tim->config & 0xFF;
// timer mode
qstr mode_qst = MP_QSTR_PWM;
switch(mode) {
case TIMER_CFG_A_ONE_SHOT_UP:
mode_qst = MP_QSTR_ONE_SHOT;
break;
case TIMER_CFG_A_PERIODIC_UP:
mode_qst = MP_QSTR_PERIODIC;
break;
default:
break;
}
mp_printf(print, "Timer(%u, mode=Timer.%q)", tim->id, mode_qst);
}
STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *tim, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT, },
{ MP_QSTR_width, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 16} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// check the mode
uint32_t _mode = args[0].u_int;
if (_mode != TIMER_CFG_A_ONE_SHOT_UP && _mode != TIMER_CFG_A_PERIODIC_UP && _mode != TIMER_CFG_A_PWM) {
goto error;
}
// check the width
if (args[1].u_int != 16 && args[1].u_int != 32) {
goto error;
}
bool is16bit = (args[1].u_int == 16);
if (!is16bit && _mode == TIMER_CFG_A_PWM) {
// 32-bit mode is only available when in free running modes
goto error;
}
tim->config = is16bit ? ((_mode | (_mode << 8)) | TIMER_CFG_SPLIT_PAIR) : _mode;
timer_init(tim);
// register it with the sleep module
pyb_sleep_add ((const mp_obj_t)tim, (WakeUpCB_t)timer_init);
return mp_const_none;
error:
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
// check arguments
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// create a new Timer object
int32_t timer_idx = mp_obj_get_int(args[0]);
if (timer_idx < 0 || timer_idx > (PYBTIMER_NUM_TIMERS - 1)) {
mp_raise_OSError(MP_ENODEV);
}
pyb_timer_obj_t *tim = &pyb_timer_obj[timer_idx];
tim->base.type = &pyb_timer_type;
tim->id = timer_idx;
if (n_args > 1 || n_kw > 0) {
// start the peripheral
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
}
return (mp_obj_t)tim;
}
STATIC mp_obj_t pyb_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pyb_timer_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
pyb_timer_obj_t *self = self_in;
timer_disable(self);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
STATIC mp_obj_t pyb_timer_channel(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_freq, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_period, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = PYBTIMER_POLARITY_POS} },
{ MP_QSTR_duty_cycle, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
};
pyb_timer_obj_t *tim = pos_args[0];
mp_int_t channel_n = mp_obj_get_int(pos_args[1]);
// verify that the timer has been already initialized
if (!tim->config) {
mp_raise_OSError(MP_EPERM);
}
if (channel_n != TIMER_A && channel_n != TIMER_B && channel_n != (TIMER_A | TIMER_B)) {
// invalid channel
goto error;
}
if (channel_n == (TIMER_A | TIMER_B) && (tim->config & TIMER_CFG_SPLIT_PAIR)) {
// 32-bit channel selected when the timer is in 16-bit mode
goto error;
}
// if only the channel number is given return the previously
// allocated channel (or None if no previous channel)
if (n_args == 2 && kw_args->used == 0) {
pyb_timer_channel_obj_t *ch;
if ((ch = pyb_timer_channel_find(tim->timer, channel_n))) {
return ch;
}
return mp_const_none;
}
// parse the arguments
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
// throw an exception if both frequency and period are given
if (args[0].u_int != 0 && args[1].u_int != 0) {
goto error;
}
// check that at least one of them has a valid value
if (args[0].u_int <= 0 && args[1].u_int <= 0) {
goto error;
}
// check that the polarity is not 'both' in pwm mode
if ((tim->config & TIMER_A) == TIMER_CFG_A_PWM && args[2].u_int == (PYBTIMER_POLARITY_POS | PYBTIMER_POLARITY_NEG)) {
goto error;
}
// allocate a new timer channel
pyb_timer_channel_obj_t *ch = mp_obj_malloc(pyb_timer_channel_obj_t, &pyb_timer_channel_type);
ch->timer = tim;
ch->channel = channel_n;
// get the frequency the polarity and the duty cycle
ch->frequency = args[0].u_int;
ch->period = args[1].u_int;
ch->polarity = args[2].u_int;
ch->duty_cycle = MIN(10000, MAX(0, args[3].u_int));
timer_channel_init(ch);
// assign the pin
if ((ch->timer->config & 0x0F) == TIMER_CFG_A_PWM) {
uint32_t ch_idx = (ch->channel == TIMER_A) ? 0 : 1;
// use the default pin if available
mp_obj_t pin_o = (mp_obj_t)pyb_timer_pwm_pin[(ch->timer->id * 2) + ch_idx];
if (pin_o != MP_OBJ_NULL) {
pin_obj_t *pin = pin_find(pin_o);
pin_config (pin, pin_find_af_index(pin, PIN_FN_TIM, ch->timer->id, PIN_TYPE_TIM_PWM),
0, PIN_TYPE_STD, -1, PIN_STRENGTH_4MA);
}
}
// add the timer to the list
pyb_timer_channel_add(ch);
return ch;
error:
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
STATIC const mp_rom_map_elem_t pyb_timer_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_timer_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_timer_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_channel), MP_ROM_PTR(&pyb_timer_channel_obj) },
// class constants
{ MP_ROM_QSTR(MP_QSTR_A), MP_ROM_INT(TIMER_A) },
{ MP_ROM_QSTR(MP_QSTR_B), MP_ROM_INT(TIMER_B) },
{ MP_ROM_QSTR(MP_QSTR_ONE_SHOT), MP_ROM_INT(TIMER_CFG_A_ONE_SHOT_UP) },
{ MP_ROM_QSTR(MP_QSTR_PERIODIC), MP_ROM_INT(TIMER_CFG_A_PERIODIC_UP) },
{ MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_INT(TIMER_CFG_A_PWM) },
{ MP_ROM_QSTR(MP_QSTR_POSITIVE), MP_ROM_INT(PYBTIMER_POLARITY_POS) },
{ MP_ROM_QSTR(MP_QSTR_NEGATIVE), MP_ROM_INT(PYBTIMER_POLARITY_NEG) },
{ MP_ROM_QSTR(MP_QSTR_TIMEOUT), MP_ROM_INT(PYBTIMER_TIMEOUT_TRIGGER) },
{ MP_ROM_QSTR(MP_QSTR_MATCH), MP_ROM_INT(PYBTIMER_MATCH_TRIGGER) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
const mp_obj_type_t pyb_timer_type = {
{ &mp_type_type },
.name = MP_QSTR_Timer,
.print = pyb_timer_print,
.make_new = pyb_timer_make_new,
.locals_dict = (mp_obj_t)&pyb_timer_locals_dict,
};
STATIC const mp_irq_methods_t pyb_timer_channel_irq_methods = {
.init = pyb_timer_channel_irq,
.enable = pyb_timer_channel_irq_enable,
.disable = pyb_timer_channel_irq_disable,
.flags = pyb_timer_channel_irq_flags,
};
STATIC void TIMERGenericIntHandler(uint32_t timer, uint16_t channel) {
pyb_timer_channel_obj_t *self;
uint32_t status;
if ((self = pyb_timer_channel_find(timer, channel))) {
status = MAP_TimerIntStatus(self->timer->timer, true) & self->channel;
MAP_TimerIntClear(self->timer->timer, status);
mp_irq_handler(mp_irq_find(self));
}
}
STATIC void TIMER0AIntHandler(void) {
TIMERGenericIntHandler(TIMERA0_BASE, TIMER_A);
}
STATIC void TIMER0BIntHandler(void) {
TIMERGenericIntHandler(TIMERA0_BASE, TIMER_B);
}
STATIC void TIMER1AIntHandler(void) {
TIMERGenericIntHandler(TIMERA1_BASE, TIMER_A);
}
STATIC void TIMER1BIntHandler(void) {
TIMERGenericIntHandler(TIMERA1_BASE, TIMER_B);
}
STATIC void TIMER2AIntHandler(void) {
TIMERGenericIntHandler(TIMERA2_BASE, TIMER_A);
}
STATIC void TIMER2BIntHandler(void) {
TIMERGenericIntHandler(TIMERA2_BASE, TIMER_B);
}
STATIC void TIMER3AIntHandler(void) {
TIMERGenericIntHandler(TIMERA3_BASE, TIMER_A);
}
STATIC void TIMER3BIntHandler(void) {
TIMERGenericIntHandler(TIMERA3_BASE, TIMER_B);
}
STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
pyb_timer_channel_obj_t *ch = self_in;
char *ch_id = "AB";
// timer channel
if (ch->channel == TIMER_A) {
ch_id = "A";
} else if (ch->channel == TIMER_B) {
ch_id = "B";
}
mp_printf(print, "timer.channel(Timer.%s, %q=%u", ch_id, MP_QSTR_freq, ch->frequency);
uint32_t mode = ch->timer->config & 0xFF;
if (mode == TIMER_CFG_A_PWM) {
mp_printf(print, ", %q=Timer.", MP_QSTR_polarity);
switch (ch->polarity) {
case PYBTIMER_POLARITY_POS:
mp_printf(print, "POSITIVE");
break;
case PYBTIMER_POLARITY_NEG:
mp_printf(print, "NEGATIVE");
break;
default:
mp_printf(print, "BOTH");
break;
}
mp_printf(print, ", %q=%u.%02u", MP_QSTR_duty_cycle, ch->duty_cycle / 100, ch->duty_cycle % 100);
}
mp_printf(print, ")");
}
STATIC mp_obj_t pyb_timer_channel_freq(size_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(ch->frequency);
} else {
// set
int32_t _frequency = mp_obj_get_int(args[1]);
if (_frequency <= 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
ch->frequency = _frequency;
ch->period = 1000000 / _frequency;
timer_channel_init(ch);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_freq_obj, 1, 2, pyb_timer_channel_freq);
STATIC mp_obj_t pyb_timer_channel_period(size_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(ch->period);
} else {
// set
int32_t _period = mp_obj_get_int(args[1]);
if (_period <= 0) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
ch->period = _period;
ch->frequency = 1000000 / _period;
timer_channel_init(ch);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_period_obj, 1, 2, pyb_timer_channel_period);
STATIC mp_obj_t pyb_timer_channel_duty_cycle(size_t n_args, const mp_obj_t *args) {
pyb_timer_channel_obj_t *ch = args[0];
if (n_args == 1) {
// get
return mp_obj_new_int(ch->duty_cycle);
} else {
// duty cycle must be converted from percentage to ticks
// calculate the period, the prescaler and the match value
uint32_t period_c;
uint32_t match;
ch->duty_cycle = MIN(10000, MAX(0, mp_obj_get_int(args[1])));
compute_prescaler_period_and_match_value(ch, &period_c, &match);
if (n_args == 3) {
// set the new polarity if requested
ch->polarity = mp_obj_get_int(args[2]);
MAP_TimerControlLevel(ch->timer->timer, ch->channel, (ch->polarity == PYBTIMER_POLARITY_NEG) ? true : false);
}
MAP_TimerMatchSet(ch->timer->timer, ch->channel, match);
MAP_TimerPrescaleMatchSet(ch->timer->timer, ch->channel, match >> 16);
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_duty_cycle_obj, 1, 3, pyb_timer_channel_duty_cycle);
STATIC mp_obj_t pyb_timer_channel_irq(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
mp_arg_val_t args[mp_irq_INIT_NUM_ARGS];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, mp_irq_INIT_NUM_ARGS, mp_irq_init_args, args);
pyb_timer_channel_obj_t *ch = pos_args[0];
// convert the priority to the correct value
uint priority = mp_irq_translate_priority (args[1].u_int);
// validate the power mode
uint8_t pwrmode = (args[3].u_obj == mp_const_none) ? PYB_PWR_MODE_ACTIVE : mp_obj_get_int(args[3].u_obj);
if (pwrmode != PYB_PWR_MODE_ACTIVE) {
goto invalid_args;
}
// get the trigger
uint trigger = mp_obj_get_int(args[0].u_obj);
// disable the callback first
pyb_timer_channel_irq_disable(ch);
uint8_t shift = (ch->channel == TIMER_B) ? 8 : 0;
uint32_t _config = (ch->channel == TIMER_B) ? ((ch->timer->config & TIMER_B) >> 8) : (ch->timer->config & TIMER_A);
switch (_config) {
case TIMER_CFG_A_ONE_SHOT_UP:
case TIMER_CFG_A_PERIODIC_UP:
ch->timer->irq_trigger |= TIMER_TIMA_TIMEOUT << shift;
if (trigger != PYBTIMER_TIMEOUT_TRIGGER) {
goto invalid_args;
}
break;
case TIMER_CFG_A_PWM:
// special case for the PWM match interrupt
ch->timer->irq_trigger |= ((ch->channel & TIMER_A) == TIMER_A) ? TIMER_TIMA_MATCH : TIMER_TIMB_MATCH;
if (trigger != PYBTIMER_MATCH_TRIGGER) {
goto invalid_args;
}
break;
default:
break;
}
// special case for a 32-bit timer
if (ch->channel == (TIMER_A | TIMER_B)) {
ch->timer->irq_trigger |= (ch->timer->irq_trigger << 8);
}
void (*pfnHandler)(void);
uint32_t intregister;
switch (ch->timer->timer) {
case TIMERA0_BASE:
if (ch->channel == TIMER_B) {
pfnHandler = &TIMER0BIntHandler;
intregister = INT_TIMERA0B;
} else {
pfnHandler = &TIMER0AIntHandler;
intregister = INT_TIMERA0A;
}
break;
case TIMERA1_BASE:
if (ch->channel == TIMER_B) {
pfnHandler = &TIMER1BIntHandler;
intregister = INT_TIMERA1B;
} else {
pfnHandler = &TIMER1AIntHandler;
intregister = INT_TIMERA1A;
}
break;
case TIMERA2_BASE:
if (ch->channel == TIMER_B) {
pfnHandler = &TIMER2BIntHandler;
intregister = INT_TIMERA2B;
} else {
pfnHandler = &TIMER2AIntHandler;
intregister = INT_TIMERA2A;
}
break;
default:
if (ch->channel == TIMER_B) {
pfnHandler = &TIMER3BIntHandler;
intregister = INT_TIMERA3B;
} else {
pfnHandler = &TIMER3AIntHandler;
intregister = INT_TIMERA3A;
}
break;
}
// register the interrupt and configure the priority
MAP_IntPrioritySet(intregister, priority);
MAP_TimerIntRegister(ch->timer->timer, ch->channel, pfnHandler);
// create the callback
mp_obj_t _irq = mp_irq_new (ch, args[2].u_obj, &pyb_timer_channel_irq_methods);
// enable the callback before returning
pyb_timer_channel_irq_enable(ch);
return _irq;
invalid_args:
mp_raise_ValueError(MP_ERROR_TEXT("invalid argument(s) value"));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_irq_obj, 1, pyb_timer_channel_irq);
STATIC const mp_rom_map_elem_t pyb_timer_channel_locals_dict_table[] = {
// instance methods
{ MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_timer_channel_freq_obj) },
{ MP_ROM_QSTR(MP_QSTR_period), MP_ROM_PTR(&pyb_timer_channel_period_obj) },
{ MP_ROM_QSTR(MP_QSTR_duty_cycle), MP_ROM_PTR(&pyb_timer_channel_duty_cycle_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&pyb_timer_channel_irq_obj) },
};
STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);
STATIC const mp_obj_type_t pyb_timer_channel_type = {
{ &mp_type_type },
.name = MP_QSTR_TimerChannel,
.print = pyb_timer_channel_print,
.locals_dict = (mp_obj_t)&pyb_timer_channel_locals_dict,
};
MP_REGISTER_ROOT_POINTER(mp_obj_list_t pyb_timer_channel_obj_list);