micropython/stmhal/pin.c

669 lines
24 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "mpconfig.h"
#include "nlr.h"
#include "misc.h"
#include "qstr.h"
#include "obj.h"
#include "runtime.h"
#include MICROPY_HAL_H
#include "pin.h"
/// \moduleref pyb
/// \class Pin - control I/O pins
///
/// A pin is the basic object to control I/O pins. It has methods to set
/// the mode of the pin (input, output, etc) and methods to get and set the
/// digital logic level. For analog control of a pin, see the ADC class.
///
/// Usage Model:
///
/// All Board Pins are predefined as pyb.Pin.board.Name
///
/// x1_pin = pyb.Pin.board.X1
///
/// g = pyb.Pin(pyb.Pin.board.X1, pyb.Pin.IN)
///
/// CPU pins which correspond to the board pins are available
/// as `pyb.cpu.Name`. For the CPU pins, the names are the port letter
/// followed by the pin number. On the PYBv1.0, `pyb.Pin.board.X1` and
/// `pyb.Pin.cpu.B6` are the same pin.
///
/// You can also use strings:
///
/// g = pyb.Pin('X1', pyb.Pin.OUT_PP)
///
/// Users can add their own names:
///
/// MyMapperDict = { 'LeftMotorDir' : pyb.Pin.cpu.C12 }
/// pyb.Pin.dict(MyMapperDict)
/// g = pyb.Pin("LeftMotorDir", pyb.Pin.OUT_OD)
///
/// and can query mappings
///
/// pin = pyb.Pin("LeftMotorDir")
///
/// Users can also add their own mapping function:
///
/// def MyMapper(pin_name):
/// if pin_name == "LeftMotorDir":
/// return pyb.Pin.cpu.A0
///
/// pyb.Pin.mapper(MyMapper)
///
/// So, if you were to call: `pyb.Pin("LeftMotorDir", pyb.Pin.OUT_PP)`
/// then `"LeftMotorDir"` is passed directly to the mapper function.
///
/// To summarise, the following order determines how things get mapped into
/// an ordinal pin number:
///
/// 1. Directly specify a pin object
/// 2. User supplied mapping function
/// 3. User supplied mapping (object must be usable as a dictionary key)
/// 4. Supply a string which matches a board pin
/// 5. Supply a string which matches a CPU port/pin
///
/// You can set `pyb.Pin.debug(True)` to get some debug information about
/// how a particular object gets mapped to a pin.
// Pin class variables
STATIC mp_obj_t pin_class_mapper;
STATIC mp_obj_t pin_class_map_dict;
STATIC bool pin_class_debug;
void pin_init0(void) {
pin_class_mapper = mp_const_none;
pin_class_map_dict = mp_const_none;
pin_class_debug = false;
}
// C API used to convert a user-supplied pin name into an ordinal pin number.
const pin_obj_t *pin_find(mp_obj_t user_obj) {
const pin_obj_t *pin_obj;
// If a pin was provided, then use it
if (MP_OBJ_IS_TYPE(user_obj, &pin_type)) {
pin_obj = user_obj;
if (pin_class_debug) {
printf("Pin map passed pin ");
mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
printf("\n");
}
return pin_obj;
}
if (pin_class_mapper != mp_const_none) {
pin_obj = mp_call_function_1(pin_class_mapper, user_obj);
if (pin_obj != mp_const_none) {
if (!MP_OBJ_IS_TYPE(pin_obj, &pin_type)) {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "Pin.mapper didn't return a Pin object"));
}
if (pin_class_debug) {
printf("Pin.mapper maps ");
mp_obj_print(user_obj, PRINT_REPR);
printf(" to ");
mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
printf("\n");
}
return pin_obj;
}
// The pin mapping function returned mp_const_none, fall through to
// other lookup methods.
}
if (pin_class_map_dict != mp_const_none) {
mp_map_t *pin_map_map = mp_obj_dict_get_map(pin_class_map_dict);
mp_map_elem_t *elem = mp_map_lookup(pin_map_map, user_obj, MP_MAP_LOOKUP);
if (elem != NULL && elem->value != NULL) {
pin_obj = elem->value;
if (pin_class_debug) {
printf("Pin.map_dict maps ");
mp_obj_print(user_obj, PRINT_REPR);
printf(" to ");
mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
printf("\n");
}
return pin_obj;
}
}
// See if the pin name matches a board pin
pin_obj = pin_find_named_pin(&pin_board_pins_locals_dict, user_obj);
if (pin_obj) {
if (pin_class_debug) {
printf("Pin.board maps ");
mp_obj_print(user_obj, PRINT_REPR);
printf(" to ");
mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
printf("\n");
}
return pin_obj;
}
// See if the pin name matches a cpu pin
pin_obj = pin_find_named_pin(&pin_cpu_pins_locals_dict, user_obj);
if (pin_obj) {
if (pin_class_debug) {
printf("Pin.cpu maps ");
mp_obj_print(user_obj, PRINT_REPR);
printf(" to ");
mp_obj_print((mp_obj_t)pin_obj, PRINT_STR);
printf("\n");
}
return pin_obj;
}
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "pin '%s' not a valid pin identifier", mp_obj_str_get_str(user_obj)));
}
/// \method __str__()
/// Return a string describing the pin object.
STATIC void pin_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pin_obj_t *self = self_in;
// pin name
print(env, "Pin(Pin.cpu.%s, mode=Pin.", qstr_str(self->name));
uint32_t mode = pin_get_mode(self);
if (mode == GPIO_MODE_ANALOG) {
// analog
print(env, "ANALOG)");
} else {
// IO mode
bool af = false;
qstr mode_qst;
if (mode == GPIO_MODE_INPUT) {
mode_qst = MP_QSTR_IN;
} else if (mode == GPIO_MODE_OUTPUT_PP) {
mode_qst = MP_QSTR_OUT_PP;
} else if (mode == GPIO_MODE_OUTPUT_OD) {
mode_qst = MP_QSTR_OUT_OD;
} else {
af = true;
if (mode == GPIO_MODE_AF_PP) {
mode_qst = MP_QSTR_AF_PP;
} else {
mode_qst = MP_QSTR_AF_OD;
}
}
print(env, qstr_str(mode_qst)); // safe because mode_qst has no formating chars
// pull mode
qstr pull_qst = MP_QSTR_NULL;
uint32_t pull = pin_get_pull(self);
if (pull == GPIO_PULLUP) {
pull_qst = MP_QSTR_PULL_UP;
} else if (pull == GPIO_PULLDOWN) {
pull_qst = MP_QSTR_PULL_DOWN;
}
if (pull_qst != MP_QSTR_NULL) {
print(env, ", pull=Pin.%s", qstr_str(pull_qst));
}
// AF mode
if (af) {
mp_uint_t af_idx = pin_get_af(self);
const pin_af_obj_t *af_obj = pin_find_af_by_index(self, af_idx);
if (af_obj == NULL) {
print(env, ", af=%d)", af_idx);
} else {
print(env, ", af=Pin.%s)", qstr_str(af_obj->name));
}
} else {
print(env, ")");
}
}
}
STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *pin, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args);
/// \classmethod \constructor(id, ...)
/// Create a new Pin object associated with the id. If additional arguments are given,
/// they are used to initialise the pin. See `init`.
STATIC mp_obj_t pin_make_new(mp_obj_t self_in, mp_uint_t n_args, mp_uint_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
// Run an argument through the mapper and return the result.
const pin_obj_t *pin = pin_find(args[0]);
if (n_args > 1 || n_kw > 0) {
// pin mode given, so configure this GPIO
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
pin_obj_init_helper(pin, n_args - 1, args + 1, &kw_args);
}
return (mp_obj_t)pin;
}
/// \classmethod mapper([fun])
/// Get or set the pin mapper function.
STATIC mp_obj_t pin_mapper(mp_uint_t n_args, const mp_obj_t *args) {
if (n_args > 1) {
pin_class_mapper = args[1];
return mp_const_none;
}
return pin_class_mapper;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_mapper_fun_obj, 1, 2, pin_mapper);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_mapper_obj, (mp_obj_t)&pin_mapper_fun_obj);
/// \classmethod dict([dict])
/// Get or set the pin mapper dictionary.
STATIC mp_obj_t pin_map_dict(mp_uint_t n_args, const mp_obj_t *args) {
if (n_args > 1) {
pin_class_map_dict = args[1];
return mp_const_none;
}
return pin_class_map_dict;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_map_dict_fun_obj, 1, 2, pin_map_dict);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_map_dict_obj, (mp_obj_t)&pin_map_dict_fun_obj);
/// \classmethod af_list()
/// Returns an array of alternate functions available for this pin.
STATIC mp_obj_t pin_af_list(mp_obj_t self_in) {
pin_obj_t *self = self_in;
mp_obj_t result = mp_obj_new_list(0, NULL);
const pin_af_obj_t *af = self->af;
for (mp_uint_t i = 0; i < self->num_af; i++, af++) {
mp_obj_list_append(result, (mp_obj_t)af);
}
return result;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_list_obj, pin_af_list);
/// \classmethod debug([state])
/// Get or set the debugging state (`True` or `False` for on or off).
STATIC mp_obj_t pin_debug(mp_uint_t n_args, const mp_obj_t *args) {
if (n_args > 1) {
pin_class_debug = mp_obj_is_true(args[1]);
return mp_const_none;
}
return MP_BOOL(pin_class_debug);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_debug_fun_obj, 1, 2, pin_debug);
STATIC MP_DEFINE_CONST_CLASSMETHOD_OBJ(pin_debug_obj, (mp_obj_t)&pin_debug_fun_obj);
/// \method init(mode, pull=Pin.PULL_NONE, af=-1)
/// Initialise the pin:
///
/// - `mode` can be one of:
/// - `Pin.IN` - configure the pin for input;
/// - `Pin.OUT_PP` - configure the pin for output, with push-pull control;
/// - `Pin.OUT_OD` - configure the pin for output, with open-drain control;
/// - `Pin.AF_PP` - configure the pin for alternate function, pull-pull;
/// - `Pin.AF_OD` - configure the pin for alternate function, open-drain;
/// - `Pin.ANALOG` - configure the pin for analog.
/// - `pull` can be one of:
/// - `Pin.PULL_NONE` - no pull up or down resistors;
/// - `Pin.PULL_UP` - enable the pull-up resistor;
/// - `Pin.PULL_DOWN` - enable the pull-down resistor.
/// - when mode is Pin.AF_PP or Pin.AF_OD, then af can be the index or name
/// of one of the alternate functions associated with a pin.
///
/// Returns: `None`.
STATIC const mp_arg_t pin_init_args[] = {
{ MP_QSTR_mode, MP_ARG_REQUIRED | MP_ARG_INT },
{ MP_QSTR_pull, MP_ARG_INT, {.u_int = GPIO_NOPULL}},
{ MP_QSTR_af, MP_ARG_INT, {.u_int = -1}},
};
#define PIN_INIT_NUM_ARGS MP_ARRAY_SIZE(pin_init_args)
STATIC mp_obj_t pin_obj_init_helper(const pin_obj_t *self, mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
// parse args
mp_arg_val_t vals[PIN_INIT_NUM_ARGS];
mp_arg_parse_all(n_args, args, kw_args, PIN_INIT_NUM_ARGS, pin_init_args, vals);
// get io mode
uint mode = vals[0].u_int;
if (!IS_GPIO_MODE(mode)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin mode: %d", mode));
}
// get pull mode
uint pull = vals[1].u_int;
if (!IS_GPIO_PULL(pull)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin pull: %d", pull));
}
// get af (alternate function)
mp_int_t af = vals[2].u_int;
if ((mode == GPIO_MODE_AF_PP || mode == GPIO_MODE_AF_OD) && !IS_GPIO_AF(af)) {
nlr_raise(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "invalid pin af: %d", af));
}
// enable the peripheral clock for the port of this pin
switch (self->port) {
#ifdef __GPIOA_CLK_ENABLE
case PORT_A: __GPIOA_CLK_ENABLE(); break;
#endif
#ifdef __GPIOB_CLK_ENABLE
case PORT_B: __GPIOB_CLK_ENABLE(); break;
#endif
#ifdef __GPIOC_CLK_ENABLE
case PORT_C: __GPIOC_CLK_ENABLE(); break;
#endif
#ifdef __GPIOD_CLK_ENABLE
case PORT_D: __GPIOD_CLK_ENABLE(); break;
#endif
#ifdef __GPIOE_CLK_ENABLE
case PORT_E: __GPIOE_CLK_ENABLE(); break;
#endif
#ifdef __GPIOF_CLK_ENABLE
case PORT_F: __GPIOF_CLK_ENABLE(); break;
#endif
#ifdef __GPIOG_CLK_ENABLE
case PORT_G: __GPIOG_CLK_ENABLE(); break;
#endif
#ifdef __GPIOH_CLK_ENABLE
case PORT_H: __GPIOH_CLK_ENABLE(); break;
#endif
#ifdef __GPIOI_CLK_ENABLE
case PORT_I: __GPIOI_CLK_ENABLE(); break;
#endif
#ifdef __GPIOJ_CLK_ENABLE
case PORT_J: __GPIOJ_CLK_ENABLE(); break;
#endif
}
// configure the GPIO as requested
GPIO_InitTypeDef GPIO_InitStructure;
GPIO_InitStructure.Pin = self->pin_mask;
GPIO_InitStructure.Mode = mode;
GPIO_InitStructure.Pull = pull;
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
GPIO_InitStructure.Alternate = af;
HAL_GPIO_Init(self->gpio, &GPIO_InitStructure);
return mp_const_none;
}
STATIC mp_obj_t pin_obj_init(mp_uint_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
return pin_obj_init_helper(args[0], n_args - 1, args + 1, kw_args);
}
MP_DEFINE_CONST_FUN_OBJ_KW(pin_init_obj, 1, pin_obj_init);
/// \method value([value])
/// Get or set the digital logic level of the pin:
///
/// - With no argument, return 0 or 1 depending on the logic level of the pin.
/// - With `value` given, set the logic level of the pin. `value` can be
/// anything that converts to a boolean. If it converts to `True`, the pin
/// is set high, otherwise it is set low.
STATIC mp_obj_t pin_value(mp_uint_t n_args, const mp_obj_t *args) {
pin_obj_t *self = args[0];
if (n_args == 1) {
// get pin
return MP_OBJ_NEW_SMALL_INT(GPIO_read_pin(self->gpio, self->pin));
} else {
// set pin
if (mp_obj_is_true(args[1])) {
GPIO_set_pin(self->gpio, self->pin_mask);
} else {
GPIO_clear_pin(self->gpio, self->pin_mask);
}
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pin_value_obj, 1, 2, pin_value);
/// \method low()
/// Set the pin to a low logic level.
STATIC mp_obj_t pin_low(mp_obj_t self_in) {
pin_obj_t *self = self_in;
GPIO_clear_pin(self->gpio, self->pin_mask);;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_low_obj, pin_low);
/// \method high()
/// Set the pin to a high logic level.
STATIC mp_obj_t pin_high(mp_obj_t self_in) {
pin_obj_t *self = self_in;
GPIO_set_pin(self->gpio, self->pin_mask);;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_high_obj, pin_high);
/// \method name()
/// Get the pin name.
STATIC mp_obj_t pin_name(mp_obj_t self_in) {
pin_obj_t *self = self_in;
return MP_OBJ_NEW_QSTR(self->name);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_name_obj, pin_name);
/// \method names()
/// Returns the cpu and board names for this pin.
STATIC mp_obj_t pin_names(mp_obj_t self_in) {
pin_obj_t *self = self_in;
mp_obj_t result = mp_obj_new_list(0, NULL);
mp_obj_list_append(result, MP_OBJ_NEW_QSTR(self->name));
mp_map_t *map = mp_obj_dict_get_map((mp_obj_t)&pin_board_pins_locals_dict);
mp_map_elem_t *elem = map->table;
for (mp_uint_t i = 0; i < map->used; i++, elem++) {
if (elem->value == self) {
mp_obj_list_append(result, elem->key);
}
}
return result;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_names_obj, pin_names);
/// \method port()
/// Get the pin port.
STATIC mp_obj_t pin_port(mp_obj_t self_in) {
pin_obj_t *self = self_in;
return MP_OBJ_NEW_SMALL_INT(self->port);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_port_obj, pin_port);
/// \method pin()
/// Get the pin number.
STATIC mp_obj_t pin_pin(mp_obj_t self_in) {
pin_obj_t *self = self_in;
return MP_OBJ_NEW_SMALL_INT(self->pin);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_pin_obj, pin_pin);
/// \method gpio()
/// Returns the base address of the GPIO block associated with this pin.
STATIC mp_obj_t pin_gpio(mp_obj_t self_in) {
pin_obj_t *self = self_in;
return MP_OBJ_NEW_SMALL_INT((mp_int_t)self->gpio);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_gpio_obj, pin_gpio);
/// \method mode()
/// Returns the currently configured mode of the pin. The integer returned
/// will match one of the allowed constants for the mode argument to the init
/// function.
STATIC mp_obj_t pin_mode(mp_obj_t self_in) {
return MP_OBJ_NEW_SMALL_INT(pin_get_mode(self_in));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_mode_obj, pin_mode);
/// \method pull()
/// Returns the currently configured pull of the pin. The integer returned
/// will match one of the allowed constants for the pull argument to the init
/// function.
STATIC mp_obj_t pin_pull(mp_obj_t self_in) {
return MP_OBJ_NEW_SMALL_INT(pin_get_pull(self_in));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_pull_obj, pin_pull);
/// \method af()
/// Returns the currently configured alternate-function of the pin. The
/// integer returned will match one of the allowed constants for the af
/// argument to the init function.
STATIC mp_obj_t pin_af(mp_obj_t self_in) {
return MP_OBJ_NEW_SMALL_INT(pin_get_af(self_in));
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_obj, pin_af);
STATIC const mp_map_elem_t pin_locals_dict_table[] = {
// instance methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_init), (mp_obj_t)&pin_init_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_value), (mp_obj_t)&pin_value_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_low), (mp_obj_t)&pin_low_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_high), (mp_obj_t)&pin_high_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_name), (mp_obj_t)&pin_name_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_names), (mp_obj_t)&pin_names_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_af_list), (mp_obj_t)&pin_af_list_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_port), (mp_obj_t)&pin_port_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pin), (mp_obj_t)&pin_pin_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_gpio), (mp_obj_t)&pin_gpio_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_mode), (mp_obj_t)&pin_mode_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_pull), (mp_obj_t)&pin_pull_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_af), (mp_obj_t)&pin_af_obj },
// class methods
{ MP_OBJ_NEW_QSTR(MP_QSTR_mapper), (mp_obj_t)&pin_mapper_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_dict), (mp_obj_t)&pin_map_dict_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_debug), (mp_obj_t)&pin_debug_obj },
// class attributes
{ MP_OBJ_NEW_QSTR(MP_QSTR_board), (mp_obj_t)&pin_board_pins_obj_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_cpu), (mp_obj_t)&pin_cpu_pins_obj_type },
// class constants
/// \constant IN - initialise the pin to input mode
/// \constant OUT_PP - initialise the pin to output mode with a push-pull drive
/// \constant OUT_OD - initialise the pin to output mode with an open-drain drive
/// \constant AF_PP - initialise the pin to alternate-function mode with a push-pull drive
/// \constant AF_OD - initialise the pin to alternate-function mode with an open-drain drive
/// \constant ANALOG - initialise the pin to analog mode
/// \constant PULL_NONE - don't enable any pull up or down resistors on the pin
/// \constant PULL_UP - enable the pull-up resistor on the pin
/// \constant PULL_DOWN - enable the pull-down resistor on the pin
{ MP_OBJ_NEW_QSTR(MP_QSTR_IN), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_INPUT) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OUT_PP), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_PP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_OUT_OD), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_OUTPUT_OD) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_AF_PP), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_AF_OD), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_OD) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ANALOG), MP_OBJ_NEW_SMALL_INT(GPIO_MODE_ANALOG) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PULL_NONE), MP_OBJ_NEW_SMALL_INT(GPIO_NOPULL) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PULL_UP), MP_OBJ_NEW_SMALL_INT(GPIO_PULLUP) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_PULL_DOWN), MP_OBJ_NEW_SMALL_INT(GPIO_PULLDOWN) },
#include "genhdr/pins_af_const.h"
};
STATIC MP_DEFINE_CONST_DICT(pin_locals_dict, pin_locals_dict_table);
const mp_obj_type_t pin_type = {
{ &mp_type_type },
.name = MP_QSTR_Pin,
.print = pin_print,
.make_new = pin_make_new,
.locals_dict = (mp_obj_t)&pin_locals_dict,
};
/// \moduleref pyb
/// \class PinAF - Pin Alternate Functions
///
/// A Pin represents a physical pin on the microcprocessor. Each pin
/// can have a variety of functions (GPIO, I2C SDA, etc). Each PinAF
/// object represents a particular function for a pin.
///
/// Usage Model:
///
/// x3 = pyb.Pin.board.X3
/// x3_af = x3.af_list()
///
/// x3_af will now contain an array of PinAF objects which are availble on
/// pin X3.
///
/// For the pyboard, x3_af would contain:
/// [Pin.AF1_TIM2, Pin.AF2_TIM5, Pin.AF3_TIM9, Pin.AF7_USART2]
///
/// Normally, each peripheral would configure the af automatically, but sometimes
/// the same function is available on multiple pins, and having more control
/// is desired.
///
/// To configure X3 to expose TIM2_CH3, you could use:
/// pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=pyb.Pin.AF1_TIM2)
/// or:
/// pin = pyb.Pin(pyb.Pin.board.X3, mode=pyb.Pin.AF_PP, af=1)
/// \method __str__()
/// Return a string describing the alternate function.
STATIC void pin_af_obj_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
pin_af_obj_t *self = self_in;
print(env, "Pin.%s", qstr_str(self->name));
}
/// \method index()
/// Return the alternate function index.
STATIC mp_obj_t pin_af_index(mp_obj_t self_in) {
pin_af_obj_t *af = self_in;
return MP_OBJ_NEW_SMALL_INT(af->idx);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_index_obj, pin_af_index);
/// \method name()
/// Return the name of the alternate function.
STATIC mp_obj_t pin_af_name(mp_obj_t self_in) {
pin_af_obj_t *af = self_in;
return MP_OBJ_NEW_QSTR(af->name);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_name_obj, pin_af_name);
/// \method reg()
/// Return the base register associated with the peripheral assigned to this
/// alternate function. For example, if the alternate function were TIM2_CH3
/// this would return stm.TIM2
STATIC mp_obj_t pin_af_reg(mp_obj_t self_in) {
pin_af_obj_t *af = self_in;
return MP_OBJ_NEW_SMALL_INT((mp_uint_t)af->reg);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pin_af_reg_obj, pin_af_reg);
STATIC const mp_map_elem_t pin_af_locals_dict_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR_index), (mp_obj_t)&pin_af_index_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_name), (mp_obj_t)&pin_af_name_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_reg), (mp_obj_t)&pin_af_reg_obj },
};
STATIC MP_DEFINE_CONST_DICT(pin_af_locals_dict, pin_af_locals_dict_table);
const mp_obj_type_t pin_af_type = {
{ &mp_type_type },
.name = MP_QSTR_PinAF,
.print = pin_af_obj_print,
.locals_dict = (mp_obj_t)&pin_af_locals_dict,
};