micropython/stmhal/modpyb.c

440 lines
14 KiB
C

/*
* This file is part of the Micro Python project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013, 2014 Damien P. George
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdint.h>
#include <stdio.h>
#include "stm32f4xx_hal.h"
#include "mpconfig.h"
#include "misc.h"
#include "nlr.h"
#include "qstr.h"
#include "obj.h"
#include "gc.h"
#include "gccollect.h"
#include "systick.h"
#include "pybstdio.h"
#include "pyexec.h"
#include "led.h"
#include "pin.h"
#include "timer.h"
#include "extint.h"
#include "usrsw.h"
#include "rng.h"
#include "rtc.h"
#include "i2c.h"
#include "spi.h"
#include "uart.h"
#include "adc.h"
#include "storage.h"
#include "sdcard.h"
#include "accel.h"
#include "servo.h"
#include "dac.h"
#include "lcd.h"
#include "usb.h"
#include "ff.h"
#include "portmodules.h"
/// \module pyb - functions related to the pyboard
///
/// The `pyb` module contains specific functions related to the pyboard.
/// \function bootloader()
/// Activate the bootloader without BOOT* pins.
STATIC NORETURN mp_obj_t pyb_bootloader(void) {
pyb_usb_dev_stop();
storage_flush();
HAL_RCC_DeInit();
HAL_DeInit();
__HAL_REMAPMEMORY_SYSTEMFLASH();
// arm-none-eabi-gcc 4.9.0 does not correctly inline this
// MSP function, so we write it out explicitly here.
//__set_MSP(*((uint32_t*) 0x00000000));
__ASM volatile ("movs r3, #0\nldr r3, [r3, #0]\nMSR msp, r3\n" : : : "r3", "sp");
((void (*)(void)) *((uint32_t*) 0x00000004))();
while (1);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_bootloader_obj, pyb_bootloader);
/// \function info([dump_alloc_table])
/// Print out lots of information about the board.
STATIC mp_obj_t pyb_info(uint n_args, const mp_obj_t *args) {
// get and print unique id; 96 bits
{
byte *id = (byte*)0x1fff7a10;
printf("ID=%02x%02x%02x%02x:%02x%02x%02x%02x:%02x%02x%02x%02x\n", id[0], id[1], id[2], id[3], id[4], id[5], id[6], id[7], id[8], id[9], id[10], id[11]);
}
// get and print clock speeds
// SYSCLK=168MHz, HCLK=168MHz, PCLK1=42MHz, PCLK2=84MHz
{
printf("S=%lu\nH=%lu\nP1=%lu\nP2=%lu\n",
HAL_RCC_GetSysClockFreq(),
HAL_RCC_GetHCLKFreq(),
HAL_RCC_GetPCLK1Freq(),
HAL_RCC_GetPCLK2Freq());
}
// to print info about memory
{
printf("_etext=%p\n", &_etext);
printf("_sidata=%p\n", &_sidata);
printf("_sdata=%p\n", &_sdata);
printf("_edata=%p\n", &_edata);
printf("_sbss=%p\n", &_sbss);
printf("_ebss=%p\n", &_ebss);
printf("_estack=%p\n", &_estack);
printf("_ram_start=%p\n", &_ram_start);
printf("_heap_start=%p\n", &_heap_start);
printf("_heap_end=%p\n", &_heap_end);
printf("_ram_end=%p\n", &_ram_end);
}
// qstr info
{
uint n_pool, n_qstr, n_str_data_bytes, n_total_bytes;
qstr_pool_info(&n_pool, &n_qstr, &n_str_data_bytes, &n_total_bytes);
printf("qstr:\n n_pool=%u\n n_qstr=%u\n n_str_data_bytes=%u\n n_total_bytes=%u\n", n_pool, n_qstr, n_str_data_bytes, n_total_bytes);
}
// GC info
{
gc_info_t info;
gc_info(&info);
printf("GC:\n");
printf(" " UINT_FMT " total\n", info.total);
printf(" " UINT_FMT " : " UINT_FMT "\n", info.used, info.free);
printf(" 1=" UINT_FMT " 2=" UINT_FMT " m=" UINT_FMT "\n", info.num_1block, info.num_2block, info.max_block);
}
// free space on flash
{
DWORD nclst;
FATFS *fatfs;
f_getfree("0:", &nclst, &fatfs);
printf("LFS free: %u bytes\n", (uint)(nclst * fatfs->csize * 512));
}
if (n_args == 1) {
// arg given means dump gc allocation table
gc_dump_alloc_table();
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_info_obj, 0, 1, pyb_info);
/// \function unique_id()
/// Returns a string of 12 bytes (96 bits), which is the unique ID for the MCU.
STATIC mp_obj_t pyb_unique_id(void) {
byte *id = (byte*)0x1fff7a10;
return mp_obj_new_bytes(id, 12);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_unique_id_obj, pyb_unique_id);
/// \function freq()
/// Return a tuple of clock frequencies: (SYSCLK, HCLK, PCLK1, PCLK2).
// TODO should also be able to set frequency via this function
STATIC mp_obj_t pyb_freq(void) {
mp_obj_t tuple[4] = {
mp_obj_new_int(HAL_RCC_GetSysClockFreq()),
mp_obj_new_int(HAL_RCC_GetHCLKFreq()),
mp_obj_new_int(HAL_RCC_GetPCLK1Freq()),
mp_obj_new_int(HAL_RCC_GetPCLK2Freq()),
};
return mp_obj_new_tuple(4, tuple);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_freq_obj, pyb_freq);
/// \function sync()
/// Sync all file systems.
STATIC mp_obj_t pyb_sync(void) {
storage_flush();
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_sync_obj, pyb_sync);
/// \function millis()
/// Returns the number of milliseconds since the board was last reset.
STATIC mp_obj_t pyb_millis(void) {
return mp_obj_new_int(HAL_GetTick());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_millis_obj, pyb_millis);
/// \function delay(ms)
/// Delay for the given number of milliseconds.
STATIC mp_obj_t pyb_delay(mp_obj_t ms_in) {
machine_int_t ms = mp_obj_get_int(ms_in);
if (ms >= 0) {
HAL_Delay(ms);
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_delay_obj, pyb_delay);
/// \function udelay(us)
/// Delay for the given number of microseconds.
STATIC mp_obj_t pyb_udelay(mp_obj_t usec_in) {
machine_int_t usec = mp_obj_get_int(usec_in);
if (usec > 0) {
uint32_t count = 0;
const uint32_t utime = (168 * usec / 4);
while (++count <= utime) {
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_udelay_obj, pyb_udelay);
/// \function wfi()
/// Wait for an interrupt.
/// This executies a `wfi` instruction which reduces power consumption
/// of the MCU until an interrupt occurs, at which point execution continues.
STATIC mp_obj_t pyb_wfi(void) {
__WFI();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_wfi_obj, pyb_wfi);
/// \function disable_irq()
/// Disable interrupt requests.
STATIC mp_obj_t pyb_disable_irq(void) {
__disable_irq();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_disable_irq_obj, pyb_disable_irq);
/// \function enable_irq()
/// Enable interrupt requests.
STATIC mp_obj_t pyb_enable_irq(void) {
__enable_irq();
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_enable_irq_obj, pyb_enable_irq);
#if 0
STATIC void SYSCLKConfig_STOP(void) {
/* After wake-up from STOP reconfigure the system clock */
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
while (RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET) {
}
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while (RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET) {
}
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while (RCC_GetSYSCLKSource() != 0x08) {
}
}
#endif
STATIC mp_obj_t pyb_stop(void) {
#if 0
PWR_EnterSTANDBYMode();
//PWR_FlashPowerDownCmd(ENABLE); don't know what the logic is with this
/* Enter Stop Mode */
PWR_EnterSTOPMode(PWR_Regulator_LowPower, PWR_STOPEntry_WFI);
/* Configures system clock after wake-up from STOP: enable HSE, PLL and select
* PLL as system clock source (HSE and PLL are disabled in STOP mode) */
SYSCLKConfig_STOP();
//PWR_FlashPowerDownCmd(DISABLE);
#endif
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_stop_obj, pyb_stop);
STATIC mp_obj_t pyb_standby(void) {
#if 0
PWR_EnterSTANDBYMode();
#endif
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_0(pyb_standby_obj, pyb_standby);
/// \function have_cdc()
/// Return True if USB is connected as a serial device, False otherwise.
STATIC mp_obj_t pyb_have_cdc(void ) {
return MP_BOOL(usb_vcp_is_connected());
}
STATIC MP_DEFINE_CONST_FUN_OBJ_0(pyb_have_cdc_obj, pyb_have_cdc);
/// \function repl_uart(uart)
/// Get or set the UART object that the REPL is repeated on.
STATIC mp_obj_t pyb_repl_uart(uint n_args, const mp_obj_t *args) {
if (n_args == 0) {
if (pyb_uart_global_debug == NULL) {
return mp_const_none;
} else {
return pyb_uart_global_debug;
}
} else {
if (args[0] == mp_const_none) {
pyb_uart_global_debug = NULL;
} else if (mp_obj_get_type(args[0]) == &pyb_uart_type) {
pyb_uart_global_debug = args[0];
} else {
nlr_raise(mp_obj_new_exception_msg(&mp_type_ValueError, "need a UART object"));
}
return mp_const_none;
}
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_repl_uart_obj, 0, 1, pyb_repl_uart);
/// \function hid((buttons, x, y, z))
/// Takes a 4-tuple (or list) and sends it to the USB host (the PC) to
/// signal a HID mouse-motion event.
STATIC mp_obj_t pyb_hid_send_report(mp_obj_t arg) {
mp_obj_t *items;
mp_obj_get_array_fixed_n(arg, 4, &items);
uint8_t data[4];
data[0] = mp_obj_get_int(items[0]);
data[1] = mp_obj_get_int(items[1]);
data[2] = mp_obj_get_int(items[2]);
data[3] = mp_obj_get_int(items[3]);
usb_hid_send_report(data);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_hid_send_report_obj, pyb_hid_send_report);
MP_DECLARE_CONST_FUN_OBJ(pyb_source_dir_obj); // defined in main.c
MP_DECLARE_CONST_FUN_OBJ(pyb_main_obj); // defined in main.c
MP_DECLARE_CONST_FUN_OBJ(pyb_usb_mode_obj); // defined in main.c
STATIC const mp_map_elem_t pyb_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR(MP_QSTR___name__), MP_OBJ_NEW_QSTR(MP_QSTR_pyb) },
{ MP_OBJ_NEW_QSTR(MP_QSTR_bootloader), (mp_obj_t)&pyb_bootloader_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_info), (mp_obj_t)&pyb_info_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_unique_id), (mp_obj_t)&pyb_unique_id_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_freq), (mp_obj_t)&pyb_freq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_repl_info), (mp_obj_t)&pyb_set_repl_info_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_wfi), (mp_obj_t)&pyb_wfi_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_disable_irq), (mp_obj_t)&pyb_disable_irq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_enable_irq), (mp_obj_t)&pyb_enable_irq_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_stop), (mp_obj_t)&pyb_stop_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_standby), (mp_obj_t)&pyb_standby_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_source_dir), (mp_obj_t)&pyb_source_dir_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_main), (mp_obj_t)&pyb_main_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_usb_mode), (mp_obj_t)&pyb_usb_mode_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_have_cdc), (mp_obj_t)&pyb_have_cdc_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_repl_uart), (mp_obj_t)&pyb_repl_uart_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_hid), (mp_obj_t)&pyb_hid_send_report_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_millis), (mp_obj_t)&pyb_millis_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_delay), (mp_obj_t)&pyb_delay_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_udelay), (mp_obj_t)&pyb_udelay_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_sync), (mp_obj_t)&pyb_sync_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_Timer), (mp_obj_t)&pyb_timer_type },
#if MICROPY_HW_ENABLE_RNG
{ MP_OBJ_NEW_QSTR(MP_QSTR_rng), (mp_obj_t)&pyb_rng_get_obj },
#endif
#if MICROPY_HW_ENABLE_RTC
{ MP_OBJ_NEW_QSTR(MP_QSTR_RTC), (mp_obj_t)&pyb_rtc_type },
#endif
{ MP_OBJ_NEW_QSTR(MP_QSTR_Pin), (mp_obj_t)&pin_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ExtInt), (mp_obj_t)&extint_type },
#if MICROPY_HW_ENABLE_SERVO
{ MP_OBJ_NEW_QSTR(MP_QSTR_pwm), (mp_obj_t)&pyb_pwm_set_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_servo), (mp_obj_t)&pyb_servo_set_obj },
{ MP_OBJ_NEW_QSTR(MP_QSTR_Servo), (mp_obj_t)&pyb_servo_type },
#endif
#if MICROPY_HW_HAS_SWITCH
{ MP_OBJ_NEW_QSTR(MP_QSTR_Switch), (mp_obj_t)&pyb_switch_type },
#endif
#if MICROPY_HW_HAS_SDCARD
{ MP_OBJ_NEW_QSTR(MP_QSTR_SD), (mp_obj_t)&pyb_sdcard_obj },
#endif
{ MP_OBJ_NEW_QSTR(MP_QSTR_LED), (mp_obj_t)&pyb_led_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_I2C), (mp_obj_t)&pyb_i2c_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_SPI), (mp_obj_t)&pyb_spi_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_UART), (mp_obj_t)&pyb_uart_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ADC), (mp_obj_t)&pyb_adc_type },
{ MP_OBJ_NEW_QSTR(MP_QSTR_ADCAll), (mp_obj_t)&pyb_adc_all_type },
#if MICROPY_HW_ENABLE_DAC
{ MP_OBJ_NEW_QSTR(MP_QSTR_DAC), (mp_obj_t)&pyb_dac_type },
#endif
#if MICROPY_HW_HAS_MMA7660
{ MP_OBJ_NEW_QSTR(MP_QSTR_Accel), (mp_obj_t)&pyb_accel_type },
#endif
#if MICROPY_HW_HAS_LCD
{ MP_OBJ_NEW_QSTR(MP_QSTR_LCD), (mp_obj_t)&pyb_lcd_type },
#endif
};
STATIC const mp_obj_dict_t pyb_module_globals = {
.base = {&mp_type_dict},
.map = {
.all_keys_are_qstrs = 1,
.table_is_fixed_array = 1,
.used = MP_ARRAY_SIZE(pyb_module_globals_table),
.alloc = MP_ARRAY_SIZE(pyb_module_globals_table),
.table = (mp_map_elem_t*)pyb_module_globals_table,
},
};
const mp_obj_module_t pyb_module = {
.base = { &mp_type_module },
.name = MP_QSTR_pyb,
.globals = (mp_obj_dict_t*)&pyb_module_globals,
};