micropython/ports/esp32/machine_hw_spi.c

557 lines
18 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017 "Eric Poulsen" <eric@zyxod.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "py/runtime.h"
#include "py/stream.h"
#include "py/mphal.h"
#include "extmod/machine_spi.h"
#include "modmachine.h"
#include "driver/spi_master.h"
// SPI mappings by device, naming used by IDF old/new
// upython | ESP32 | ESP32S2 | ESP32S3 | ESP32C3
// ----------+-----------+-----------+---------+---------
// SPI(id=1) | HSPI/SPI2 | FSPI/SPI2 | SPI2 | SPI2
// SPI(id=2) | VSPI/SPI3 | HSPI/SPI3 | SPI3 | err
// Default pins for SPI(id=1) aka IDF SPI2, can be overridden by a board
#ifndef MICROPY_HW_SPI1_SCK
#ifdef SPI2_IOMUX_PIN_NUM_CLK
// Use IO_MUX pins by default.
// If SPI lines are routed to other pins through GPIO matrix
// routing adds some delay and lower limit applies to SPI clk freq
#define MICROPY_HW_SPI1_SCK SPI2_IOMUX_PIN_NUM_CLK // pin 14 on ESP32
#define MICROPY_HW_SPI1_MOSI SPI2_IOMUX_PIN_NUM_MOSI // pin 13 on ESP32
#define MICROPY_HW_SPI1_MISO SPI2_IOMUX_PIN_NUM_MISO // pin 12 on ESP32
// Only for compatibility with IDF 4.2 and older
#elif CONFIG_IDF_TARGET_ESP32S2
#define MICROPY_HW_SPI1_SCK FSPI_IOMUX_PIN_NUM_CLK
#define MICROPY_HW_SPI1_MOSI FSPI_IOMUX_PIN_NUM_MOSI
#define MICROPY_HW_SPI1_MISO FSPI_IOMUX_PIN_NUM_MISO
#else
#define MICROPY_HW_SPI1_SCK HSPI_IOMUX_PIN_NUM_CLK
#define MICROPY_HW_SPI1_MOSI HSPI_IOMUX_PIN_NUM_MOSI
#define MICROPY_HW_SPI1_MISO HSPI_IOMUX_PIN_NUM_MISO
#endif
#endif
// Default pins for SPI(id=2) aka IDF SPI3, can be overridden by a board
#ifndef MICROPY_HW_SPI2_SCK
#if CONFIG_IDF_TARGET_ESP32
// ESP32 has IO_MUX pins for VSPI/SPI3 lines, use them as defaults
#define MICROPY_HW_SPI2_SCK VSPI_IOMUX_PIN_NUM_CLK // pin 18
#define MICROPY_HW_SPI2_MOSI VSPI_IOMUX_PIN_NUM_MOSI // pin 23
#define MICROPY_HW_SPI2_MISO VSPI_IOMUX_PIN_NUM_MISO // pin 19
#elif CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3
// ESP32S2 and S3 uses GPIO matrix for SPI3 pins, no IO_MUX possible
// Set defaults to the pins used by SPI2 in Octal mode
#define MICROPY_HW_SPI2_SCK (36)
#define MICROPY_HW_SPI2_MOSI (35)
#define MICROPY_HW_SPI2_MISO (37)
#endif
#endif
#define MP_HW_SPI_MAX_XFER_BYTES (4092)
#define MP_HW_SPI_MAX_XFER_BITS (MP_HW_SPI_MAX_XFER_BYTES * 8) // Has to be an even multiple of 8
#if CONFIG_IDF_TARGET_ESP32C3
#define HSPI_HOST SPI2_HOST
#elif CONFIG_IDF_TARGET_ESP32S3
#define HSPI_HOST SPI3_HOST
#define FSPI_HOST SPI2_HOST
#endif
typedef struct _machine_hw_spi_default_pins_t {
int8_t sck;
int8_t mosi;
int8_t miso;
} machine_hw_spi_default_pins_t;
typedef struct _machine_hw_spi_obj_t {
mp_obj_base_t base;
spi_host_device_t host;
uint32_t baudrate;
uint8_t polarity;
uint8_t phase;
uint8_t bits;
uint8_t firstbit;
int8_t sck;
int8_t mosi;
int8_t miso;
spi_device_handle_t spi;
enum {
MACHINE_HW_SPI_STATE_NONE,
MACHINE_HW_SPI_STATE_INIT,
MACHINE_HW_SPI_STATE_DEINIT
} state;
} machine_hw_spi_obj_t;
// Default pin mappings for the hardware SPI instances
STATIC const machine_hw_spi_default_pins_t machine_hw_spi_default_pins[2] = {
{ .sck = MICROPY_HW_SPI1_SCK, .mosi = MICROPY_HW_SPI1_MOSI, .miso = MICROPY_HW_SPI1_MISO },
#ifdef MICROPY_HW_SPI2_SCK
{ .sck = MICROPY_HW_SPI2_SCK, .mosi = MICROPY_HW_SPI2_MOSI, .miso = MICROPY_HW_SPI2_MISO },
#endif
};
// Static objects mapping to HSPI and VSPI hardware peripherals
STATIC machine_hw_spi_obj_t machine_hw_spi_obj[2];
STATIC void machine_hw_spi_deinit_internal(machine_hw_spi_obj_t *self) {
switch (spi_bus_remove_device(self->spi)) {
case ESP_ERR_INVALID_ARG:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid configuration"));
return;
case ESP_ERR_INVALID_STATE:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("SPI device already freed"));
return;
}
switch (spi_bus_free(self->host)) {
case ESP_ERR_INVALID_ARG:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid configuration"));
return;
case ESP_ERR_INVALID_STATE:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("SPI bus already freed"));
return;
}
int8_t pins[3] = {self->miso, self->mosi, self->sck};
for (int i = 0; i < 3; i++) {
if (pins[i] != -1) {
gpio_pad_select_gpio(pins[i]);
gpio_matrix_out(pins[i], SIG_GPIO_OUT_IDX, false, false);
gpio_set_direction(pins[i], GPIO_MODE_INPUT);
}
}
}
STATIC void machine_hw_spi_init_internal(
machine_hw_spi_obj_t *self,
int8_t host,
int32_t baudrate,
int8_t polarity,
int8_t phase,
int8_t bits,
int8_t firstbit,
int8_t sck,
int8_t mosi,
int8_t miso) {
// if we're not initialized, then we're
// implicitly 'changed', since this is the init routine
bool changed = self->state != MACHINE_HW_SPI_STATE_INIT;
esp_err_t ret;
machine_hw_spi_obj_t old_self = *self;
if (host != -1 && host != self->host) {
self->host = host;
changed = true;
}
if (baudrate != -1) {
// calculate the actual clock frequency that the SPI peripheral can produce
baudrate = spi_get_actual_clock(APB_CLK_FREQ, baudrate, 0);
if (baudrate != self->baudrate) {
self->baudrate = baudrate;
changed = true;
}
}
if (polarity != -1 && polarity != self->polarity) {
self->polarity = polarity;
changed = true;
}
if (phase != -1 && phase != self->phase) {
self->phase = phase;
changed = true;
}
if (bits != -1 && bits != self->bits) {
self->bits = bits;
changed = true;
}
if (firstbit != -1 && firstbit != self->firstbit) {
self->firstbit = firstbit;
changed = true;
}
if (sck != -2 && sck != self->sck) {
self->sck = sck;
changed = true;
}
if (mosi != -2 && mosi != self->mosi) {
self->mosi = mosi;
changed = true;
}
if (miso != -2 && miso != self->miso) {
self->miso = miso;
changed = true;
}
if (self->host != HSPI_HOST
#ifdef FSPI_HOST
&& self->host != FSPI_HOST
#endif
#ifdef VSPI_HOST
&& self->host != VSPI_HOST
#endif
) {
mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("SPI(%d) doesn't exist"), self->host);
}
if (changed) {
if (self->state == MACHINE_HW_SPI_STATE_INIT) {
self->state = MACHINE_HW_SPI_STATE_DEINIT;
machine_hw_spi_deinit_internal(&old_self);
}
} else {
return; // no changes
}
spi_bus_config_t buscfg = {
.miso_io_num = self->miso,
.mosi_io_num = self->mosi,
.sclk_io_num = self->sck,
.quadwp_io_num = -1,
.quadhd_io_num = -1
};
spi_device_interface_config_t devcfg = {
.clock_speed_hz = self->baudrate,
.mode = self->phase | (self->polarity << 1),
.spics_io_num = -1, // No CS pin
.queue_size = 2,
.flags = self->firstbit == MICROPY_PY_MACHINE_SPI_LSB ? SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST : 0,
.pre_cb = NULL
};
// Initialize the SPI bus
// Select DMA channel based on the hardware SPI host
int dma_chan = 0;
if (self->host == HSPI_HOST) {
#if CONFIG_IDF_TARGET_ESP32S2 || CONFIG_IDF_TARGET_ESP32S3 || CONFIG_IDF_TARGET_ESP32C3
dma_chan = 3;
#else
dma_chan = 1;
#endif
#ifdef FSPI_HOST
} else if (self->host == FSPI_HOST) {
dma_chan = 1;
#endif
#ifdef VSPI_HOST
} else if (self->host == VSPI_HOST) {
dma_chan = 2;
#endif
}
ret = spi_bus_initialize(self->host, &buscfg, dma_chan);
switch (ret) {
case ESP_ERR_INVALID_ARG:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid configuration"));
return;
case ESP_ERR_INVALID_STATE:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("SPI host already in use"));
return;
}
ret = spi_bus_add_device(self->host, &devcfg, &self->spi);
switch (ret) {
case ESP_ERR_INVALID_ARG:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("invalid configuration"));
spi_bus_free(self->host);
return;
case ESP_ERR_NO_MEM:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("out of memory"));
spi_bus_free(self->host);
return;
case ESP_ERR_NOT_FOUND:
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("no free slots"));
spi_bus_free(self->host);
return;
}
self->state = MACHINE_HW_SPI_STATE_INIT;
}
STATIC void machine_hw_spi_deinit(mp_obj_base_t *self_in) {
machine_hw_spi_obj_t *self = (machine_hw_spi_obj_t *)self_in;
if (self->state == MACHINE_HW_SPI_STATE_INIT) {
self->state = MACHINE_HW_SPI_STATE_DEINIT;
machine_hw_spi_deinit_internal(self);
}
}
STATIC mp_uint_t gcd(mp_uint_t x, mp_uint_t y) {
while (x != y) {
if (x > y) {
x -= y;
} else {
y -= x;
}
}
return x;
}
STATIC void machine_hw_spi_transfer(mp_obj_base_t *self_in, size_t len, const uint8_t *src, uint8_t *dest) {
machine_hw_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->state == MACHINE_HW_SPI_STATE_DEINIT) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("transfer on deinitialized SPI"));
return;
}
// Round to nearest whole set of bits
int bits_to_send = len * 8 / self->bits * self->bits;
if (!bits_to_send) {
mp_raise_ValueError(MP_ERROR_TEXT("buffer too short"));
}
if (len <= 4) {
spi_transaction_t transaction = { 0 };
if (src != NULL) {
memcpy(&transaction.tx_data, src, len);
}
transaction.flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA;
transaction.length = bits_to_send;
spi_device_transmit(self->spi, &transaction);
if (dest != NULL) {
memcpy(dest, &transaction.rx_data, len);
}
} else {
int offset = 0;
int bits_remaining = bits_to_send;
int optimum_word_size = 8 * self->bits / gcd(8, self->bits);
int max_transaction_bits = MP_HW_SPI_MAX_XFER_BITS / optimum_word_size * optimum_word_size;
spi_transaction_t *transaction, *result, transactions[2];
int i = 0;
spi_device_acquire_bus(self->spi, portMAX_DELAY);
while (bits_remaining) {
transaction = transactions + i++ % 2;
memset(transaction, 0, sizeof(spi_transaction_t));
transaction->length =
bits_remaining > max_transaction_bits ? max_transaction_bits : bits_remaining;
if (src != NULL) {
transaction->tx_buffer = src + offset;
}
if (dest != NULL) {
transaction->rx_buffer = dest + offset;
}
spi_device_queue_trans(self->spi, transaction, portMAX_DELAY);
bits_remaining -= transaction->length;
if (offset > 0) {
// wait for previously queued transaction
MP_THREAD_GIL_EXIT();
spi_device_get_trans_result(self->spi, &result, portMAX_DELAY);
MP_THREAD_GIL_ENTER();
}
// doesn't need ceil(); loop ends when bits_remaining is 0
offset += transaction->length / 8;
}
// wait for last transaction
MP_THREAD_GIL_EXIT();
spi_device_get_trans_result(self->spi, &result, portMAX_DELAY);
MP_THREAD_GIL_ENTER();
spi_device_release_bus(self->spi);
}
}
/******************************************************************************/
// MicroPython bindings for hw_spi
STATIC void machine_hw_spi_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_hw_spi_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "SPI(id=%u, baudrate=%u, polarity=%u, phase=%u, bits=%u, firstbit=%u, sck=%d, mosi=%d, miso=%d)",
self->host, self->baudrate, self->polarity,
self->phase, self->bits, self->firstbit,
self->sck, self->mosi, self->miso);
}
STATIC void machine_hw_spi_init(mp_obj_base_t *self_in, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
machine_hw_spi_obj_t *self = (machine_hw_spi_obj_t *)self_in;
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args),
allowed_args, args);
int8_t sck, mosi, miso;
if (args[ARG_sck].u_obj == MP_OBJ_NULL) {
sck = -2;
} else if (args[ARG_sck].u_obj == mp_const_none) {
sck = -1;
} else {
sck = machine_pin_get_id(args[ARG_sck].u_obj);
}
if (args[ARG_miso].u_obj == MP_OBJ_NULL) {
miso = -2;
} else if (args[ARG_miso].u_obj == mp_const_none) {
miso = -1;
} else {
miso = machine_pin_get_id(args[ARG_miso].u_obj);
}
if (args[ARG_mosi].u_obj == MP_OBJ_NULL) {
mosi = -2;
} else if (args[ARG_mosi].u_obj == mp_const_none) {
mosi = -1;
} else {
mosi = machine_pin_get_id(args[ARG_mosi].u_obj);
}
machine_hw_spi_init_internal(self, args[ARG_id].u_int, args[ARG_baudrate].u_int,
args[ARG_polarity].u_int, args[ARG_phase].u_int, args[ARG_bits].u_int,
args[ARG_firstbit].u_int, sck, mosi, miso);
}
mp_obj_t machine_hw_spi_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
MP_MACHINE_SPI_CHECK_FOR_LEGACY_SOFTSPI_CONSTRUCTION(n_args, n_kw, all_args);
enum { ARG_id, ARG_baudrate, ARG_polarity, ARG_phase, ARG_bits, ARG_firstbit, ARG_sck, ARG_mosi, ARG_miso };
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_baudrate, MP_ARG_INT, {.u_int = 500000} },
{ MP_QSTR_polarity, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_phase, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 8} },
{ MP_QSTR_firstbit, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = MICROPY_PY_MACHINE_SPI_MSB} },
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mosi, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_miso, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
machine_hw_spi_obj_t *self;
const machine_hw_spi_default_pins_t *default_pins;
if (args[ARG_id].u_int == 1) { // SPI2_HOST which is FSPI_HOST on ESP32Sx, HSPI_HOST on others
self = &machine_hw_spi_obj[0];
default_pins = &machine_hw_spi_default_pins[0];
} else {
self = &machine_hw_spi_obj[1];
default_pins = &machine_hw_spi_default_pins[1];
}
self->base.type = &machine_hw_spi_type;
int8_t sck, mosi, miso;
if (args[ARG_sck].u_obj == MP_OBJ_NULL) {
sck = default_pins->sck;
} else if (args[ARG_sck].u_obj == mp_const_none) {
sck = -1;
} else {
sck = machine_pin_get_id(args[ARG_sck].u_obj);
}
if (args[ARG_mosi].u_obj == MP_OBJ_NULL) {
mosi = default_pins->mosi;
} else if (args[ARG_mosi].u_obj == mp_const_none) {
mosi = -1;
} else {
mosi = machine_pin_get_id(args[ARG_mosi].u_obj);
}
if (args[ARG_miso].u_obj == MP_OBJ_NULL) {
miso = default_pins->miso;
} else if (args[ARG_miso].u_obj == mp_const_none) {
miso = -1;
} else {
miso = machine_pin_get_id(args[ARG_miso].u_obj);
}
machine_hw_spi_init_internal(
self,
args[ARG_id].u_int,
args[ARG_baudrate].u_int,
args[ARG_polarity].u_int,
args[ARG_phase].u_int,
args[ARG_bits].u_int,
args[ARG_firstbit].u_int,
sck,
mosi,
miso);
return MP_OBJ_FROM_PTR(self);
}
STATIC const mp_machine_spi_p_t machine_hw_spi_p = {
.init = machine_hw_spi_init,
.deinit = machine_hw_spi_deinit,
.transfer = machine_hw_spi_transfer,
};
MP_DEFINE_CONST_OBJ_TYPE(
machine_hw_spi_type,
MP_QSTR_SPI,
MP_TYPE_FLAG_NONE,
machine_hw_spi_make_new,
print, machine_hw_spi_print,
protocol, &machine_hw_spi_p,
locals_dict, (mp_obj_dict_t *)&mp_machine_spi_locals_dict
);