249 lines
9.9 KiB
C
249 lines
9.9 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2021 Philipp Ebensberger
|
|
* Copyright (c) 2022 Robert Hammelrath
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
// This file is never compiled standalone, it's included directly from
|
|
// extmod/machine_adc.c via MICROPY_PY_MACHINE_ADC_INCLUDEFILE.
|
|
|
|
#include "py/mphal.h"
|
|
#include "sam.h"
|
|
#include "pin_af.h"
|
|
|
|
typedef struct _machine_adc_obj_t {
|
|
mp_obj_base_t base;
|
|
adc_config_t adc_config;
|
|
uint8_t id;
|
|
uint8_t avg;
|
|
uint8_t bits;
|
|
uint8_t vref;
|
|
} machine_adc_obj_t;
|
|
|
|
#define DEFAULT_ADC_BITS 12
|
|
#define DEFAULT_ADC_AVG 16
|
|
|
|
#if defined(MCU_SAMD21)
|
|
static uint8_t adc_vref_table[] = {
|
|
ADC_REFCTRL_REFSEL_INT1V_Val, ADC_REFCTRL_REFSEL_INTVCC0_Val,
|
|
ADC_REFCTRL_REFSEL_INTVCC1_Val, ADC_REFCTRL_REFSEL_AREFA_Val, ADC_REFCTRL_REFSEL_AREFB_Val
|
|
};
|
|
#if MICROPY_HW_ADC_VREF
|
|
#define DEFAULT_ADC_VREF MICROPY_HW_ADC_VREF
|
|
#else
|
|
#define DEFAULT_ADC_VREF (3)
|
|
#endif
|
|
|
|
#define ADC_EVSYS_CHANNEL 0
|
|
|
|
#elif defined(MCU_SAMD51)
|
|
|
|
static uint8_t adc_vref_table[] = {
|
|
ADC_REFCTRL_REFSEL_INTREF_Val, ADC_REFCTRL_REFSEL_INTVCC1_Val,
|
|
ADC_REFCTRL_REFSEL_INTVCC0_Val, ADC_REFCTRL_REFSEL_AREFA_Val,
|
|
ADC_REFCTRL_REFSEL_AREFB_Val, ADC_REFCTRL_REFSEL_AREFC_Val
|
|
};
|
|
#if MICROPY_HW_ADC_VREF
|
|
#define DEFAULT_ADC_VREF MICROPY_HW_ADC_VREF
|
|
#else
|
|
#define DEFAULT_ADC_VREF (3)
|
|
#endif
|
|
|
|
#endif // defined(MCU_SAMD21)
|
|
|
|
// The ADC class doesn't have any constants for this port.
|
|
#define MICROPY_PY_MACHINE_ADC_CLASS_CONSTANTS
|
|
|
|
Adc *const adc_bases[] = ADC_INSTS;
|
|
uint32_t busy_flags = 0;
|
|
bool init_flags[2] = {false, false};
|
|
static void adc_init(machine_adc_obj_t *self);
|
|
static uint8_t resolution[] = {
|
|
ADC_CTRLB_RESSEL_8BIT_Val, ADC_CTRLB_RESSEL_10BIT_Val, ADC_CTRLB_RESSEL_12BIT_Val
|
|
};
|
|
|
|
extern mp_int_t log2i(mp_int_t num);
|
|
|
|
STATIC void mp_machine_adc_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
|
|
(void)kind;
|
|
machine_adc_obj_t *self = MP_OBJ_TO_PTR(self_in);
|
|
|
|
mp_printf(print, "ADC(%q, device=%u, channel=%u, bits=%u, average=%u, vref=%d)",
|
|
pin_find_by_id(self->id)->name, self->adc_config.device,
|
|
self->adc_config.channel, self->bits, 1 << self->avg, self->vref);
|
|
}
|
|
|
|
STATIC mp_obj_t mp_machine_adc_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *all_args) {
|
|
enum { ARG_id, ARG_bits, ARG_average, ARG_vref };
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_id, MP_ARG_REQUIRED | MP_ARG_OBJ },
|
|
{ MP_QSTR_bits, MP_ARG_INT, {.u_int = DEFAULT_ADC_BITS} },
|
|
{ MP_QSTR_average, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_ADC_AVG} },
|
|
{ MP_QSTR_vref, MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = DEFAULT_ADC_VREF} },
|
|
};
|
|
|
|
// Parse the arguments.
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all_kw_array(n_args, n_kw, all_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
|
|
// Unpack and check, whether the pin has ADC capability
|
|
int id = mp_hal_get_pin_obj(args[ARG_id].u_obj);
|
|
adc_config_t adc_config = get_adc_config(id, busy_flags);
|
|
|
|
// Now that we have a valid device and channel, create and populate the ADC instance
|
|
machine_adc_obj_t *self = mp_obj_malloc(machine_adc_obj_t, &machine_adc_type);
|
|
self->id = id;
|
|
self->adc_config = adc_config;
|
|
self->bits = DEFAULT_ADC_BITS;
|
|
uint16_t bits = args[ARG_bits].u_int;
|
|
if (bits >= 8 && bits <= 12) {
|
|
self->bits = bits;
|
|
}
|
|
uint32_t avg = log2i(args[ARG_average].u_int);
|
|
self->avg = (avg <= 10 ? avg : 10);
|
|
|
|
uint8_t vref = args[ARG_vref].u_int;
|
|
if (0 <= vref && vref < sizeof(adc_vref_table)) {
|
|
self->vref = vref;
|
|
}
|
|
|
|
// flag the device/channel as being in use.
|
|
busy_flags |= (1 << (self->adc_config.device * 16 + self->adc_config.channel));
|
|
init_flags[self->adc_config.device] = false;
|
|
|
|
adc_init(self);
|
|
|
|
return MP_OBJ_FROM_PTR(self);
|
|
}
|
|
|
|
// read_u16()
|
|
STATIC mp_int_t mp_machine_adc_read_u16(machine_adc_obj_t *self) {
|
|
Adc *adc = adc_bases[self->adc_config.device];
|
|
// Set the reference voltage. Default: external AREFA.
|
|
adc->REFCTRL.reg = adc_vref_table[self->vref];
|
|
// Set Input channel and resolution
|
|
// Select the pin as positive input and gnd as negative input reference, non-diff mode by default
|
|
adc->INPUTCTRL.reg = ADC_INPUTCTRL_MUXNEG_GND | self->adc_config.channel;
|
|
// set resolution. Scale 8-16 to 0 - 4 for table access.
|
|
adc->CTRLB.bit.RESSEL = resolution[(self->bits - 8) / 2];
|
|
// Measure input voltage
|
|
adc->SWTRIG.bit.START = 1;
|
|
while (adc->INTFLAG.bit.RESRDY == 0) {
|
|
}
|
|
// Get and return the result
|
|
return adc->RESULT.reg * (65536 / (1 << self->bits));
|
|
}
|
|
|
|
// deinit() : release the ADC channel
|
|
STATIC void mp_machine_adc_deinit(machine_adc_obj_t *self) {
|
|
busy_flags &= ~((1 << (self->adc_config.device * 16 + self->adc_config.channel)));
|
|
}
|
|
|
|
void adc_deinit_all(void) {
|
|
busy_flags = 0;
|
|
init_flags[0] = 0;
|
|
init_flags[1] = 0;
|
|
}
|
|
|
|
static void adc_init(machine_adc_obj_t *self) {
|
|
// ADC & clock init is done only once per ADC
|
|
if (init_flags[self->adc_config.device] == false) {
|
|
Adc *adc = adc_bases[self->adc_config.device];
|
|
|
|
init_flags[self->adc_config.device] = true;
|
|
|
|
#if defined(MCU_SAMD21)
|
|
// Configuration SAMD21
|
|
// Enable APBD clocks and PCHCTRL clocks; GCLK2 at 48 MHz
|
|
PM->APBCMASK.reg |= PM_APBCMASK_ADC;
|
|
GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK2 | GCLK_CLKCTRL_ID_ADC;
|
|
while (GCLK->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
// Reset ADC registers
|
|
adc->CTRLA.bit.SWRST = 1;
|
|
while (adc->CTRLA.bit.SWRST) {
|
|
}
|
|
// Get the calibration data
|
|
uint32_t bias = (*((uint32_t *)ADC_FUSES_BIASCAL_ADDR) & ADC_FUSES_BIASCAL_Msk) >> ADC_FUSES_BIASCAL_Pos;
|
|
uint32_t linearity = (*((uint32_t *)ADC_FUSES_LINEARITY_0_ADDR) & ADC_FUSES_LINEARITY_0_Msk) >> ADC_FUSES_LINEARITY_0_Pos;
|
|
linearity |= ((*((uint32_t *)ADC_FUSES_LINEARITY_1_ADDR) & ADC_FUSES_LINEARITY_1_Msk) >> ADC_FUSES_LINEARITY_1_Pos) << 5;
|
|
/* Write the calibration data. */
|
|
ADC->CALIB.reg = ADC_CALIB_BIAS_CAL(bias) | ADC_CALIB_LINEARITY_CAL(linearity);
|
|
// Divide 48MHz clock by 32 to obtain 1.5 MHz clock to adc
|
|
adc->CTRLB.reg = ADC_CTRLB_PRESCALER_DIV32;
|
|
// Select external AREFA as reference voltage.
|
|
adc->REFCTRL.reg = adc_vref_table[self->vref];
|
|
// Average: Accumulate samples and scale them down accordingly
|
|
adc->AVGCTRL.reg = self->avg | ADC_AVGCTRL_ADJRES(self->avg);
|
|
// Enable ADC and wait to be ready
|
|
adc->CTRLA.bit.ENABLE = 1;
|
|
while (adc->STATUS.bit.SYNCBUSY) {
|
|
}
|
|
|
|
#elif defined(MCU_SAMD51)
|
|
// Configuration SAMD51
|
|
// Enable APBD clocks and PCHCTRL clocks; GCLK2 at 48 MHz
|
|
if (self->adc_config.device == 0) {
|
|
GCLK->PCHCTRL[ADC0_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN;
|
|
MCLK->APBDMASK.bit.ADC0_ = 1;
|
|
} else {
|
|
GCLK->PCHCTRL[ADC1_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK2 | GCLK_PCHCTRL_CHEN;
|
|
MCLK->APBDMASK.bit.ADC1_ = 1;
|
|
}
|
|
// Reset ADC registers
|
|
adc->CTRLA.bit.SWRST = 1;
|
|
while (adc->CTRLA.bit.SWRST) {
|
|
}
|
|
// Get the calibration data
|
|
uint32_t biascomp;
|
|
uint32_t biasr2r;
|
|
uint32_t biasrefbuf;
|
|
if (self->adc_config.device == 0) {
|
|
biascomp = (*((uint32_t *)ADC0_FUSES_BIASCOMP_ADDR) & ADC0_FUSES_BIASCOMP_Msk) >> ADC0_FUSES_BIASCOMP_Pos;
|
|
biasr2r = (*((uint32_t *)ADC0_FUSES_BIASR2R_ADDR) & ADC0_FUSES_BIASR2R_Msk) >> ADC0_FUSES_BIASR2R_Pos;
|
|
biasrefbuf = (*((uint32_t *)ADC0_FUSES_BIASREFBUF_ADDR) & ADC0_FUSES_BIASREFBUF_Msk) >> ADC0_FUSES_BIASREFBUF_Pos;
|
|
} else {
|
|
biascomp = (*((uint32_t *)ADC1_FUSES_BIASCOMP_ADDR) & ADC1_FUSES_BIASCOMP_Msk) >> ADC1_FUSES_BIASCOMP_Pos;
|
|
biasr2r = (*((uint32_t *)ADC1_FUSES_BIASR2R_ADDR) & ADC1_FUSES_BIASR2R_Msk) >> ADC1_FUSES_BIASR2R_Pos;
|
|
biasrefbuf = (*((uint32_t *)ADC1_FUSES_BIASREFBUF_ADDR) & ADC1_FUSES_BIASREFBUF_Msk) >> ADC1_FUSES_BIASREFBUF_Pos;
|
|
}
|
|
/* Write the calibration data. */
|
|
adc->CALIB.reg = ADC_CALIB_BIASCOMP(biascomp) | ADC_CALIB_BIASR2R(biasr2r) | ADC_CALIB_BIASREFBUF(biasrefbuf);
|
|
// Divide 48MHz clock by 32 to obtain 1.5 MHz clock to adc
|
|
adc->CTRLA.reg = ADC_CTRLA_PRESCALER_DIV32;
|
|
// Set the reference voltage. Default: external AREFA.
|
|
adc->REFCTRL.reg = adc_vref_table[self->vref];
|
|
// Average: Accumulate samples and scale them down accordingly
|
|
adc->AVGCTRL.reg = self->avg | ADC_AVGCTRL_ADJRES(self->avg);
|
|
// Enable ADC and wait to be ready
|
|
adc->CTRLA.bit.ENABLE = 1;
|
|
while (adc->SYNCBUSY.bit.ENABLE) {
|
|
}
|
|
|
|
#endif
|
|
}
|
|
// Set the port as given in self->id as ADC
|
|
mp_hal_set_pin_mux(self->id, ALT_FCT_ADC);
|
|
}
|