micropython/ports/renesas-ra/main.c

402 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2013-2020 Damien P. George
* Copyright (c) 2021,2022 Renesas Electronics Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/runtime.h"
#include "py/stackctrl.h"
#include "py/gc.h"
#include "py/mperrno.h"
#include "py/mphal.h"
#include "shared/readline/readline.h"
#include "shared/runtime/pyexec.h"
#include "shared/runtime/softtimer.h"
#include "lib/oofatfs/ff.h"
#include "lib/littlefs/lfs1.h"
#include "lib/littlefs/lfs1_util.h"
#include "lib/littlefs/lfs2.h"
#include "lib/littlefs/lfs2_util.h"
#include "extmod/vfs.h"
#include "extmod/vfs_fat.h"
#include "extmod/vfs_lfs.h"
#include "boardctrl.h"
#include "systick.h"
#include "pendsv.h"
#include "powerctrl.h"
#include "pybthread.h"
#include "gccollect.h"
#include "factoryreset.h"
#include "modmachine.h"
#include "spi.h"
#include "uart.h"
#include "timer.h"
#include "led.h"
#include "pin.h"
#include "extint.h"
#include "usrsw.h"
#include "rtc.h"
#include "storage.h"
#define RA_EARLY_PRINT 1 /* for enabling mp_print in boardctrl. */
#if MICROPY_PY_THREAD
STATIC pyb_thread_t pyb_thread_main;
#endif
#if defined(MICROPY_HW_UART_REPL)
#ifndef MICROPY_HW_UART_REPL_RXBUF
#define MICROPY_HW_UART_REPL_RXBUF (260)
#endif
STATIC machine_uart_obj_t machine_uart_repl_obj;
STATIC uint8_t machine_uart_repl_rxbuf[MICROPY_HW_UART_REPL_RXBUF];
#endif
void NORETURN __fatal_error(const char *msg) {
for (volatile uint delay = 0; delay < 1000000; delay++) {
}
led_state(1, 1);
led_state(2, 1);
led_state(3, 1);
led_state(4, 1);
mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
mp_hal_stdout_tx_strn(msg, strlen(msg));
for (uint i = 0;;) {
led_toggle(((i++) & 3) + 1);
for (volatile uint delay = 0; delay < 1000000; delay++) {
}
if (i >= 16) {
// to conserve power
__WFI();
}
}
}
void nlr_jump_fail(void *val) {
printf("FATAL: uncaught exception %p\n", val);
mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(val));
__fatal_error("");
}
void abort(void) {
__fatal_error("abort");
}
#ifndef NDEBUG
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
(void)func;
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
__fatal_error("");
}
#endif
STATIC mp_obj_t pyb_main(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
};
if (mp_obj_is_str(pos_args[0])) {
MP_STATE_PORT(pyb_config_main) = pos_args[0];
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
#if MICROPY_ENABLE_COMPILER
MP_STATE_VM(mp_optimise_value) = args[0].u_int;
#endif
}
return mp_const_none;
}
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);
#if MICROPY_HW_FLASH_MOUNT_AT_BOOT
// avoid inlining to avoid stack usage within main()
MP_NOINLINE STATIC bool init_flash_fs(uint reset_mode) {
if (reset_mode == BOARDCTRL_RESET_MODE_FACTORY_FILESYSTEM) {
// Asked by user to reset filesystem
factory_reset_create_filesystem();
}
// Default block device to entire flash storage
mp_obj_t bdev = MP_OBJ_FROM_PTR(&pyb_flash_obj);
int ret;
#if MICROPY_VFS_LFS1 || MICROPY_VFS_LFS2
// Try to detect the block device used for the main filesystem based on the
// contents of the superblock, which can be the first or second block.
mp_int_t len = -1;
uint8_t buf[64];
for (size_t block_num = 0; block_num <= 1; ++block_num) {
ret = storage_readblocks_ext(buf, block_num, 0, sizeof(buf));
#if MICROPY_VFS_LFS1
if (ret == 0 && memcmp(&buf[40], "littlefs", 8) == 0) {
// LFS1
lfs1_superblock_t *superblock = (void *)&buf[12];
uint32_t block_size = lfs1_fromle32(superblock->d.block_size);
uint32_t block_count = lfs1_fromle32(superblock->d.block_count);
len = block_count * block_size;
break;
}
#endif
#if MICROPY_VFS_LFS2
if (ret == 0 && memcmp(&buf[8], "littlefs", 8) == 0) {
// LFS2
lfs2_superblock_t *superblock = (void *)&buf[20];
uint32_t block_size = lfs2_fromle32(superblock->block_size);
uint32_t block_count = lfs2_fromle32(superblock->block_count);
len = block_count * block_size;
break;
}
#endif
}
if (len != -1) {
// Detected a littlefs filesystem so create correct block device for it
mp_obj_t args[] = { MP_OBJ_NEW_QSTR(MP_QSTR_len), MP_OBJ_NEW_SMALL_INT(len) };
bdev = MP_OBJ_TYPE_GET_SLOT(&pyb_flash_type, make_new)(&pyb_flash_type, 0, 1, args);
}
#endif
// Try to mount the flash on "/flash" and chdir to it for the boot-up directory.
mp_obj_t mount_point = MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash);
ret = mp_vfs_mount_and_chdir_protected(bdev, mount_point);
if (ret == -MP_ENODEV && bdev == MP_OBJ_FROM_PTR(&pyb_flash_obj)
&& reset_mode != BOARDCTRL_RESET_MODE_FACTORY_FILESYSTEM) {
// No filesystem, bdev is still the default (so didn't detect a possibly corrupt littlefs),
// and didn't already create a filesystem, so try to create a fresh one now.
ret = factory_reset_create_filesystem();
if (ret == 0) {
ret = mp_vfs_mount_and_chdir_protected(bdev, mount_point);
}
}
if (ret != 0) {
printf("MPY: can't mount flash\n");
return false;
}
return true;
}
#endif
int main(void) {
// Hook for a board to run code at start up, for example check if a
// bootloader should be entered instead of the main application.
MICROPY_BOARD_STARTUP();
// Initialize interrupt, systick and internal flash for RA.
ra_init();
MICROPY_BOARD_EARLY_INIT();
// basic sub-system init
#if MICROPY_PY_THREAD
pyb_thread_init(&pyb_thread_main);
#endif
pendsv_init();
led_init();
#if MICROPY_HW_HAS_SWITCH
switch_init0();
#endif
machine_init();
#if MICROPY_HW_ENABLE_RTC
rtc_init_start(false);
#endif
uart_init0();
spi_init0();
#if MICROPY_HW_ENABLE_STORAGE
storage_init();
#endif
#if defined(MICROPY_HW_UART_REPL)
// Set up a UART REPL using a statically allocated object
machine_uart_repl_obj.base.type = &machine_uart_type;
machine_uart_repl_obj.uart_id = MICROPY_HW_UART_REPL;
machine_uart_repl_obj.is_static = true;
machine_uart_repl_obj.timeout = 0;
machine_uart_repl_obj.timeout_char = 2;
uart_init(&machine_uart_repl_obj, MICROPY_HW_UART_REPL_BAUD, UART_WORDLENGTH_8B, UART_PARITY_NONE, UART_STOPBITS_1, 0);
uart_set_rxbuf(&machine_uart_repl_obj, sizeof(machine_uart_repl_rxbuf), machine_uart_repl_rxbuf);
uart_attach_to_repl(&machine_uart_repl_obj, true);
MP_STATE_PORT(machine_uart_obj_all)[MICROPY_HW_UART_REPL] = &machine_uart_repl_obj;
#if RA_EARLY_PRINT
MP_STATE_PORT(pyb_stdio_uart) = &machine_uart_repl_obj;
#endif
#endif
boardctrl_state_t state;
state.reset_mode = 1;
state.log_soft_reset = false;
MICROPY_BOARD_BEFORE_SOFT_RESET_LOOP(&state);
soft_reset:
MICROPY_BOARD_TOP_SOFT_RESET_LOOP(&state);
// Python threading init
#if MICROPY_PY_THREAD
mp_thread_init();
#endif
// Stack limit should be less than real stack size, so we have a chance
// to recover from limit hit. (Limit is measured in bytes.)
// Note: stack control relies on main thread being initialised above
mp_stack_set_top(&_estack);
mp_stack_set_limit((char *)&_estack - (char *)&_sstack - 1024);
// GC init
gc_init(MICROPY_HEAP_START, MICROPY_HEAP_END);
#if MICROPY_ENABLE_PYSTACK
static mp_obj_t pystack[384];
mp_pystack_init(pystack, &pystack[384]);
#endif
// MicroPython init
mp_init();
// Initialise low-level sub-systems. Here we need to very basic things like
// zeroing out memory and resetting any of the sub-systems. Following this
// we can run Python scripts (eg boot.py), but anything that is configurable
// by boot.py must be set after boot.py is run.
#if defined(MICROPY_HW_UART_REPL)
MP_STATE_PORT(pyb_stdio_uart) = &machine_uart_repl_obj;
#else
MP_STATE_PORT(pyb_stdio_uart) = NULL;
#endif
readline_init0();
machine_pin_init();
extint_init0();
timer_init0();
#if MICROPY_HW_ENABLE_I2S
machine_i2s_init0();
#endif
// Initialise the local flash filesystem.
// Create it if needed, mount in on /flash, and set it as current dir.
bool mounted_flash = false;
#if MICROPY_HW_FLASH_MOUNT_AT_BOOT
mounted_flash = init_flash_fs(state.reset_mode);
#endif
// set sys.path based on mounted filesystems
if (mounted_flash) {
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
}
// reset config variables; they should be set by boot.py
MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;
// Run optional frozen boot code.
#ifdef MICROPY_BOARD_FROZEN_BOOT_FILE
pyexec_frozen_module(MICROPY_BOARD_FROZEN_BOOT_FILE, false);
#endif
// Run boot.py (or whatever else a board configures at this stage).
if (MICROPY_BOARD_RUN_BOOT_PY(&state) == BOARDCTRL_GOTO_SOFT_RESET_EXIT) {
goto soft_reset_exit;
}
// Now we initialise sub-systems that need configuration from boot.py,
// or whose initialisation can be safely deferred until after running
// boot.py.
// At this point everything is fully configured and initialised.
// Run main.py (or whatever else a board configures at this stage).
if (MICROPY_BOARD_RUN_MAIN_PY(&state) == BOARDCTRL_GOTO_SOFT_RESET_EXIT) {
goto soft_reset_exit;
}
#if MICROPY_ENABLE_COMPILER
// Main script is finished, so now go into REPL mode.
// The REPL mode can change, or it can request a soft reset.
for (;;) {
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
if (pyexec_raw_repl() != 0) {
break;
}
} else {
if (pyexec_friendly_repl() != 0) {
break;
}
}
}
#endif
soft_reset_exit:
// soft reset
MICROPY_BOARD_START_SOFT_RESET(&state);
#if MICROPY_HW_ENABLE_STORAGE
if (state.log_soft_reset) {
mp_printf(&mp_plat_print, "MPY: sync filesystems\n");
}
storage_flush();
#endif
if (state.log_soft_reset) {
mp_printf(&mp_plat_print, "MPY: soft reboot\n");
}
soft_timer_deinit();
timer_deinit();
uart_deinit_all();
#if MICROPY_HW_ENABLE_DAC
dac_deinit_all();
#endif
machine_pin_deinit();
machine_deinit();
#if MICROPY_PY_THREAD
pyb_thread_deinit();
#endif
MICROPY_BOARD_END_SOFT_RESET(&state);
gc_sweep_all();
mp_deinit();
goto soft_reset;
}
MP_REGISTER_ROOT_POINTER(mp_obj_t pyb_config_main);