576 lines
21 KiB
C
576 lines
21 KiB
C
/*
|
|
* This file is part of the MicroPython project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2015 Bryan Morrissey
|
|
* Copyright (c) 2021 Mike Teachman
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
// This file is never compiled standalone, it's included directly from
|
|
// extmod/machine_i2s.c via MICROPY_PY_MACHINE_I2S_INCLUDEFILE.
|
|
|
|
#include <stdlib.h>
|
|
#include "py/mphal.h"
|
|
#include "pin.h"
|
|
#include "dma.h"
|
|
|
|
// Notes on this port's specific implementation of I2S:
|
|
// - the DMA callbacks (1/2 complete and complete) are used to implement the asynchronous background operations
|
|
// - all 3 Modes of operation are implemented using the HAL I2S Generic Driver
|
|
// - all sample data transfers use DMA
|
|
// - the DMA controller is configured in Circular mode to fulfil continuous and gapless sample flows
|
|
// - the DMA ping-pong buffer needs to be aligned to a cache line size of 32 bytes. 32 byte
|
|
// alignment is needed to use the routines that clean and invalidate D-Cache which work on a
|
|
// 32 byte address boundary. Not all STM32 devices have a D-Cache. Buffer alignment
|
|
// will still happen on these devices to keep this code simple.
|
|
|
|
// DMA ping-pong buffer size was empirically determined. It is a tradeoff between:
|
|
// 1. memory use (smaller buffer size desirable to reduce memory footprint)
|
|
// 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency)
|
|
// The sizeof 1/2 of the DMA buffer must be evenly divisible by the cache line size of 32 bytes.
|
|
#define SIZEOF_DMA_BUFFER_IN_BYTES (256)
|
|
#define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2)
|
|
|
|
// For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster
|
|
// than the DMA transfer rate
|
|
#define NON_BLOCKING_RATE_MULTIPLIER (4)
|
|
#define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER)
|
|
|
|
typedef enum {
|
|
TOP_HALF,
|
|
BOTTOM_HALF
|
|
} ping_pong_t;
|
|
|
|
typedef struct _machine_i2s_obj_t {
|
|
mp_obj_base_t base;
|
|
uint8_t i2s_id;
|
|
mp_hal_pin_obj_t sck;
|
|
mp_hal_pin_obj_t ws;
|
|
mp_hal_pin_obj_t sd;
|
|
uint16_t mode;
|
|
int8_t bits;
|
|
format_t format;
|
|
int32_t rate;
|
|
int32_t ibuf;
|
|
mp_obj_t callback_for_non_blocking;
|
|
uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES + 0x1f]; // 0x1f related to D-Cache alignment
|
|
uint8_t *dma_buffer_dcache_aligned;
|
|
ring_buf_t ring_buffer;
|
|
uint8_t *ring_buffer_storage;
|
|
non_blocking_descriptor_t non_blocking_descriptor;
|
|
io_mode_t io_mode;
|
|
I2S_HandleTypeDef hi2s;
|
|
DMA_HandleTypeDef hdma_tx;
|
|
DMA_HandleTypeDef hdma_rx;
|
|
const dma_descr_t *dma_descr_tx;
|
|
const dma_descr_t *dma_descr_rx;
|
|
} machine_i2s_obj_t;
|
|
|
|
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
|
|
|
|
// The frame map is used with the readinto() method to transform the audio sample data coming
|
|
// from DMA memory (32-bit stereo) to the format specified
|
|
// in the I2S constructor. e.g. 16-bit mono
|
|
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
|
|
{ 0, 1, -1, -1, -1, -1, -1, -1 }, // Mono, 16-bits
|
|
{ 2, 3, 0, 1, -1, -1, -1, -1 }, // Mono, 32-bits
|
|
{ 0, 1, -1, -1, 2, 3, -1, -1 }, // Stereo, 16-bits
|
|
{ 2, 3, 0, 1, 6, 7, 4, 5 }, // Stereo, 32-bits
|
|
};
|
|
|
|
void machine_i2s_init0() {
|
|
for (uint8_t i = 0; i < MICROPY_HW_MAX_I2S; i++) {
|
|
MP_STATE_PORT(machine_i2s_obj)[i] = NULL;
|
|
}
|
|
}
|
|
|
|
// For 32-bit audio samples, the STM32 HAL API expects each 32-bit sample to be encoded
|
|
// in an unusual byte ordering: Byte_2, Byte_3, Byte_0, Byte_1
|
|
// where: Byte_0 is the least significant byte of the 32-bit sample
|
|
//
|
|
// The following function takes a buffer containing 32-bits sample values formatted as little endian
|
|
// and performs an in-place modification into the STM32 HAL API convention
|
|
//
|
|
// Example:
|
|
//
|
|
// wav_samples[] = [L_0-7, L_8-15, L_16-23, L_24-31, R_0-7, R_8-15, R_16-23, R_24-31] = [Left channel, Right channel]
|
|
// stm_api[] = [L_16-23, L_24-31, L_0-7, L_8-15, R_16-23, R_24-31, R_0-7, R_8-15] = [Left channel, Right channel]
|
|
//
|
|
// where:
|
|
// L_0-7 is the least significant byte of the 32 bit sample in the Left channel
|
|
// L_24-31 is the most significant byte of the 32 bit sample in the Left channel
|
|
//
|
|
// wav_samples[] = [0x99, 0xBB, 0x11, 0x22, 0x44, 0x55, 0xAB, 0x77] = [Left channel, Right channel]
|
|
// stm_api[] = [0x11, 0x22, 0x99, 0xBB, 0xAB, 0x77, 0x44, 0x55] = [Left channel, Right channel]
|
|
//
|
|
// where:
|
|
// LEFT Channel = 0x99, 0xBB, 0x11, 0x22
|
|
// RIGHT Channel = 0x44, 0x55, 0xAB, 0x77
|
|
STATIC void reformat_32_bit_samples(int32_t *sample, uint32_t num_samples) {
|
|
int16_t sample_ms;
|
|
int16_t sample_ls;
|
|
for (uint32_t i = 0; i < num_samples; i++) {
|
|
sample_ls = sample[i] & 0xFFFF;
|
|
sample_ms = sample[i] >> 16;
|
|
sample[i] = (sample_ls << 16) + sample_ms;
|
|
}
|
|
}
|
|
|
|
STATIC int8_t get_frame_mapping_index(int8_t bits, format_t format) {
|
|
if (format == MONO) {
|
|
if (bits == 16) {
|
|
return 0;
|
|
} else { // 32 bits
|
|
return 1;
|
|
}
|
|
} else { // STEREO
|
|
if (bits == 16) {
|
|
return 2;
|
|
} else { // 32 bits
|
|
return 3;
|
|
}
|
|
}
|
|
}
|
|
|
|
STATIC int8_t get_dma_bits(uint16_t mode, int8_t bits) {
|
|
if (mode == I2S_MODE_MASTER_TX) {
|
|
if (bits == 16) {
|
|
return I2S_DATAFORMAT_16B;
|
|
} else {
|
|
return I2S_DATAFORMAT_32B;
|
|
}
|
|
return bits;
|
|
} else { // Master Rx
|
|
// always read 32 bit words for I2S e.g. I2S MEMS microphones
|
|
return I2S_DATAFORMAT_32B;
|
|
}
|
|
}
|
|
|
|
// function is used in IRQ context
|
|
STATIC void empty_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) {
|
|
uint16_t dma_buffer_offset = 0;
|
|
|
|
if (dma_ping_pong == TOP_HALF) {
|
|
dma_buffer_offset = 0;
|
|
} else { // BOTTOM_HALF
|
|
dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES;
|
|
}
|
|
|
|
uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset];
|
|
|
|
// flush and invalidate cache so the CPU reads data placed into RAM by DMA
|
|
MP_HAL_CLEANINVALIDATE_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
|
|
|
|
// when space exists, copy samples into ring buffer
|
|
if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
|
|
ringbuf_push(&self->ring_buffer, dma_buffer_p[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// function is used in IRQ context
|
|
STATIC void feed_dma(machine_i2s_obj_t *self, ping_pong_t dma_ping_pong) {
|
|
uint16_t dma_buffer_offset = 0;
|
|
|
|
if (dma_ping_pong == TOP_HALF) {
|
|
dma_buffer_offset = 0;
|
|
} else { // BOTTOM_HALF
|
|
dma_buffer_offset = SIZEOF_HALF_DMA_BUFFER_IN_BYTES;
|
|
}
|
|
|
|
uint8_t *dma_buffer_p = &self->dma_buffer_dcache_aligned[dma_buffer_offset];
|
|
|
|
// when data exists, copy samples from ring buffer
|
|
if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
|
|
|
|
// copy a block of samples from the ring buffer to the dma buffer.
|
|
// STM32 HAL API has a stereo I2S implementation, but not mono
|
|
// mono format is implemented by duplicating each sample into both L and R channels.
|
|
if ((self->format == MONO) && (self->bits == 16)) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) {
|
|
for (uint8_t b = 0; b < sizeof(uint16_t); b++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]);
|
|
dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample
|
|
}
|
|
}
|
|
} else if ((self->format == MONO) && (self->bits == 32)) {
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) {
|
|
for (uint8_t b = 0; b < sizeof(uint32_t); b++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]);
|
|
dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample
|
|
}
|
|
}
|
|
} else { // STEREO, both 16-bit and 32-bit
|
|
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
|
|
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]);
|
|
}
|
|
}
|
|
|
|
// reformat 32 bit samples to match STM32 HAL API format
|
|
if (self->bits == 32) {
|
|
reformat_32_bit_samples((int32_t *)dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (sizeof(uint32_t)));
|
|
}
|
|
} else {
|
|
// underflow. clear buffer to transmit "silence" on the I2S bus
|
|
memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
|
|
}
|
|
|
|
// flush cache to RAM so DMA can read the sample data
|
|
MP_HAL_CLEAN_DCACHE(dma_buffer_p, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
|
|
}
|
|
|
|
STATIC bool i2s_init(machine_i2s_obj_t *self) {
|
|
|
|
// init the GPIO lines
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.Mode = GPIO_MODE_AF_PP;
|
|
GPIO_InitStructure.Speed = GPIO_SPEED_FAST;
|
|
GPIO_InitStructure.Pull = GPIO_PULLUP;
|
|
|
|
if (self->i2s_id == 1) {
|
|
self->hi2s.Instance = I2S1;
|
|
__SPI1_CLK_ENABLE();
|
|
// configure DMA streams
|
|
if (self->mode == I2S_MODE_MASTER_RX) {
|
|
self->dma_descr_rx = &dma_I2S_1_RX;
|
|
} else {
|
|
self->dma_descr_tx = &dma_I2S_1_TX;
|
|
}
|
|
} else if (self->i2s_id == 2) {
|
|
self->hi2s.Instance = I2S2;
|
|
__SPI2_CLK_ENABLE();
|
|
// configure DMA streams
|
|
if (self->mode == I2S_MODE_MASTER_RX) {
|
|
self->dma_descr_rx = &dma_I2S_2_RX;
|
|
} else {
|
|
self->dma_descr_tx = &dma_I2S_2_TX;
|
|
}
|
|
} else {
|
|
// invalid id number; should not get here as i2s object should not
|
|
// have been created without setting a valid i2s instance number
|
|
return false;
|
|
}
|
|
|
|
// GPIO Pin initialization
|
|
if (self->sck != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
|
|
GPIO_InitStructure.Pin = self->sck->pin_mask;
|
|
const pin_af_obj_t *af = pin_find_af(self->sck, AF_FN_I2S, self->i2s_id);
|
|
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
|
|
HAL_GPIO_Init(self->sck->gpio, &GPIO_InitStructure);
|
|
}
|
|
|
|
if (self->ws != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
|
|
GPIO_InitStructure.Pin = self->ws->pin_mask;
|
|
const pin_af_obj_t *af = pin_find_af(self->ws, AF_FN_I2S, self->i2s_id);
|
|
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
|
|
HAL_GPIO_Init(self->ws->gpio, &GPIO_InitStructure);
|
|
}
|
|
|
|
if (self->sd != MP_OBJ_TO_PTR(MP_OBJ_NULL)) {
|
|
GPIO_InitStructure.Pin = self->sd->pin_mask;
|
|
const pin_af_obj_t *af = pin_find_af(self->sd, AF_FN_I2S, self->i2s_id);
|
|
GPIO_InitStructure.Alternate = (uint8_t)af->idx;
|
|
HAL_GPIO_Init(self->sd->gpio, &GPIO_InitStructure);
|
|
}
|
|
|
|
if (HAL_I2S_Init(&self->hi2s) == HAL_OK) {
|
|
// Reset and initialize Tx and Rx DMA channels
|
|
if (self->mode == I2S_MODE_MASTER_RX) {
|
|
dma_invalidate_channel(self->dma_descr_rx);
|
|
dma_init(&self->hdma_rx, self->dma_descr_rx, DMA_PERIPH_TO_MEMORY, &self->hi2s);
|
|
self->hi2s.hdmarx = &self->hdma_rx;
|
|
} else { // I2S_MODE_MASTER_TX
|
|
dma_invalidate_channel(self->dma_descr_tx);
|
|
dma_init(&self->hdma_tx, self->dma_descr_tx, DMA_MEMORY_TO_PERIPH, &self->hi2s);
|
|
self->hi2s.hdmatx = &self->hdma_tx;
|
|
}
|
|
|
|
__HAL_RCC_PLLI2S_ENABLE(); // start I2S clock
|
|
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
void HAL_I2S_ErrorCallback(I2S_HandleTypeDef *hi2s) {
|
|
uint32_t errorCode = HAL_I2S_GetError(hi2s);
|
|
mp_printf(MICROPY_ERROR_PRINTER, "I2S Error = %ld\n", errorCode);
|
|
}
|
|
|
|
void HAL_I2S_RxCpltCallback(I2S_HandleTypeDef *hi2s) {
|
|
machine_i2s_obj_t *self;
|
|
if (hi2s->Instance == I2S1) {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[0];
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[1];
|
|
}
|
|
|
|
// bottom half of buffer now filled,
|
|
// safe to empty the bottom half while the top half of buffer is being filled
|
|
empty_dma(self, BOTTOM_HALF);
|
|
|
|
// for non-blocking operation, this IRQ-based callback handles
|
|
// the readinto() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
fill_appbuf_from_ringbuf_non_blocking(self);
|
|
}
|
|
}
|
|
|
|
void HAL_I2S_RxHalfCpltCallback(I2S_HandleTypeDef *hi2s) {
|
|
machine_i2s_obj_t *self;
|
|
if (hi2s->Instance == I2S1) {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[0];
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[1];
|
|
}
|
|
|
|
// top half of buffer now filled,
|
|
// safe to empty the top half while the bottom half of buffer is being filled
|
|
empty_dma(self, TOP_HALF);
|
|
|
|
// for non-blocking operation, this IRQ-based callback handles
|
|
// the readinto() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
fill_appbuf_from_ringbuf_non_blocking(self);
|
|
}
|
|
}
|
|
|
|
void HAL_I2S_TxCpltCallback(I2S_HandleTypeDef *hi2s) {
|
|
machine_i2s_obj_t *self;
|
|
|
|
if (hi2s->Instance == I2S1) {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[0];
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[1];
|
|
}
|
|
|
|
// for non-blocking operation, this IRQ-based callback handles
|
|
// the write() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
copy_appbuf_to_ringbuf_non_blocking(self);
|
|
}
|
|
|
|
// bottom half of buffer now emptied,
|
|
// safe to fill the bottom half while the top half of buffer is being emptied
|
|
feed_dma(self, BOTTOM_HALF);
|
|
}
|
|
|
|
void HAL_I2S_TxHalfCpltCallback(I2S_HandleTypeDef *hi2s) {
|
|
machine_i2s_obj_t *self;
|
|
if (hi2s->Instance == I2S1) {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[0];
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[1];
|
|
}
|
|
|
|
// for non-blocking operation, this IRQ-based callback handles
|
|
// the write() method requests.
|
|
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
|
|
copy_appbuf_to_ringbuf_non_blocking(self);
|
|
}
|
|
|
|
// top half of buffer now emptied,
|
|
// safe to fill the top half while the bottom half of buffer is being emptied
|
|
feed_dma(self, TOP_HALF);
|
|
}
|
|
|
|
STATIC void mp_machine_i2s_init_helper(machine_i2s_obj_t *self, mp_arg_val_t *args) {
|
|
memset(&self->hi2s, 0, sizeof(self->hi2s));
|
|
|
|
// are I2S pin assignments valid?
|
|
const pin_af_obj_t *pin_af;
|
|
|
|
// is SCK valid?
|
|
if (mp_obj_is_type(args[ARG_sck].u_obj, &pin_type)) {
|
|
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_sck].u_obj), AF_FN_I2S, self->i2s_id);
|
|
if (pin_af->type != AF_PIN_TYPE_I2S_CK) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid SCK pin"));
|
|
}
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("SCK not a Pin type"));
|
|
}
|
|
|
|
// is WS valid?
|
|
if (mp_obj_is_type(args[ARG_ws].u_obj, &pin_type)) {
|
|
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_ws].u_obj), AF_FN_I2S, self->i2s_id);
|
|
if (pin_af->type != AF_PIN_TYPE_I2S_WS) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid WS pin"));
|
|
}
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("WS not a Pin type"));
|
|
}
|
|
|
|
// is SD valid?
|
|
if (mp_obj_is_type(args[ARG_sd].u_obj, &pin_type)) {
|
|
pin_af = pin_find_af(MP_OBJ_TO_PTR(args[ARG_sd].u_obj), AF_FN_I2S, self->i2s_id);
|
|
if (pin_af->type != AF_PIN_TYPE_I2S_SD) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid SD pin"));
|
|
}
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("SD not a Pin type"));
|
|
}
|
|
|
|
// is Mode valid?
|
|
uint16_t i2s_mode = args[ARG_mode].u_int;
|
|
if ((i2s_mode != (I2S_MODE_MASTER_RX)) &&
|
|
(i2s_mode != (I2S_MODE_MASTER_TX))) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
|
|
}
|
|
|
|
// is Bits valid?
|
|
int8_t i2s_bits = args[ARG_bits].u_int;
|
|
if ((i2s_bits != 16) &&
|
|
(i2s_bits != 32)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
|
|
}
|
|
|
|
// is Format valid?
|
|
format_t i2s_format = args[ARG_format].u_int;
|
|
if ((i2s_format != MONO) &&
|
|
(i2s_format != STEREO)) {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
|
|
}
|
|
|
|
// is Rate valid?
|
|
// Not checked
|
|
|
|
// is Ibuf valid?
|
|
int32_t ring_buffer_len = args[ARG_ibuf].u_int;
|
|
if (ring_buffer_len > 0) {
|
|
uint8_t *buffer = m_new(uint8_t, ring_buffer_len);
|
|
self->ring_buffer_storage = buffer;
|
|
ringbuf_init(&self->ring_buffer, buffer, ring_buffer_len);
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf"));
|
|
}
|
|
|
|
self->sck = MP_OBJ_TO_PTR(args[ARG_sck].u_obj);
|
|
self->ws = MP_OBJ_TO_PTR(args[ARG_ws].u_obj);
|
|
self->sd = MP_OBJ_TO_PTR(args[ARG_sd].u_obj);
|
|
self->mode = i2s_mode;
|
|
self->bits = i2s_bits;
|
|
self->format = i2s_format;
|
|
self->rate = args[ARG_rate].u_int;
|
|
self->ibuf = ring_buffer_len;
|
|
self->callback_for_non_blocking = MP_OBJ_NULL;
|
|
self->non_blocking_descriptor.copy_in_progress = false;
|
|
self->io_mode = BLOCKING;
|
|
|
|
I2S_InitTypeDef *init = &self->hi2s.Init;
|
|
init->Mode = i2s_mode;
|
|
init->Standard = I2S_STANDARD_PHILIPS;
|
|
init->DataFormat = get_dma_bits(self->mode, self->bits);
|
|
init->MCLKOutput = I2S_MCLKOUTPUT_DISABLE;
|
|
init->AudioFreq = args[ARG_rate].u_int;
|
|
init->CPOL = I2S_CPOL_LOW;
|
|
init->ClockSource = I2S_CLOCK_PLL;
|
|
#if defined(STM32F4)
|
|
init->FullDuplexMode = I2S_FULLDUPLEXMODE_DISABLE;
|
|
#endif
|
|
|
|
// init the I2S bus
|
|
if (!i2s_init(self)) {
|
|
mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("I2S init failed"));
|
|
}
|
|
|
|
// start DMA. DMA is configured to run continuously, using a circular buffer configuration
|
|
uint32_t number_of_samples = 0;
|
|
if (init->DataFormat == I2S_DATAFORMAT_16B) {
|
|
number_of_samples = SIZEOF_DMA_BUFFER_IN_BYTES / sizeof(uint16_t);
|
|
} else { // 32 bits
|
|
number_of_samples = SIZEOF_DMA_BUFFER_IN_BYTES / sizeof(uint32_t);
|
|
}
|
|
|
|
HAL_StatusTypeDef status;
|
|
if (self->mode == I2S_MODE_MASTER_TX) {
|
|
status = HAL_I2S_Transmit_DMA(&self->hi2s, (void *)self->dma_buffer_dcache_aligned, number_of_samples);
|
|
} else { // RX
|
|
status = HAL_I2S_Receive_DMA(&self->hi2s, (void *)self->dma_buffer_dcache_aligned, number_of_samples);
|
|
}
|
|
|
|
if (status != HAL_OK) {
|
|
mp_raise_msg_varg(&mp_type_OSError, MP_ERROR_TEXT("DMA init failed"));
|
|
}
|
|
}
|
|
|
|
STATIC machine_i2s_obj_t *mp_machine_i2s_make_new_instance(mp_int_t i2s_id) {
|
|
uint8_t i2s_id_zero_base = 0;
|
|
|
|
if (0) {
|
|
#ifdef MICROPY_HW_I2S1
|
|
} else if (i2s_id == 1) {
|
|
i2s_id_zero_base = 0;
|
|
#endif
|
|
#ifdef MICROPY_HW_I2S2
|
|
} else if (i2s_id == 2) {
|
|
i2s_id_zero_base = 1;
|
|
#endif
|
|
} else {
|
|
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
|
|
}
|
|
|
|
machine_i2s_obj_t *self;
|
|
if (MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] == NULL) {
|
|
self = mp_obj_malloc(machine_i2s_obj_t, &machine_i2s_type);
|
|
MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base] = self;
|
|
self->i2s_id = i2s_id;
|
|
} else {
|
|
self = MP_STATE_PORT(machine_i2s_obj)[i2s_id_zero_base];
|
|
machine_i2s_deinit(MP_OBJ_FROM_PTR(self));
|
|
}
|
|
|
|
// align DMA buffer start to the cache line size (32 bytes)
|
|
self->dma_buffer_dcache_aligned = (uint8_t *)((uint32_t)(self->dma_buffer + 0x1f) & ~0x1f);
|
|
|
|
return self;
|
|
}
|
|
|
|
STATIC void mp_machine_i2s_deinit(machine_i2s_obj_t *self) {
|
|
if (self->ring_buffer_storage != NULL) {
|
|
dma_deinit(self->dma_descr_tx);
|
|
dma_deinit(self->dma_descr_rx);
|
|
HAL_I2S_DeInit(&self->hi2s);
|
|
|
|
if (self->hi2s.Instance == I2S1) {
|
|
__SPI1_FORCE_RESET();
|
|
__SPI1_RELEASE_RESET();
|
|
__SPI1_CLK_DISABLE();
|
|
} else if (self->hi2s.Instance == I2S2) {
|
|
__SPI2_FORCE_RESET();
|
|
__SPI2_RELEASE_RESET();
|
|
__SPI2_CLK_DISABLE();
|
|
}
|
|
|
|
m_free(self->ring_buffer_storage);
|
|
self->ring_buffer_storage = NULL;
|
|
}
|
|
}
|
|
|
|
STATIC void mp_machine_i2s_irq_update(machine_i2s_obj_t *self) {
|
|
(void)self;
|
|
}
|
|
|
|
MP_REGISTER_ROOT_POINTER(struct _machine_i2s_obj_t *machine_i2s_obj[MICROPY_HW_MAX_I2S]);
|