micropython/py/objtype.c

519 lines
18 KiB
C

#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <assert.h>
#include "nlr.h"
#include "misc.h"
#include "mpconfig.h"
#include "qstr.h"
#include "obj.h"
#include "map.h"
#include "runtime0.h"
#include "runtime.h"
/******************************************************************************/
// class object
// creating an instance of a class makes one of these objects
typedef struct _mp_obj_class_t {
mp_obj_base_t base;
mp_map_t members;
} mp_obj_class_t;
static mp_obj_t mp_obj_new_class(mp_obj_t class) {
mp_obj_class_t *o = m_new_obj(mp_obj_class_t);
o->base.type = class;
mp_map_init(&o->members, 0);
return o;
}
// will return MP_OBJ_NULL if not found
static mp_obj_t mp_obj_class_lookup(const mp_obj_type_t *type, qstr attr) {
for (;;) {
if (type->locals_dict != NULL) {
// search locals_dict (the dynamically created set of methods/attributes)
assert(MP_OBJ_IS_TYPE(type->locals_dict, &dict_type)); // Micro Python restriction, for now
mp_map_t *locals_map = mp_obj_dict_get_map(type->locals_dict);
mp_map_elem_t *elem = mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
return elem->value;
}
} else if (type->methods != NULL) {
// search methods (the const set of methods)
for (const mp_method_t *meth = type->methods; meth->name != NULL; meth++) {
if (strcmp(meth->name, qstr_str(attr)) == 0) {
return (mp_obj_t)meth->fun;
}
}
}
// attribute not found, keep searching base classes
// for a const struct, this entry might be NULL
if (type->bases_tuple == MP_OBJ_NULL) {
return NULL;
}
uint len;
mp_obj_t *items;
mp_obj_tuple_get(type->bases_tuple, &len, &items);
if (len == 0) {
return NULL;
}
for (uint i = 0; i < len - 1; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_const_type));
mp_obj_t obj = mp_obj_class_lookup((mp_obj_type_t*)items[i], attr);
if (obj != MP_OBJ_NULL) {
return obj;
}
}
// search last base (simple tail recursion elimination)
assert(MP_OBJ_IS_TYPE(items[len - 1], &mp_const_type));
type = (mp_obj_type_t*)items[len - 1];
}
}
static void class_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
print(env, "<%s object at %p>", mp_obj_get_type_str(self_in), self_in);
}
static mp_obj_t class_make_new(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type));
mp_obj_type_t *self = self_in;
mp_obj_t o = mp_obj_new_class(self_in);
// look for __init__ function
mp_obj_t init_fn = mp_obj_class_lookup(self, MP_QSTR___init__);
if (init_fn != MP_OBJ_NULL) {
// call __init__ function
mp_obj_t init_ret;
if (n_args == 0 && n_kw == 0) {
init_ret = rt_call_function_n_kw(init_fn, 1, 0, (mp_obj_t*)&o);
} else {
mp_obj_t *args2 = m_new(mp_obj_t, 1 + n_args + 2 * n_kw);
args2[0] = o;
memcpy(args2 + 1, args, (n_args + 2 * n_kw) * sizeof(mp_obj_t));
init_ret = rt_call_function_n_kw(init_fn, n_args + 1, n_kw, args2);
m_del(mp_obj_t, args2, 1 + n_args + 2 * n_kw);
}
if (init_ret != mp_const_none) {
nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "__init__() should return None, not '%s'", mp_obj_get_type_str(init_ret)));
}
} else {
// TODO
if (n_args != 0) {
nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "function takes 0 positional arguments but %d were given", (void*)(machine_int_t)n_args));
}
}
return o;
}
static const qstr unary_op_method_name[] = {
[RT_UNARY_OP_BOOL] = MP_QSTR___bool__,
[RT_UNARY_OP_LEN] = MP_QSTR___len__,
//[RT_UNARY_OP_POSITIVE,
//[RT_UNARY_OP_NEGATIVE,
//[RT_UNARY_OP_INVERT,
[RT_UNARY_OP_NOT] = MP_QSTR_, // don't need to implement this, used to make sure array has full size
};
static mp_obj_t class_unary_op(int op, mp_obj_t self_in) {
mp_obj_class_t *self = self_in;
qstr op_name = unary_op_method_name[op];
if (op_name == 0) {
return MP_OBJ_NULL;
}
mp_obj_t member = mp_obj_class_lookup(self->base.type, op_name);
if (member != MP_OBJ_NULL) {
return rt_call_function_1(member, self_in);
} else {
return MP_OBJ_NULL;
}
}
static const qstr binary_op_method_name[] = {
[RT_BINARY_OP_SUBSCR] = MP_QSTR___getitem__,
/*
RT_BINARY_OP_OR,
RT_BINARY_OP_XOR,
RT_BINARY_OP_AND,
RT_BINARY_OP_LSHIFT,
RT_BINARY_OP_RSHIFT,
*/
[RT_BINARY_OP_ADD] = MP_QSTR___add__,
[RT_BINARY_OP_SUBTRACT] = MP_QSTR___sub__,
/*
RT_BINARY_OP_MULTIPLY,
RT_BINARY_OP_FLOOR_DIVIDE,
RT_BINARY_OP_TRUE_DIVIDE,
RT_BINARY_OP_MODULO,
RT_BINARY_OP_POWER,
RT_BINARY_OP_INPLACE_OR,
RT_BINARY_OP_INPLACE_XOR,
RT_BINARY_OP_INPLACE_AND,
RT_BINARY_OP_INPLACE_LSHIFT,
RT_BINARY_OP_INPLACE_RSHIFT,
RT_BINARY_OP_INPLACE_ADD,
RT_BINARY_OP_INPLACE_SUBTRACT,
RT_BINARY_OP_INPLACE_MULTIPLY,
RT_BINARY_OP_INPLACE_FLOOR_DIVIDE,
RT_BINARY_OP_INPLACE_TRUE_DIVIDE,
RT_BINARY_OP_INPLACE_MODULO,
RT_BINARY_OP_INPLACE_POWER,
RT_BINARY_OP_LESS,
RT_BINARY_OP_MORE,
RT_BINARY_OP_EQUAL,
RT_BINARY_OP_LESS_EQUAL,
RT_BINARY_OP_MORE_EQUAL,
RT_BINARY_OP_NOT_EQUAL,
RT_BINARY_OP_IN,
RT_BINARY_OP_IS,
*/
[RT_BINARY_OP_EXCEPTION_MATCH] = MP_QSTR_, // not implemented, used to make sure array has full size
};
static mp_obj_t class_binary_op(int op, mp_obj_t lhs_in, mp_obj_t rhs_in) {
mp_obj_class_t *lhs = lhs_in;
qstr op_name = binary_op_method_name[op];
if (op_name == 0) {
return MP_OBJ_NULL;
}
mp_obj_t member = mp_obj_class_lookup(lhs->base.type, op_name);
if (member != MP_OBJ_NULL) {
return rt_call_function_2(member, lhs_in, rhs_in);
} else {
return MP_OBJ_NULL;
}
}
static void class_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
// logic: look in obj members then class locals (TODO check this against CPython)
mp_obj_class_t *self = self_in;
mp_map_elem_t *elem = mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP);
if (elem != NULL) {
// object member, always treated as a value
dest[0] = elem->value;
return;
}
mp_obj_t member = mp_obj_class_lookup(self->base.type, attr);
if (member != MP_OBJ_NULL) {
if (mp_obj_is_callable(member)) {
// class member is callable so build a bound method
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
// TODO check that this is the correct place to have this logic
if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_staticmethod_t*)member)->fun;
} else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
dest[0] = ((mp_obj_classmethod_t*)member)->fun;
dest[1] = mp_obj_get_type(self_in);
} else {
// return a bound method, with self being this object
dest[0] = member;
dest[1] = self_in;
}
return;
} else {
// class member is a value, so just return that value
dest[0] = member;
return;
}
}
}
static bool class_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
mp_obj_class_t *self = self_in;
mp_map_lookup(&self->members, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
return true;
}
bool class_store_item(mp_obj_t self_in, mp_obj_t index, mp_obj_t value) {
mp_obj_class_t *self = self_in;
mp_obj_t member = mp_obj_class_lookup(self->base.type, QSTR_FROM_STR_STATIC("__setitem__"));
if (member != MP_OBJ_NULL) {
mp_obj_t args[3] = {self_in, index, value};
rt_call_function_n_kw(member, 3, 0, args);
return true;
} else {
return false;
}
}
/******************************************************************************/
// type object
// - the struct is mp_obj_type_t and is defined in obj.h so const types can be made
// - there is a constant mp_obj_type_t (called mp_const_type) for the 'type' object
// - creating a new class (a new type) creates a new mp_obj_type_t
static void type_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_type_t *self = self_in;
print(env, "<class '%s'>", self->name);
}
static mp_obj_t type_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// TODO check n_kw == 0
switch (n_args) {
case 1:
return mp_obj_get_type(args[0]);
case 3:
// args[0] = name
// args[1] = bases tuple
// args[2] = locals dict
return mp_obj_new_type(mp_obj_str_get_str(args[0]), args[1], args[2]);
default:
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "type takes 1 or 3 arguments"));
}
}
static mp_obj_t type_call(mp_obj_t self_in, uint n_args, uint n_kw, const mp_obj_t *args) {
// instantiate an instance of a class
mp_obj_type_t *self = self_in;
if (self->make_new == NULL) {
nlr_jump(mp_obj_new_exception_msg_1_arg(MP_QSTR_TypeError, "cannot create '%s' instances", self->name));
}
// make new instance
mp_obj_t o = self->make_new(self, n_args, n_kw, args);
// return new instance
return o;
}
// for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
static void type_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type));
mp_obj_type_t *self = self_in;
mp_obj_t member = mp_obj_class_lookup(self, attr);
if (member != MP_OBJ_NULL) {
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_staticmethod_t*)member)->fun;
} else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
// return a bound method, with self being this class
dest[0] = ((mp_obj_classmethod_t*)member)->fun;
dest[1] = self_in;
} else {
// return just the function
// TODO need to wrap in a type check for the first argument; eg list.append(1,1) needs to throw an exception
dest[0] = (mp_obj_t)member;
}
}
}
static bool type_store_attr(mp_obj_t self_in, qstr attr, mp_obj_t value) {
assert(MP_OBJ_IS_TYPE(self_in, &mp_const_type));
mp_obj_type_t *self = self_in;
// TODO CPython allows STORE_ATTR to a class, but is this the correct implementation?
if (self->locals_dict != NULL) {
assert(MP_OBJ_IS_TYPE(self->locals_dict, &dict_type)); // Micro Python restriction, for now
mp_map_t *locals_map = ((void*)self->locals_dict + sizeof(mp_obj_base_t)); // XXX hack to get map object from dict object
mp_map_lookup(locals_map, MP_OBJ_NEW_QSTR(attr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
return true;
} else {
return false;
}
}
const mp_obj_type_t mp_const_type = {
{ &mp_const_type },
"type",
.print = type_print,
.make_new = type_make_new,
.call = type_call,
.load_attr = type_load_attr,
.store_attr = type_store_attr,
};
mp_obj_t mp_obj_new_type(const char *name, mp_obj_t bases_tuple, mp_obj_t locals_dict) {
assert(MP_OBJ_IS_TYPE(bases_tuple, &tuple_type)); // Micro Python restriction, for now
assert(MP_OBJ_IS_TYPE(locals_dict, &dict_type)); // Micro Python restriction, for now
mp_obj_type_t *o = m_new0(mp_obj_type_t, 1);
o->base.type = &mp_const_type;
o->name = name;
o->print = class_print;
o->make_new = class_make_new;
o->unary_op = class_unary_op;
o->binary_op = class_binary_op;
o->load_attr = class_load_attr;
o->store_attr = class_store_attr;
o->store_item = class_store_item;
o->bases_tuple = bases_tuple;
o->locals_dict = locals_dict;
return o;
}
/******************************************************************************/
// super object
typedef struct _mp_obj_super_t {
mp_obj_base_t base;
mp_obj_t type;
mp_obj_t obj;
} mp_obj_super_t;
static void super_print(void (*print)(void *env, const char *fmt, ...), void *env, mp_obj_t self_in, mp_print_kind_t kind) {
mp_obj_super_t *self = self_in;
print(env, "<super: ");
mp_obj_print_helper(print, env, self->type, PRINT_STR);
print(env, ", ");
mp_obj_print_helper(print, env, self->obj, PRINT_STR);
print(env, ">");
}
static mp_obj_t super_make_new(mp_obj_t type_in, uint n_args, uint n_kw, const mp_obj_t *args) {
if (n_args != 2 || n_kw != 0) {
// 0 arguments are turned into 2 in the compiler
// 1 argument is not yet implemented
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "super() requires 2 arguments"));
}
return mp_obj_new_super(args[0], args[1]);
}
// for fail, do nothing; for attr, dest[0] = value; for method, dest[0] = method, dest[1] = self
static void super_load_attr(mp_obj_t self_in, qstr attr, mp_obj_t *dest) {
assert(MP_OBJ_IS_TYPE(self_in, &super_type));
mp_obj_super_t *self = self_in;
assert(MP_OBJ_IS_TYPE(self->type, &mp_const_type));
mp_obj_type_t *type = self->type;
// for a const struct, this entry might be NULL
if (type->bases_tuple == MP_OBJ_NULL) {
return;
}
uint len;
mp_obj_t *items;
mp_obj_tuple_get(type->bases_tuple, &len, &items);
for (uint i = 0; i < len; i++) {
assert(MP_OBJ_IS_TYPE(items[i], &mp_const_type));
mp_obj_t member = mp_obj_class_lookup((mp_obj_type_t*)items[i], attr);
if (member != MP_OBJ_NULL) {
// XXX this and the code in class_load_attr need to be factored out
if (mp_obj_is_callable(member)) {
// class member is callable so build a bound method
// check if the methods are functions, static or class methods
// see http://docs.python.org/3.3/howto/descriptor.html
// TODO check that this is the correct place to have this logic
if (MP_OBJ_IS_TYPE(member, &mp_type_staticmethod)) {
// return just the function
dest[0] = ((mp_obj_staticmethod_t*)member)->fun;
} else if (MP_OBJ_IS_TYPE(member, &mp_type_classmethod)) {
// return a bound method, with self being the type of this object
dest[0] = ((mp_obj_classmethod_t*)member)->fun;
dest[1] = mp_obj_get_type(self->obj);
} else {
// return a bound method, with self being this object
dest[0] = member;
dest[1] = self->obj;
}
return;
} else {
// class member is a value, so just return that value
dest[0] = member;
return;
}
}
}
}
const mp_obj_type_t super_type = {
{ &mp_const_type },
"super",
.print = super_print,
.make_new = super_make_new,
.load_attr = super_load_attr,
};
mp_obj_t mp_obj_new_super(mp_obj_t type, mp_obj_t obj) {
mp_obj_super_t *o = m_new_obj(mp_obj_super_t);
*o = (mp_obj_super_t){{&super_type}, type, obj};
return o;
}
/******************************************************************************/
// built-ins specific to types
static mp_obj_t mp_builtin_issubclass(mp_obj_t object, mp_obj_t classinfo) {
if (!MP_OBJ_IS_TYPE(object, &mp_const_type)) {
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "issubclass() arg 1 must be a class"));
}
// TODO support a tuple of classes for second argument
if (!MP_OBJ_IS_TYPE(classinfo, &mp_const_type)) {
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "issubclass() arg 2 must be a class"));
}
for (;;) {
if (object == classinfo) {
return mp_const_true;
}
// not equivalent classes, keep searching base classes
assert(MP_OBJ_IS_TYPE(object, &mp_const_type));
mp_obj_type_t *self = object;
// for a const struct, this entry might be NULL
if (self->bases_tuple == MP_OBJ_NULL) {
return mp_const_false;
}
uint len;
mp_obj_t *items;
mp_obj_tuple_get(self->bases_tuple, &len, &items);
if (len == 0) {
return mp_const_false;
}
for (uint i = 0; i < len - 1; i++) {
if (mp_builtin_issubclass(items[i], classinfo) == mp_const_true) {
return mp_const_true;
}
}
// search last base (simple tail recursion elimination)
object = items[len - 1];
}
}
MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_issubclass_obj, mp_builtin_issubclass);
static mp_obj_t mp_builtin_isinstance(mp_obj_t object, mp_obj_t classinfo) {
return mp_builtin_issubclass(mp_obj_get_type(object), classinfo);
}
MP_DEFINE_CONST_FUN_OBJ_2(mp_builtin_isinstance_obj, mp_builtin_isinstance);
/******************************************************************************/
// staticmethod and classmethod types (probably should go in a different file)
const mp_obj_type_t mp_type_staticmethod = {
{ &mp_const_type },
"staticmethod",
};
const mp_obj_type_t mp_type_classmethod = {
{ &mp_const_type },
"classmethod",
};