1013 lines
37 KiB
C
1013 lines
37 KiB
C
// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args
|
|
// mp_xxx functions are safer and can be called by anyone
|
|
// note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "mpconfig.h"
|
|
#include "mpqstr.h"
|
|
#include "obj.h"
|
|
#include "runtime0.h"
|
|
#include "runtime.h"
|
|
#include "map.h"
|
|
#include "builtin.h"
|
|
|
|
#if 0 // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#define WRITE_CODE (1)
|
|
#define DEBUG_printf(args...) printf(args)
|
|
#define DEBUG_OP_printf(args...) printf(args)
|
|
#else // don't print debugging info
|
|
#define DEBUG_printf(args...) (void)0
|
|
#define DEBUG_OP_printf(args...) (void)0
|
|
#endif
|
|
|
|
// locals and globals need to be pointers because they can be the same in outer module scope
|
|
static mp_map_t *map_locals;
|
|
static mp_map_t *map_globals;
|
|
static mp_map_t map_builtins;
|
|
|
|
typedef enum {
|
|
MP_CODE_NONE,
|
|
MP_CODE_BYTE,
|
|
MP_CODE_NATIVE,
|
|
MP_CODE_INLINE_ASM,
|
|
} mp_code_kind_t;
|
|
|
|
typedef struct _mp_code_t {
|
|
mp_code_kind_t kind;
|
|
int n_args;
|
|
int n_locals;
|
|
int n_stack;
|
|
bool is_generator;
|
|
union {
|
|
struct {
|
|
byte *code;
|
|
uint len;
|
|
} u_byte;
|
|
struct {
|
|
mp_fun_t fun;
|
|
} u_native;
|
|
struct {
|
|
void *fun;
|
|
} u_inline_asm;
|
|
};
|
|
} mp_code_t;
|
|
|
|
static int next_unique_code_id;
|
|
static machine_uint_t unique_codes_alloc = 0;
|
|
static mp_code_t *unique_codes = NULL;
|
|
|
|
#ifdef WRITE_CODE
|
|
FILE *fp_write_code = NULL;
|
|
#endif
|
|
|
|
// a good optimising compiler will inline this if necessary
|
|
static void mp_map_add_qstr(mp_map_t *map, qstr qstr, mp_obj_t value) {
|
|
mp_map_lookup(map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
|
|
}
|
|
|
|
void rt_init(void) {
|
|
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
|
|
map_locals = map_globals = mp_map_new(1);
|
|
mp_map_add_qstr(map_globals, MP_QSTR___name__, mp_obj_new_str(MP_QSTR___main__));
|
|
|
|
// init built-in hash table
|
|
mp_map_init(&map_builtins, 3);
|
|
|
|
// built-in exceptions (TODO, make these proper classes)
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_AttributeError, mp_obj_new_exception(MP_QSTR_AttributeError));
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_IndexError, mp_obj_new_exception(MP_QSTR_IndexError));
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_KeyError, mp_obj_new_exception(MP_QSTR_KeyError));
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_NameError, mp_obj_new_exception(MP_QSTR_NameError));
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_TypeError, mp_obj_new_exception(MP_QSTR_TypeError));
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_SyntaxError, mp_obj_new_exception(MP_QSTR_SyntaxError));
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_ValueError, mp_obj_new_exception(MP_QSTR_ValueError));
|
|
// Somehow CPython managed to have OverflowError not inherit from ValueError ;-/
|
|
// TODO: For MICROPY_CPYTHON_COMPAT==0 use ValueError to avoid exc proliferation
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_OverflowError, mp_obj_new_exception(MP_QSTR_OverflowError));
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_OSError, mp_obj_new_exception(MP_QSTR_OSError));
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_AssertionError, mp_obj_new_exception(MP_QSTR_AssertionError));
|
|
|
|
// built-in objects
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_Ellipsis, mp_const_ellipsis);
|
|
|
|
// built-in core functions
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR___build_class__, (mp_obj_t)&mp_builtin___build_class___obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR___repl_print__, (mp_obj_t)&mp_builtin___repl_print___obj);
|
|
|
|
// built-in types
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_bool, (mp_obj_t)&bool_type);
|
|
#if MICROPY_ENABLE_FLOAT
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_complex, (mp_obj_t)&complex_type);
|
|
#endif
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_dict, (mp_obj_t)&dict_type);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_enumerate, (mp_obj_t)&enumerate_type);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_filter, (mp_obj_t)&filter_type);
|
|
#if MICROPY_ENABLE_FLOAT
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_float, (mp_obj_t)&float_type);
|
|
#endif
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_int, (mp_obj_t)&int_type);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_list, (mp_obj_t)&list_type);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_map, (mp_obj_t)&map_type);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_set, (mp_obj_t)&set_type);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_tuple, (mp_obj_t)&tuple_type);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_type, (mp_obj_t)&mp_const_type);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_zip, (mp_obj_t)&zip_type);
|
|
|
|
// built-in user functions
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_abs, (mp_obj_t)&mp_builtin_abs_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_all, (mp_obj_t)&mp_builtin_all_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_any, (mp_obj_t)&mp_builtin_any_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_callable, (mp_obj_t)&mp_builtin_callable_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_chr, (mp_obj_t)&mp_builtin_chr_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_divmod, (mp_obj_t)&mp_builtin_divmod_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_eval, (mp_obj_t)&mp_builtin_eval_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_hash, (mp_obj_t)&mp_builtin_hash_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_isinstance, (mp_obj_t)&mp_builtin_isinstance_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_issubclass, (mp_obj_t)&mp_builtin_issubclass_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_iter, (mp_obj_t)&mp_builtin_iter_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_len, (mp_obj_t)&mp_builtin_len_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_max, (mp_obj_t)&mp_builtin_max_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_min, (mp_obj_t)&mp_builtin_min_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_next, (mp_obj_t)&mp_builtin_next_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_ord, (mp_obj_t)&mp_builtin_ord_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_pow, (mp_obj_t)&mp_builtin_pow_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_print, (mp_obj_t)&mp_builtin_print_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_range, (mp_obj_t)&mp_builtin_range_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_repr, (mp_obj_t)&mp_builtin_repr_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_sorted, (mp_obj_t)&mp_builtin_sorted_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_sum, (mp_obj_t)&mp_builtin_sum_obj);
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_str, (mp_obj_t)&mp_builtin_str_obj);
|
|
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
// Add (empty) micropython module, so it was possible to "import micropython",
|
|
// which can be a placeholder module on CPython.
|
|
mp_obj_t m = mp_obj_new_module(qstr_from_str_static("micropython"));
|
|
rt_store_name(qstr_from_str_static("micropython"), m);
|
|
#endif
|
|
|
|
next_unique_code_id = 1; // 0 indicates "no code"
|
|
unique_codes_alloc = 0;
|
|
unique_codes = NULL;
|
|
|
|
#ifdef WRITE_CODE
|
|
fp_write_code = fopen("out-code", "wb");
|
|
#endif
|
|
}
|
|
|
|
void rt_deinit(void) {
|
|
m_del(mp_code_t, unique_codes, unique_codes_alloc);
|
|
#ifdef WRITE_CODE
|
|
if (fp_write_code != NULL) {
|
|
fclose(fp_write_code);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
int rt_get_unique_code_id(void) {
|
|
return next_unique_code_id++;
|
|
}
|
|
|
|
static void alloc_unique_codes(void) {
|
|
if (next_unique_code_id > unique_codes_alloc) {
|
|
// increase size of unique_codes table
|
|
unique_codes = m_renew(mp_code_t, unique_codes, unique_codes_alloc, next_unique_code_id);
|
|
for (int i = unique_codes_alloc; i < next_unique_code_id; i++) {
|
|
unique_codes[i].kind = MP_CODE_NONE;
|
|
}
|
|
unique_codes_alloc = next_unique_code_id;
|
|
}
|
|
}
|
|
|
|
void rt_assign_byte_code(int unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, bool is_generator) {
|
|
alloc_unique_codes();
|
|
|
|
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
|
|
unique_codes[unique_code_id].kind = MP_CODE_BYTE;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_locals = n_locals;
|
|
unique_codes[unique_code_id].n_stack = n_stack;
|
|
unique_codes[unique_code_id].is_generator = is_generator;
|
|
unique_codes[unique_code_id].u_byte.code = code;
|
|
unique_codes[unique_code_id].u_byte.len = len;
|
|
|
|
//printf("byte code: %d bytes\n", len);
|
|
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d\n", unique_code_id, code, len, n_args);
|
|
for (int i = 0; i < 128 && i < len; i++) {
|
|
if (i > 0 && i % 16 == 0) {
|
|
DEBUG_printf("\n");
|
|
}
|
|
DEBUG_printf(" %02x", code[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
#if MICROPY_SHOW_BC
|
|
extern void mp_show_byte_code(const byte *code, int len);
|
|
mp_show_byte_code(code, len);
|
|
#endif
|
|
|
|
#ifdef WRITE_CODE
|
|
if (fp_write_code != NULL) {
|
|
fwrite(code, len, 1, fp_write_code);
|
|
fflush(fp_write_code);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void rt_assign_native_code(int unique_code_id, void *fun, uint len, int n_args) {
|
|
alloc_unique_codes();
|
|
|
|
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
|
|
unique_codes[unique_code_id].kind = MP_CODE_NATIVE;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_locals = 0;
|
|
unique_codes[unique_code_id].n_stack = 0;
|
|
unique_codes[unique_code_id].is_generator = false;
|
|
unique_codes[unique_code_id].u_native.fun = fun;
|
|
|
|
//printf("native code: %d bytes\n", len);
|
|
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
|
|
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
|
|
for (int i = 0; i < 128 && i < len; i++) {
|
|
if (i > 0 && i % 16 == 0) {
|
|
DEBUG_printf("\n");
|
|
}
|
|
DEBUG_printf(" %02x", fun_data[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
|
|
#ifdef WRITE_CODE
|
|
if (fp_write_code != NULL) {
|
|
fwrite(fun_data, len, 1, fp_write_code);
|
|
fflush(fp_write_code);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void rt_assign_inline_asm_code(int unique_code_id, void *fun, uint len, int n_args) {
|
|
alloc_unique_codes();
|
|
|
|
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
|
|
unique_codes[unique_code_id].kind = MP_CODE_INLINE_ASM;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_locals = 0;
|
|
unique_codes[unique_code_id].n_stack = 0;
|
|
unique_codes[unique_code_id].is_generator = false;
|
|
unique_codes[unique_code_id].u_inline_asm.fun = fun;
|
|
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
|
|
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
|
|
for (int i = 0; i < 128 && i < len; i++) {
|
|
if (i > 0 && i % 16 == 0) {
|
|
DEBUG_printf("\n");
|
|
}
|
|
DEBUG_printf(" %02x", fun_data[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
|
|
#ifdef WRITE_CODE
|
|
if (fp_write_code != NULL) {
|
|
fwrite(fun_data, len, 1, fp_write_code);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
int rt_is_true(mp_obj_t arg) {
|
|
DEBUG_OP_printf("is true %p\n", arg);
|
|
if (MP_OBJ_IS_SMALL_INT(arg)) {
|
|
if (MP_OBJ_SMALL_INT_VALUE(arg) == 0) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else if (arg == mp_const_none) {
|
|
return 0;
|
|
} else if (arg == mp_const_false) {
|
|
return 0;
|
|
} else if (arg == mp_const_true) {
|
|
return 1;
|
|
} else if (MP_OBJ_IS_QSTR(arg)) {
|
|
// TODO: \0
|
|
return *qstr_str(MP_OBJ_QSTR_VALUE(arg)) != 0;
|
|
} else if (MP_OBJ_IS_TYPE(arg, &str_type)) {
|
|
// TODO: \0
|
|
return *qstr_str(mp_obj_str_get(arg)) != 0;
|
|
} else if (MP_OBJ_IS_TYPE(arg, &list_type)) {
|
|
uint len;
|
|
mp_obj_t *dummy;
|
|
mp_obj_list_get(arg, &len, &dummy);
|
|
return len != 0;
|
|
} else if (MP_OBJ_IS_TYPE(arg, &tuple_type)) {
|
|
uint len;
|
|
mp_obj_t *dummy;
|
|
mp_obj_tuple_get(arg, &len, &dummy);
|
|
return len != 0;
|
|
} else if (MP_OBJ_IS_TYPE(arg, &dict_type)) {
|
|
return mp_obj_dict_len(arg) != 0;
|
|
} else {
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_list_append(mp_obj_t self_in, mp_obj_t arg) {
|
|
return mp_obj_list_append(self_in, arg);
|
|
}
|
|
|
|
#define PARSE_DEC_IN_INTG (1)
|
|
#define PARSE_DEC_IN_FRAC (2)
|
|
#define PARSE_DEC_IN_EXP (3)
|
|
|
|
mp_obj_t rt_load_const_dec(qstr qstr) {
|
|
#if MICROPY_ENABLE_FLOAT
|
|
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
|
|
const char *s = qstr_str(qstr);
|
|
int in = PARSE_DEC_IN_INTG;
|
|
mp_float_t dec_val = 0;
|
|
bool exp_neg = false;
|
|
int exp_val = 0;
|
|
int exp_extra = 0;
|
|
bool imag = false;
|
|
for (; *s; s++) {
|
|
int dig = *s;
|
|
if ('0' <= dig && dig <= '9') {
|
|
dig -= '0';
|
|
if (in == PARSE_DEC_IN_EXP) {
|
|
exp_val = 10 * exp_val + dig;
|
|
} else {
|
|
dec_val = 10 * dec_val + dig;
|
|
if (in == PARSE_DEC_IN_FRAC) {
|
|
exp_extra -= 1;
|
|
}
|
|
}
|
|
} else if (in == PARSE_DEC_IN_INTG && dig == '.') {
|
|
in = PARSE_DEC_IN_FRAC;
|
|
} else if (in != PARSE_DEC_IN_EXP && (dig == 'E' || dig == 'e')) {
|
|
in = PARSE_DEC_IN_EXP;
|
|
if (s[1] == '+') {
|
|
s++;
|
|
} else if (s[1] == '-') {
|
|
s++;
|
|
exp_neg = true;
|
|
}
|
|
} else if (dig == 'J' || dig == 'j') {
|
|
s++;
|
|
imag = true;
|
|
break;
|
|
} else {
|
|
// unknown character
|
|
break;
|
|
}
|
|
}
|
|
if (*s != 0) {
|
|
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_SyntaxError, "invalid syntax for number"));
|
|
}
|
|
if (exp_neg) {
|
|
exp_val = -exp_val;
|
|
}
|
|
exp_val += exp_extra;
|
|
for (; exp_val > 0; exp_val--) {
|
|
dec_val *= 10;
|
|
}
|
|
for (; exp_val < 0; exp_val++) {
|
|
dec_val *= 0.1;
|
|
}
|
|
if (imag) {
|
|
return mp_obj_new_complex(0, dec_val);
|
|
} else {
|
|
return mp_obj_new_float(dec_val);
|
|
}
|
|
#else
|
|
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_SyntaxError, "decimal numbers not supported"));
|
|
#endif
|
|
}
|
|
|
|
mp_obj_t rt_load_const_str(qstr qstr) {
|
|
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
|
|
return mp_obj_new_str(qstr);
|
|
}
|
|
|
|
mp_obj_t rt_load_name(qstr qstr) {
|
|
// logic: search locals, globals, builtins
|
|
DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
|
|
mp_map_elem_t *elem = mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_NameError, "name '%s' is not defined", qstr_str(qstr)));
|
|
}
|
|
}
|
|
}
|
|
return elem->value;
|
|
}
|
|
|
|
mp_obj_t rt_load_global(qstr qstr) {
|
|
// logic: search globals, builtins
|
|
DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
|
|
mp_map_elem_t *elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_NameError, "name '%s' is not defined", qstr_str(qstr)));
|
|
}
|
|
}
|
|
return elem->value;
|
|
}
|
|
|
|
mp_obj_t rt_load_build_class(void) {
|
|
DEBUG_OP_printf("load_build_class\n");
|
|
mp_map_elem_t *elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_NameError, "name '__build_class__' is not defined"));
|
|
}
|
|
return elem->value;
|
|
}
|
|
|
|
mp_obj_t rt_get_cell(mp_obj_t cell) {
|
|
return mp_obj_cell_get(cell);
|
|
}
|
|
|
|
void rt_set_cell(mp_obj_t cell, mp_obj_t val) {
|
|
mp_obj_cell_set(cell, val);
|
|
}
|
|
|
|
void rt_store_name(qstr qstr, mp_obj_t obj) {
|
|
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
|
|
mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj;
|
|
}
|
|
|
|
void rt_store_global(qstr qstr, mp_obj_t obj) {
|
|
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
|
|
mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj;
|
|
}
|
|
|
|
mp_obj_t rt_unary_op(int op, mp_obj_t arg) {
|
|
DEBUG_OP_printf("unary %d %p\n", op, arg);
|
|
if (MP_OBJ_IS_SMALL_INT(arg)) {
|
|
mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
|
|
switch (op) {
|
|
case RT_UNARY_OP_NOT: if (val != 0) { return mp_const_true;} else { return mp_const_false; }
|
|
case RT_UNARY_OP_POSITIVE: break;
|
|
case RT_UNARY_OP_NEGATIVE: val = -val; break;
|
|
case RT_UNARY_OP_INVERT: val = ~val; break;
|
|
default: assert(0); val = 0;
|
|
}
|
|
if (MP_OBJ_FITS_SMALL_INT(val)) {
|
|
return MP_OBJ_NEW_SMALL_INT(val);
|
|
}
|
|
return mp_obj_new_int(val);
|
|
} else { // will be an object (small ints are caught in previous if)
|
|
mp_obj_base_t *o = arg;
|
|
if (o->type->unary_op != NULL) {
|
|
mp_obj_t result = o->type->unary_op(op, arg);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
// TODO specify in error message what the operator is
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "bad operand type for unary operator: '%s'", o->type->name));
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
|
|
DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs);
|
|
|
|
// TODO correctly distinguish inplace operators for mutable objects
|
|
// lookup logic that CPython uses for +=:
|
|
// check for implemented +=
|
|
// then check for implemented +
|
|
// then check for implemented seq.inplace_concat
|
|
// then check for implemented seq.concat
|
|
// then fail
|
|
// note that list does not implement + or +=, so that inplace_concat is reached first for +=
|
|
|
|
// deal with is, is not
|
|
if (op == RT_COMPARE_OP_IS) {
|
|
// TODO: may need to handle strings specially, CPython appears to
|
|
// assume all strings are interned (so "is" == "==" for strings)
|
|
return MP_BOOL(lhs == rhs);
|
|
}
|
|
if (op == RT_COMPARE_OP_IS_NOT) {
|
|
// TODO: may need to handle strings specially, CPython appears to
|
|
// assume all strings are interned (so "is" == "==" for strings)
|
|
return MP_BOOL(lhs != rhs);
|
|
}
|
|
|
|
// deal with == and != for all types
|
|
if (op == RT_COMPARE_OP_EQUAL || op == RT_COMPARE_OP_NOT_EQUAL) {
|
|
if (mp_obj_equal(lhs, rhs)) {
|
|
if (op == RT_COMPARE_OP_EQUAL) {
|
|
return mp_const_true;
|
|
} else {
|
|
return mp_const_false;
|
|
}
|
|
} else {
|
|
if (op == RT_COMPARE_OP_EQUAL) {
|
|
return mp_const_false;
|
|
} else {
|
|
return mp_const_true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// deal with exception_match for all types
|
|
if (op == RT_COMPARE_OP_EXCEPTION_MATCH) {
|
|
// TODO properly! at the moment it just compares the exception identifier for equality
|
|
if (MP_OBJ_IS_TYPE(lhs, &exception_type) && MP_OBJ_IS_TYPE(rhs, &exception_type)) {
|
|
if (mp_obj_exception_get_type(lhs) == mp_obj_exception_get_type(rhs)) {
|
|
return mp_const_true;
|
|
} else {
|
|
return mp_const_false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MP_OBJ_IS_SMALL_INT(lhs)) {
|
|
mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
|
|
if (MP_OBJ_IS_SMALL_INT(rhs)) {
|
|
mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
|
|
switch (op) {
|
|
case RT_BINARY_OP_OR:
|
|
case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
|
|
case RT_BINARY_OP_XOR:
|
|
case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
|
|
case RT_BINARY_OP_AND:
|
|
case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
|
|
case RT_BINARY_OP_LSHIFT:
|
|
case RT_BINARY_OP_INPLACE_LSHIFT: lhs_val <<= rhs_val; break;
|
|
case RT_BINARY_OP_RSHIFT:
|
|
case RT_BINARY_OP_INPLACE_RSHIFT: lhs_val >>= rhs_val; break;
|
|
case RT_BINARY_OP_ADD:
|
|
case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
|
|
case RT_BINARY_OP_SUBTRACT:
|
|
case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
|
|
case RT_BINARY_OP_MULTIPLY:
|
|
case RT_BINARY_OP_INPLACE_MULTIPLY: lhs_val *= rhs_val; break;
|
|
case RT_BINARY_OP_FLOOR_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break;
|
|
#if MICROPY_ENABLE_FLOAT
|
|
case RT_BINARY_OP_TRUE_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
|
|
#endif
|
|
|
|
// TODO implement modulo as specified by Python
|
|
case RT_BINARY_OP_MODULO:
|
|
case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break;
|
|
|
|
// TODO check for negative power, and overflow
|
|
case RT_BINARY_OP_POWER:
|
|
case RT_BINARY_OP_INPLACE_POWER:
|
|
{
|
|
int ans = 1;
|
|
while (rhs_val > 0) {
|
|
if (rhs_val & 1) {
|
|
ans *= lhs_val;
|
|
}
|
|
lhs_val *= lhs_val;
|
|
rhs_val /= 2;
|
|
}
|
|
lhs_val = ans;
|
|
break;
|
|
}
|
|
case RT_COMPARE_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
|
|
case RT_COMPARE_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
|
|
case RT_COMPARE_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
|
|
case RT_COMPARE_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break;
|
|
|
|
default: assert(0);
|
|
}
|
|
// TODO: We just should make mp_obj_new_int() inline and use that
|
|
if (MP_OBJ_FITS_SMALL_INT(lhs_val)) {
|
|
return MP_OBJ_NEW_SMALL_INT(lhs_val);
|
|
}
|
|
return mp_obj_new_int(lhs_val);
|
|
} else if (MP_OBJ_IS_TYPE(rhs, &float_type)) {
|
|
return mp_obj_float_binary_op(op, lhs_val, rhs);
|
|
} else if (MP_OBJ_IS_TYPE(rhs, &complex_type)) {
|
|
return mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
|
|
}
|
|
}
|
|
|
|
/* deal with `in` and `not in`
|
|
*
|
|
* NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
|
|
* needs to go below
|
|
*/
|
|
if (op == RT_COMPARE_OP_IN || op == RT_COMPARE_OP_NOT_IN) {
|
|
if (!MP_OBJ_IS_SMALL_INT(rhs)) {
|
|
mp_obj_base_t *o = rhs;
|
|
if (o->type->binary_op != NULL) {
|
|
mp_obj_t res = o->type->binary_op(op, rhs, lhs);
|
|
if (res != NULL) {
|
|
return res;
|
|
}
|
|
}
|
|
if (o->type->getiter != NULL) {
|
|
/* second attempt, walk the iterator */
|
|
mp_obj_t next = NULL;
|
|
mp_obj_t iter = rt_getiter(rhs);
|
|
while ((next = rt_iternext(iter)) != mp_const_stop_iteration) {
|
|
if (mp_obj_equal(next, lhs)) {
|
|
return MP_BOOL(op == RT_COMPARE_OP_IN);
|
|
}
|
|
}
|
|
return MP_BOOL(op != RT_COMPARE_OP_IN);
|
|
}
|
|
}
|
|
|
|
nlr_jump(mp_obj_new_exception_msg_varg(
|
|
MP_QSTR_TypeError, "'%s' object is not iterable",
|
|
mp_obj_get_type_str(rhs)));
|
|
return mp_const_none;
|
|
}
|
|
|
|
if (MP_OBJ_IS_OBJ(lhs)) {
|
|
mp_obj_base_t *o = lhs;
|
|
if (o->type->binary_op != NULL) {
|
|
mp_obj_t result = o->type->binary_op(op, lhs, rhs);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
// TODO implement dispatch for reverse binary ops
|
|
}
|
|
|
|
// TODO specify in error message what the operator is
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError,
|
|
"unsupported operand types for binary operator: '%s', '%s'",
|
|
mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t rt_make_function_from_id(int unique_code_id) {
|
|
DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id);
|
|
if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) {
|
|
// illegal code id
|
|
return mp_const_none;
|
|
}
|
|
|
|
// make the function, depending on the code kind
|
|
mp_code_t *c = &unique_codes[unique_code_id];
|
|
mp_obj_t fun;
|
|
switch (c->kind) {
|
|
case MP_CODE_BYTE:
|
|
fun = mp_obj_new_fun_bc(c->n_args, c->n_locals + c->n_stack, c->u_byte.code);
|
|
break;
|
|
case MP_CODE_NATIVE:
|
|
fun = rt_make_function_n(c->n_args, c->u_native.fun);
|
|
break;
|
|
case MP_CODE_INLINE_ASM:
|
|
fun = mp_obj_new_fun_asm(c->n_args, c->u_inline_asm.fun);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
fun = mp_const_none;
|
|
}
|
|
|
|
// check for generator functions and if so wrap in generator object
|
|
if (c->is_generator) {
|
|
fun = mp_obj_new_gen_wrap(c->n_locals, c->n_stack, fun);
|
|
}
|
|
|
|
return fun;
|
|
}
|
|
|
|
mp_obj_t rt_make_closure_from_id(int unique_code_id, mp_obj_t closure_tuple) {
|
|
DEBUG_OP_printf("make_closure_from_id %d\n", unique_code_id);
|
|
// make function object
|
|
mp_obj_t ffun = rt_make_function_from_id(unique_code_id);
|
|
// wrap function in closure object
|
|
return mp_obj_new_closure(ffun, closure_tuple);
|
|
}
|
|
|
|
mp_obj_t rt_call_function_0(mp_obj_t fun) {
|
|
return rt_call_function_n(fun, 0, NULL);
|
|
}
|
|
|
|
mp_obj_t rt_call_function_1(mp_obj_t fun, mp_obj_t arg) {
|
|
return rt_call_function_n(fun, 1, &arg);
|
|
}
|
|
|
|
mp_obj_t rt_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
|
|
mp_obj_t args[2];
|
|
args[1] = arg1;
|
|
args[0] = arg2;
|
|
return rt_call_function_n(fun, 2, args);
|
|
}
|
|
|
|
// args are in reverse order in the array
|
|
mp_obj_t rt_call_function_n(mp_obj_t fun_in, int n_args, const mp_obj_t *args) {
|
|
// TODO improve this: fun object can specify its type and we parse here the arguments,
|
|
// passing to the function arrays of fixed and keyword arguments
|
|
|
|
DEBUG_OP_printf("calling function %p(n_args=%d, args=%p)\n", fun_in, n_args, args);
|
|
|
|
if (MP_OBJ_IS_SMALL_INT(fun_in)) {
|
|
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "'int' object is not callable"));
|
|
} else {
|
|
mp_obj_base_t *fun = fun_in;
|
|
if (fun->type->call_n != NULL) {
|
|
return fun->type->call_n(fun_in, n_args, args);
|
|
} else {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not callable", fun->type->name));
|
|
}
|
|
}
|
|
}
|
|
|
|
// args are in reverse order in the array; keyword arguments come first, value then key
|
|
// eg: (value1, key1, value0, key0, arg1, arg0)
|
|
mp_obj_t rt_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
// TODO merge this and _n into a single, smarter thing
|
|
DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args);
|
|
|
|
if (MP_OBJ_IS_SMALL_INT(fun_in)) {
|
|
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "'int' object is not callable"));
|
|
} else {
|
|
mp_obj_base_t *fun = fun_in;
|
|
if (fun->type->call_n_kw != NULL) {
|
|
return fun->type->call_n_kw(fun_in, n_args, n_kw, args);
|
|
} else {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not callable", fun->type->name));
|
|
}
|
|
}
|
|
}
|
|
|
|
// args contains: arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun
|
|
// if n_args==0 then there are only self/NULL and fun
|
|
mp_obj_t rt_call_method_n(uint n_args, const mp_obj_t *args) {
|
|
DEBUG_OP_printf("call method %p(self=%p, n_args=%u)\n", args[n_args + 1], args[n_args], n_args);
|
|
return rt_call_function_n(args[n_args + 1], n_args + ((args[n_args] == NULL) ? 0 : 1), args);
|
|
}
|
|
|
|
// args contains: kw_val(n_kw-1) kw_key(n_kw-1) ... kw_val(0) kw_key(0) arg(n_args-1) arg(n_args-2) ... arg(0) self/NULL fun
|
|
mp_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
uint n = n_args + 2 * n_kw;
|
|
DEBUG_OP_printf("call method %p(self=%p, n_args=%u, n_kw=%u)\n", args[n + 1], args[n], n_args, n_kw);
|
|
return rt_call_function_n_kw(args[n + 1], n_args + ((args[n] == NULL) ? 0 : 1), n_kw, args);
|
|
}
|
|
|
|
// items are in reverse order
|
|
mp_obj_t rt_build_tuple(int n_args, mp_obj_t *items) {
|
|
return mp_obj_new_tuple_reverse(n_args, items);
|
|
}
|
|
|
|
// items are in reverse order
|
|
mp_obj_t rt_build_list(int n_args, mp_obj_t *items) {
|
|
return mp_obj_new_list_reverse(n_args, items);
|
|
}
|
|
|
|
mp_obj_t rt_build_set(int n_args, mp_obj_t *items) {
|
|
return mp_obj_new_set(n_args, items);
|
|
}
|
|
|
|
mp_obj_t rt_store_set(mp_obj_t set, mp_obj_t item) {
|
|
mp_obj_set_store(set, item);
|
|
return set;
|
|
}
|
|
|
|
// unpacked items are stored in order into the array pointed to by items
|
|
void rt_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) {
|
|
if (MP_OBJ_IS_TYPE(seq_in, &tuple_type) || MP_OBJ_IS_TYPE(seq_in, &list_type)) {
|
|
uint seq_len;
|
|
mp_obj_t *seq_items;
|
|
if (MP_OBJ_IS_TYPE(seq_in, &tuple_type)) {
|
|
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
|
|
} else {
|
|
mp_obj_list_get(seq_in, &seq_len, &seq_items);
|
|
}
|
|
if (seq_len < num) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_ValueError, "need more than %d values to unpack", (void*)(machine_uint_t)seq_len));
|
|
} else if (seq_len > num) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_ValueError, "too many values to unpack (expected %d)", (void*)(machine_uint_t)num));
|
|
}
|
|
memcpy(items, seq_items, num * sizeof(mp_obj_t));
|
|
} else {
|
|
// TODO call rt_getiter and extract via rt_iternext
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(seq_in)));
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_build_map(int n_args) {
|
|
return mp_obj_new_dict(n_args);
|
|
}
|
|
|
|
mp_obj_t rt_store_map(mp_obj_t map, mp_obj_t key, mp_obj_t value) {
|
|
// map should always be a dict
|
|
return mp_obj_dict_store(map, key, value);
|
|
}
|
|
|
|
mp_obj_t rt_load_attr(mp_obj_t base, qstr attr) {
|
|
DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
|
|
// use load_method
|
|
mp_obj_t dest[2];
|
|
rt_load_method(base, attr, dest);
|
|
if (dest[0] == NULL) {
|
|
// load_method returned just a normal attribute
|
|
return dest[1];
|
|
} else {
|
|
// load_method returned a method, so build a bound method object
|
|
return mp_obj_new_bound_meth(dest[0], dest[1]);
|
|
}
|
|
}
|
|
|
|
void rt_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
|
|
DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
|
|
|
|
// clear output to indicate no attribute/method found yet
|
|
dest[0] = MP_OBJ_NULL;
|
|
dest[1] = MP_OBJ_NULL;
|
|
|
|
// get the type
|
|
mp_obj_type_t *type = mp_obj_get_type(base);
|
|
|
|
// if this type can do its own load, then call it
|
|
if (type->load_attr != NULL) {
|
|
type->load_attr(base, attr, dest);
|
|
}
|
|
|
|
// if nothing found yet, look for built-in and generic names
|
|
if (dest[1] == NULL) {
|
|
if (attr == MP_QSTR___next__ && type->iternext != NULL) {
|
|
dest[1] = (mp_obj_t)&mp_builtin_next_obj;
|
|
dest[0] = base;
|
|
} else {
|
|
// generic method lookup
|
|
// this is a lookup in the object (ie not class or type)
|
|
const mp_method_t *meth = type->methods;
|
|
if (meth != NULL) {
|
|
for (; meth->name != NULL; meth++) {
|
|
if (strcmp(meth->name, qstr_str(attr)) == 0) {
|
|
// check if the methods are functions, static or class methods
|
|
// see http://docs.python.org/3.3/howto/descriptor.html
|
|
if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_staticmethod)) {
|
|
// return just the function
|
|
dest[1] = ((mp_obj_staticmethod_t*)meth->fun)->fun;
|
|
} else if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_classmethod)) {
|
|
// return a bound method, with self being the type of this object
|
|
dest[1] = ((mp_obj_classmethod_t*)meth->fun)->fun;
|
|
dest[0] = mp_obj_get_type(base);
|
|
} else {
|
|
// return a bound method, with self being this object
|
|
dest[1] = (mp_obj_t)meth->fun;
|
|
dest[0] = base;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (dest[1] == NULL) {
|
|
// no attribute/method called attr
|
|
// following CPython, we give a more detailed error message for type objects
|
|
if (MP_OBJ_IS_TYPE(base, &mp_const_type)) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "type object '%s' has no attribute '%s'", ((mp_obj_type_t*)base)->name, qstr_str(attr)));
|
|
} else {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void rt_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
|
|
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
|
|
mp_obj_type_t *type = mp_obj_get_type(base);
|
|
if (type->store_attr != NULL) {
|
|
if (type->store_attr(base, attr, value)) {
|
|
return;
|
|
}
|
|
}
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
|
|
}
|
|
|
|
void rt_store_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t value) {
|
|
DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value);
|
|
if (MP_OBJ_IS_TYPE(base, &list_type)) {
|
|
// list store
|
|
mp_obj_list_store(base, index, value);
|
|
} else if (MP_OBJ_IS_TYPE(base, &dict_type)) {
|
|
// dict store
|
|
mp_obj_dict_store(base, index, value);
|
|
} else {
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_getiter(mp_obj_t o_in) {
|
|
if (MP_OBJ_IS_SMALL_INT(o_in)) {
|
|
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "'int' object is not iterable"));
|
|
} else {
|
|
mp_obj_base_t *o = o_in;
|
|
if (o->type->getiter != NULL) {
|
|
return o->type->getiter(o_in);
|
|
} else {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not iterable", o->type->name));
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_iternext(mp_obj_t o_in) {
|
|
if (MP_OBJ_IS_SMALL_INT(o_in)) {
|
|
nlr_jump(mp_obj_new_exception_msg(MP_QSTR_TypeError, "'int' object is not an iterator"));
|
|
} else {
|
|
mp_obj_base_t *o = o_in;
|
|
if (o->type->iternext != NULL) {
|
|
return o->type->iternext(o_in);
|
|
} else {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(MP_QSTR_TypeError, "'%s' object is not an iterator", o->type->name));
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
|
|
// build args array
|
|
mp_obj_t args[5];
|
|
args[0] = mp_obj_new_str(name);
|
|
args[1] = mp_const_none; // TODO should be globals
|
|
args[2] = mp_const_none; // TODO should be locals
|
|
args[3] = fromlist;
|
|
args[4] = level; // must be 0; we don't yet support other values
|
|
|
|
// TODO lookup __import__ and call that instead of going straight to builtin implementation
|
|
return mp_builtin___import__(5, args);
|
|
}
|
|
|
|
mp_obj_t rt_import_from(mp_obj_t module, qstr name) {
|
|
mp_obj_t x = rt_load_attr(module, name);
|
|
/* TODO convert AttributeError to ImportError
|
|
if (fail) {
|
|
(ImportError, "cannot import name %s", qstr_str(name), NULL)
|
|
}
|
|
*/
|
|
return x;
|
|
}
|
|
|
|
mp_map_t *rt_locals_get(void) {
|
|
return map_locals;
|
|
}
|
|
|
|
void rt_locals_set(mp_map_t *m) {
|
|
DEBUG_OP_printf("rt_locals_set(%p)\n", m);
|
|
map_locals = m;
|
|
}
|
|
|
|
mp_map_t *rt_globals_get(void) {
|
|
return map_globals;
|
|
}
|
|
|
|
void rt_globals_set(mp_map_t *m) {
|
|
DEBUG_OP_printf("rt_globals_set(%p)\n", m);
|
|
map_globals = m;
|
|
}
|
|
|
|
// these must correspond to the respective enum
|
|
void *const rt_fun_table[RT_F_NUMBER_OF] = {
|
|
rt_load_const_dec,
|
|
rt_load_const_str,
|
|
rt_load_name,
|
|
rt_load_global,
|
|
rt_load_build_class,
|
|
rt_load_attr,
|
|
rt_load_method,
|
|
rt_store_name,
|
|
rt_store_attr,
|
|
rt_store_subscr,
|
|
rt_is_true,
|
|
rt_unary_op,
|
|
rt_build_tuple,
|
|
rt_build_list,
|
|
rt_list_append,
|
|
rt_build_map,
|
|
rt_store_map,
|
|
rt_build_set,
|
|
rt_store_set,
|
|
rt_make_function_from_id,
|
|
rt_call_function_n,
|
|
rt_call_method_n,
|
|
rt_binary_op,
|
|
rt_getiter,
|
|
rt_iternext,
|
|
};
|
|
|
|
/*
|
|
void rt_f_vector(rt_fun_kind_t fun_kind) {
|
|
(rt_f_table[fun_kind])();
|
|
}
|
|
*/
|