micropython/ports/stm32/rfcore.c

609 lines
19 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2019 Damien P. George
* Copyright (c) 2020 Jim Mussared
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <string.h>
#include "py/mperrno.h"
#include "py/mphal.h"
#include "rtc.h"
#include "rfcore.h"
#if defined(STM32WB)
#include "stm32wbxx_ll_ipcc.h"
#define DEBUG_printf(...) // printf("rfcore: " __VA_ARGS__)
// Define to 1 to print traces of HCI packets
#define HCI_TRACE (0)
#define IPCC_CH_BLE (LL_IPCC_CHANNEL_1) // BLE HCI command and response
#define IPCC_CH_SYS (LL_IPCC_CHANNEL_2) // system HCI command and response
#define IPCC_CH_MM (LL_IPCC_CHANNEL_4) // release buffer
#define IPCC_CH_HCI_ACL (LL_IPCC_CHANNEL_6) // HCI ACL outgoing data
#define OGF_CTLR_BASEBAND (0x03)
#define OCF_CB_RESET (0x03)
#define OCF_CB_SET_EVENT_MASK2 (0x63)
#define OGF_VENDOR (0x3f)
#define OCF_WRITE_CONFIG (0x0c)
#define OCF_SET_TX_POWER (0x0f)
#define OCF_BLE_INIT (0x66)
#define HCI_OPCODE(ogf, ocf) ((ogf) << 10 | (ocf))
#define HCI_KIND_BT_CMD (0x01) // <kind=1>...?
#define HCI_KIND_BT_ACL (0x02) // <kind=2><?><?><len LSB><len MSB>
#define HCI_KIND_BT_EVENT (0x04) // <kind=4><op><len><data...>
#define HCI_KIND_VENDOR_RESPONSE (0x11)
#define HCI_KIND_VENDOR_EVENT (0x12)
#define HCI_EVENT_COMMAND_COMPLETE (0x0E) // <num packets><opcode 16><status><data...>
#define SYS_ACK_TIMEOUT_MS (250)
#define BLE_ACK_TIMEOUT_MS (250)
typedef struct _tl_list_node_t {
volatile struct _tl_list_node_t *next;
volatile struct _tl_list_node_t *prev;
uint8_t body[0];
} tl_list_node_t;
typedef struct _parse_hci_info_t {
int (*cb_fun)(void *, const uint8_t *, size_t);
void *cb_env;
bool was_hci_reset_evt;
} parse_hci_info_t;
// Version
// [0:3] = Build - 0: Untracked - 15:Released - x: Tracked version
// [4:7] = branch - 0: Mass Market - x: ...
// [8:15] = Subversion
// [16:23] = Version minor
// [24:31] = Version major
// Memory Size
// [0:7] = Flash (Number of 4k sectors)
// [8:15] = Reserved (Shall be set to 0 - may be used as flash extension)
// [16:23] = SRAM2b (Number of 1k sectors)
// [24:31] = SRAM2a (Number of 1k sectors)
typedef union __attribute__((packed)) _ipcc_device_info_table_t {
struct {
uint32_t table_state;
uint8_t reserved0;
uint8_t last_fus_state;
uint8_t last_ws_state;
uint8_t ws_type;
uint32_t safeboot_version;
uint32_t fus_version;
uint32_t fus_memorysize;
uint32_t ws_version;
uint32_t ws_memorysize;
uint32_t ws_ble_info;
uint32_t ws_thread_info;
uint32_t reserved1;
uint64_t uid64;
uint16_t device_id;
uint16_t pad;
} fus;
struct {
uint32_t safeboot_version;
uint32_t fus_version;
uint32_t fus_memorysize;
uint32_t fus_info;
uint32_t fw_version;
uint32_t fw_memorysize;
uint32_t fw_infostack;
uint32_t fw_reserved;
} ws;
} ipcc_device_info_table_t;
typedef struct __attribute__((packed)) _ipcc_ble_table_t {
uint8_t *pcmd_buffer;
uint8_t *pcs_buffer;
tl_list_node_t *pevt_queue;
uint8_t *phci_acl_data_buffer;
} ipcc_ble_table_t;
// msg
// [0:7] = cmd/evt
// [8:31] = Reserved
typedef struct __attribute__((packed)) _ipcc_sys_table_t {
uint8_t *pcmd_buffer;
tl_list_node_t *sys_queue;
} ipcc_sys_table_t;
typedef struct __attribute__((packed)) _ipcc_mem_manager_table_t {
uint8_t *spare_ble_buffer;
uint8_t *spare_sys_buffer;
uint8_t *blepool;
uint32_t blepoolsize;
tl_list_node_t *pevt_free_buffer_queue;
uint8_t *traces_evt_pool;
uint32_t tracespoolsize;
} ipcc_mem_manager_table_t;
typedef struct __attribute__((packed)) _ipcc_ref_table_t {
ipcc_device_info_table_t *p_device_info_table;
ipcc_ble_table_t *p_ble_table;
void *p_thread_table;
ipcc_sys_table_t *p_sys_table;
ipcc_mem_manager_table_t *p_mem_manager_table;
void *p_traces_table;
void *p_mac_802_15_4_table;
void *p_zigbee_table;
void *p_lld_tests_table;
void *p_lld_ble_table;
} ipcc_ref_table_t;
// The stm32wb55xg.ld script puts .bss.ipcc_mem_* into SRAM2A and .bss_ipcc_membuf_* into SRAM2B.
// It also leaves 64 bytes at the start of SRAM2A for the ref table.
STATIC ipcc_device_info_table_t ipcc_mem_dev_info_tab; // mem1
STATIC ipcc_ble_table_t ipcc_mem_ble_tab; // mem1
STATIC ipcc_sys_table_t ipcc_mem_sys_tab; // mem1
STATIC ipcc_mem_manager_table_t ipcc_mem_memmgr_tab; // mem1
STATIC uint8_t ipcc_membuf_sys_cmd_buf[272]; // mem2
STATIC tl_list_node_t ipcc_mem_sys_queue; // mem1
STATIC tl_list_node_t ipcc_mem_memmgr_free_buf_queue; // mem1
STATIC uint8_t ipcc_membuf_memmgr_ble_spare_evt_buf[272]; // mem2
STATIC uint8_t ipcc_membuf_memmgr_sys_spare_evt_buf[272]; // mem2
STATIC uint8_t ipcc_membuf_memmgr_evt_pool[6 * 272]; // mem2
STATIC uint8_t ipcc_membuf_ble_cmd_buf[272]; // mem2
STATIC uint8_t ipcc_membuf_ble_cs_buf[272]; // mem2
STATIC tl_list_node_t ipcc_mem_ble_evt_queue; // mem1
STATIC uint8_t ipcc_membuf_ble_hci_acl_data_buf[272]; // mem2
// Set by the RX IRQ handler on incoming HCI payload.
STATIC volatile bool had_ble_irq = false;
/******************************************************************************/
// Transport layer linked list
STATIC void tl_list_init(volatile tl_list_node_t *n) {
n->next = n;
n->prev = n;
}
STATIC volatile tl_list_node_t *tl_list_unlink(volatile tl_list_node_t *n) {
volatile tl_list_node_t *next = n->next;
volatile tl_list_node_t *prev = n->prev;
prev->next = next;
next->prev = prev;
return next;
}
STATIC void tl_list_append(volatile tl_list_node_t *head, volatile tl_list_node_t *n) {
n->next = head;
n->prev = head->prev;
head->prev->next = n;
head->prev = n;
}
/******************************************************************************/
// IPCC interface
STATIC volatile ipcc_ref_table_t *get_buffer_table(void) {
// The IPCCDBA option bytes must not be changed without
// making a corresponding change to the linker script.
return (volatile ipcc_ref_table_t *)(SRAM2A_BASE + LL_FLASH_GetIPCCBufferAddr() * 4);
}
void ipcc_init(uint32_t irq_pri) {
DEBUG_printf("ipcc_init\n");
// Setup buffer table pointers
volatile ipcc_ref_table_t *tab = get_buffer_table();
tab->p_device_info_table = &ipcc_mem_dev_info_tab;
tab->p_ble_table = &ipcc_mem_ble_tab;
tab->p_sys_table = &ipcc_mem_sys_tab;
tab->p_mem_manager_table = &ipcc_mem_memmgr_tab;
// Start IPCC peripheral
__HAL_RCC_IPCC_CLK_ENABLE();
// Enable receive IRQ on the BLE channel.
LL_C1_IPCC_EnableIT_RXO(IPCC);
LL_C1_IPCC_DisableReceiveChannel(IPCC, LL_IPCC_CHANNEL_1 | LL_IPCC_CHANNEL_2 | LL_IPCC_CHANNEL_3 | LL_IPCC_CHANNEL_4 | LL_IPCC_CHANNEL_5 | LL_IPCC_CHANNEL_6);
LL_C1_IPCC_EnableReceiveChannel(IPCC, IPCC_CH_BLE);
NVIC_SetPriority(IPCC_C1_RX_IRQn, irq_pri);
HAL_NVIC_EnableIRQ(IPCC_C1_RX_IRQn);
// Device info table will be populated by FUS/WS on CPU2 boot.
// Populate system table
tl_list_init(&ipcc_mem_sys_queue);
ipcc_mem_sys_tab.pcmd_buffer = ipcc_membuf_sys_cmd_buf;
ipcc_mem_sys_tab.sys_queue = &ipcc_mem_sys_queue;
// Populate memory manager table
tl_list_init(&ipcc_mem_memmgr_free_buf_queue);
ipcc_mem_memmgr_tab.spare_ble_buffer = ipcc_membuf_memmgr_ble_spare_evt_buf;
ipcc_mem_memmgr_tab.spare_sys_buffer = ipcc_membuf_memmgr_sys_spare_evt_buf;
ipcc_mem_memmgr_tab.blepool = ipcc_membuf_memmgr_evt_pool;
ipcc_mem_memmgr_tab.blepoolsize = sizeof(ipcc_membuf_memmgr_evt_pool);
ipcc_mem_memmgr_tab.pevt_free_buffer_queue = &ipcc_mem_memmgr_free_buf_queue;
ipcc_mem_memmgr_tab.traces_evt_pool = NULL;
ipcc_mem_memmgr_tab.tracespoolsize = 0;
// Populate BLE table
tl_list_init(&ipcc_mem_ble_evt_queue);
ipcc_mem_ble_tab.pcmd_buffer = ipcc_membuf_ble_cmd_buf;
ipcc_mem_ble_tab.pcs_buffer = ipcc_membuf_ble_cs_buf;
ipcc_mem_ble_tab.pevt_queue = &ipcc_mem_ble_evt_queue;
ipcc_mem_ble_tab.phci_acl_data_buffer = ipcc_membuf_ble_hci_acl_data_buf;
}
/******************************************************************************/
// Transport layer HCI interface
STATIC void tl_parse_hci_msg(const uint8_t *buf, parse_hci_info_t *parse) {
const char *info;
size_t len = 0;
bool applied_set_event_event_mask2_fix = false;
switch (buf[0]) {
case HCI_KIND_BT_ACL: {
info = "HCI_ACL";
len = 5 + buf[3] + (buf[4] << 8);
if (parse != NULL) {
parse->cb_fun(parse->cb_env, buf, len);
}
break;
}
case HCI_KIND_BT_EVENT: {
info = "HCI_EVT";
len = 3 + buf[2];
if (parse != NULL) {
if (buf[1] == HCI_EVENT_COMMAND_COMPLETE && len == 7) {
uint16_t opcode = (buf[5] << 8) | buf[4];
uint8_t status = buf[6];
if (opcode == HCI_OPCODE(OGF_CTLR_BASEBAND, OCF_CB_SET_EVENT_MASK2) && status != 0) {
// The WB doesn't support this command (despite being in CS 4.1), so pretend like
// it succeeded by replacing the final byte (status) with a zero.
applied_set_event_event_mask2_fix = true;
len -= 1;
}
if (opcode == HCI_OPCODE(OGF_CTLR_BASEBAND, OCF_CB_RESET) && status == 0) {
// Controller acknowledged reset command.
// This will trigger setting the MAC address.
parse->was_hci_reset_evt = true;
}
}
parse->cb_fun(parse->cb_env, buf, len);
if (applied_set_event_event_mask2_fix) {
// Inject the zero status.
uint8_t data = 0;
parse->cb_fun(parse->cb_env, &data, 1);
// Restore the length for the HCI tracing below.
len += 1;
}
}
break;
}
case HCI_KIND_VENDOR_RESPONSE: {
// assert(buf[1] == 0x0e);
info = "VEND_RESP";
len = 3 + buf[2]; // ???
// uint16_t cmd = buf[4] | buf[5] << 8;
// uint8_t status = buf[6];
break;
}
case HCI_KIND_VENDOR_EVENT: {
// assert(buf[1] == 0xff);
info = "VEND_EVT";
len = 3 + buf[2]; // ???
// uint16_t evt = buf[3] | buf[4] << 8;
break;
}
default:
info = "HCI_UNKNOWN";
break;
}
#if HCI_TRACE
printf("[% 8d] <%s(%02x", mp_hal_ticks_ms(), info, buf[0]);
for (int i = 1; i < len; ++i) {
printf(":%02x", buf[i]);
}
printf(")");
if (parse && parse->was_hci_reset_evt) {
printf(" (reset)");
}
if (applied_set_event_event_mask2_fix) {
printf(" (mask2 fix)");
}
printf("\n");
#else
(void)info;
#endif
}
STATIC void tl_process_msg(volatile tl_list_node_t *head, unsigned int ch, parse_hci_info_t *parse) {
volatile tl_list_node_t *cur = head->next;
bool added_to_free_queue = false;
while (cur != head) {
tl_parse_hci_msg((uint8_t *)cur->body, parse);
volatile tl_list_node_t *next = tl_list_unlink(cur);
// If this node is allocated from the memmgr event pool, then place it into the free buffer.
if ((uint8_t *)cur >= ipcc_membuf_memmgr_evt_pool && (uint8_t *)cur < ipcc_membuf_memmgr_evt_pool + sizeof(ipcc_membuf_memmgr_evt_pool)) {
// Place memory back in free pool.
tl_list_append(&ipcc_mem_memmgr_free_buf_queue, cur);
added_to_free_queue = true;
}
cur = next;
}
if (added_to_free_queue) {
// Notify change in free pool.
LL_C1_IPCC_SetFlag_CHx(IPCC, IPCC_CH_MM);
}
}
STATIC void tl_check_msg(volatile tl_list_node_t *head, unsigned int ch, parse_hci_info_t *parse) {
if (LL_C2_IPCC_IsActiveFlag_CHx(IPCC, ch)) {
tl_process_msg(head, ch, parse);
// Clear receive channel.
LL_C1_IPCC_ClearFlag_CHx(IPCC, ch);
}
}
STATIC void tl_check_msg_ble(volatile tl_list_node_t *head, parse_hci_info_t *parse) {
if (had_ble_irq) {
tl_process_msg(head, IPCC_CH_BLE, parse);
had_ble_irq = false;
}
}
STATIC void tl_hci_cmd(uint8_t *cmd, unsigned int ch, uint8_t hdr, uint16_t opcode, size_t len, const uint8_t *buf) {
tl_list_node_t *n = (tl_list_node_t *)cmd;
n->next = n;
n->prev = n;
cmd[8] = hdr;
cmd[9] = opcode;
cmd[10] = opcode >> 8;
cmd[11] = len;
memcpy(&cmd[12], buf, len);
// Indicate that this channel is ready.
LL_C1_IPCC_SetFlag_CHx(IPCC, ch);
}
STATIC int tl_sys_wait_ack(const uint8_t *buf) {
uint32_t t0 = mp_hal_ticks_ms();
// C2 will clear this bit to acknowledge the request.
while (LL_C1_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_SYS)) {
if (mp_hal_ticks_ms() - t0 > SYS_ACK_TIMEOUT_MS) {
printf("tl_sys_wait_ack: timeout\n");
return -MP_ETIMEDOUT;
}
}
// C1-to-C2 bit cleared, so process (but ignore) the response.
tl_parse_hci_msg(buf, NULL);
return 0;
}
STATIC void tl_sys_hci_cmd_resp(uint16_t opcode, size_t len, const uint8_t *buf) {
tl_hci_cmd(ipcc_membuf_sys_cmd_buf, IPCC_CH_SYS, 0x10, opcode, len, buf);
tl_sys_wait_ack(ipcc_membuf_sys_cmd_buf);
}
STATIC int tl_ble_wait_resp(void) {
uint32_t t0 = mp_hal_ticks_ms();
while (!had_ble_irq) {
if (mp_hal_ticks_ms() - t0 > BLE_ACK_TIMEOUT_MS) {
printf("tl_ble_wait_resp: timeout\n");
return -MP_ETIMEDOUT;
}
}
// C2 set IPCC flag.
tl_check_msg_ble(&ipcc_mem_ble_evt_queue, NULL);
return 0;
}
// Synchronously send a BLE command.
STATIC void tl_ble_hci_cmd_resp(uint16_t opcode, size_t len, const uint8_t *buf) {
tl_hci_cmd(ipcc_membuf_ble_cmd_buf, IPCC_CH_BLE, HCI_KIND_BT_CMD, opcode, len, buf);
tl_ble_wait_resp();
}
/******************************************************************************/
// RF core interface
void rfcore_init(void) {
DEBUG_printf("rfcore_init\n");
// Ensure LSE is running
rtc_init_finalise();
// Select LSE as RF wakeup source
RCC->CSR = (RCC->CSR & ~RCC_CSR_RFWKPSEL) | 1 << RCC_CSR_RFWKPSEL_Pos;
// Initialise IPCC and shared memory structures
ipcc_init(IRQ_PRI_SDIO);
// Boot the second core
__SEV();
__WFE();
PWR->CR4 |= PWR_CR4_C2BOOT;
}
static const struct {
uint8_t *pBleBufferAddress; // unused
uint32_t BleBufferSize; // unused
uint16_t NumAttrRecord;
uint16_t NumAttrServ;
uint16_t AttrValueArrSize;
uint8_t NumOfLinks;
uint8_t ExtendedPacketLengthEnable;
uint8_t PrWriteListSize;
uint8_t MblockCount;
uint16_t AttMtu;
uint16_t SlaveSca;
uint8_t MasterSca;
uint8_t LsSource; // 0=LSE 1=internal RO
uint32_t MaxConnEventLength;
uint16_t HsStartupTime;
uint8_t ViterbiEnable;
uint8_t LlOnly; // 0=LL+Host, 1=LL only
uint8_t HwVersion;
} ble_init_params = {
0,
0,
0, // NumAttrRecord
0, // NumAttrServ
0, // AttrValueArrSize
1, // NumOfLinks
1, // ExtendedPacketLengthEnable
0, // PrWriteListSize
0x79, // MblockCount
0, // AttMtu
0, // SlaveSca
0, // MasterSca
1, // LsSource
0xffffffff, // MaxConnEventLength
0x148, // HsStartupTime
0, // ViterbiEnable
1, // LlOnly
0, // HwVersion
};
void rfcore_ble_init(void) {
DEBUG_printf("rfcore_ble_init\n");
// Clear any outstanding messages from ipcc_init
tl_check_msg(&ipcc_mem_sys_queue, IPCC_CH_SYS, NULL);
tl_check_msg_ble(&ipcc_mem_ble_evt_queue, NULL);
// Configure and reset the BLE controller
tl_sys_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_BLE_INIT), sizeof(ble_init_params), (const uint8_t *)&ble_init_params);
tl_ble_hci_cmd_resp(HCI_OPCODE(0x03, 0x0003), 0, NULL);
}
void rfcore_ble_hci_cmd(size_t len, const uint8_t *src) {
DEBUG_printf("rfcore_ble_hci_cmd\n");
#if HCI_TRACE
printf("[% 8d] >HCI_CMD(%02x", mp_hal_ticks_ms(), src[0]);
for (int i = 1; i < len; ++i) {
printf(":%02x", src[i]);
}
printf(")\n");
#endif
tl_list_node_t *n;
uint32_t ch;
if (src[0] == HCI_KIND_BT_CMD) {
n = (tl_list_node_t *)&ipcc_membuf_ble_cmd_buf[0];
ch = IPCC_CH_BLE;
} else if (src[0] == HCI_KIND_BT_ACL) {
n = (tl_list_node_t *)&ipcc_membuf_ble_hci_acl_data_buf[0];
ch = IPCC_CH_HCI_ACL;
} else {
printf("** UNEXPECTED HCI HDR: 0x%02x **\n", src[0]);
return;
}
n->next = n;
n->prev = n;
memcpy(n->body, src, len);
// IPCC indicate.
LL_C1_IPCC_SetFlag_CHx(IPCC, ch);
}
void rfcore_ble_check_msg(int (*cb)(void *, const uint8_t *, size_t), void *env) {
parse_hci_info_t parse = { cb, env, false };
tl_check_msg_ble(&ipcc_mem_ble_evt_queue, &parse);
// Intercept HCI_Reset events and reconfigure the controller following the reset
if (parse.was_hci_reset_evt) {
uint8_t buf[8];
buf[0] = 0; // config offset
buf[1] = 6; // config length
mp_hal_get_mac(MP_HAL_MAC_BDADDR, &buf[2]);
#define SWAP_UINT8(a, b) { uint8_t temp = a; a = b; b = temp; \
}
SWAP_UINT8(buf[2], buf[7]);
SWAP_UINT8(buf[3], buf[6]);
SWAP_UINT8(buf[4], buf[5]);
tl_ble_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_WRITE_CONFIG), 8, buf); // set BDADDR
}
}
// "level" is 0x00-0x1f, ranging from -40 dBm to +6 dBm (not linear).
void rfcore_ble_set_txpower(uint8_t level) {
uint8_t buf[2] = { 0x00, level };
tl_ble_hci_cmd_resp(HCI_OPCODE(OGF_VENDOR, OCF_SET_TX_POWER), 2, buf);
}
// IPCC IRQ Handlers
void IPCC_C1_TX_IRQHandler(void) {
IRQ_ENTER(IPCC_C1_TX_IRQn);
IRQ_EXIT(IPCC_C1_TX_IRQn);
}
void IPCC_C1_RX_IRQHandler(void) {
IRQ_ENTER(IPCC_C1_RX_IRQn);
if (LL_C2_IPCC_IsActiveFlag_CHx(IPCC, IPCC_CH_BLE)) {
had_ble_irq = true;
LL_C1_IPCC_ClearFlag_CHx(IPCC, IPCC_CH_BLE);
// Schedule PENDSV to process incoming HCI payload.
extern void mp_bluetooth_hci_poll_wrapper(uint32_t ticks_ms);
mp_bluetooth_hci_poll_wrapper(0);
}
IRQ_EXIT(IPCC_C1_RX_IRQn);
}
#endif // defined(STM32WB)