micropython/extmod/moducryptolib.c

379 lines
12 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2017-2018 Paul Sokolovsky
* Copyright (c) 2018 Yonatan Goldschmidt
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "py/mpconfig.h"
#if MICROPY_PY_UCRYPTOLIB
#include <assert.h>
#include <string.h>
#include "py/runtime.h"
// This module implements crypto ciphers API, roughly following
// https://www.python.org/dev/peps/pep-0272/ . Exact implementation
// of PEP 272 can be made with a simple wrapper which adds all the
// needed boilerplate.
// values follow PEP 272
enum {
UCRYPTOLIB_MODE_ECB = 1,
UCRYPTOLIB_MODE_CBC = 2,
UCRYPTOLIB_MODE_CTR = 6,
};
struct ctr_params {
// counter is the IV of the AES context.
size_t offset; // in encrypted_counter
// encrypted counter
uint8_t encrypted_counter[16];
};
#if MICROPY_SSL_AXTLS
#include "lib/axtls/crypto/crypto.h"
#define AES_CTX_IMPL AES_CTX
#endif
#if MICROPY_SSL_MBEDTLS
#include <mbedtls/aes.h>
// we can't run mbedtls AES key schedule until we know whether we're used for encrypt or decrypt.
// therefore, we store the key & keysize and on the first call to encrypt/decrypt we override them
// with the mbedtls_aes_context, as they are not longer required. (this is done to save space)
struct mbedtls_aes_ctx_with_key {
union {
mbedtls_aes_context mbedtls_ctx;
struct {
uint8_t key[32];
uint8_t keysize;
} init_data;
} u;
unsigned char iv[16];
};
#define AES_CTX_IMPL struct mbedtls_aes_ctx_with_key
#endif
typedef struct _mp_obj_aes_t {
mp_obj_base_t base;
AES_CTX_IMPL ctx;
uint8_t block_mode: 6;
#define AES_KEYTYPE_NONE 0
#define AES_KEYTYPE_ENC 1
#define AES_KEYTYPE_DEC 2
uint8_t key_type: 2;
} mp_obj_aes_t;
STATIC inline bool is_ctr_mode(int block_mode) {
#if MICROPY_PY_UCRYPTOLIB_CTR
return block_mode == UCRYPTOLIB_MODE_CTR;
#else
return false;
#endif
}
STATIC inline struct ctr_params *ctr_params_from_aes(mp_obj_aes_t *o) {
// ctr_params follows aes object struct
return (struct ctr_params*)&o[1];
}
#if MICROPY_SSL_AXTLS
STATIC void aes_initial_set_key_impl(AES_CTX_IMPL *ctx, const uint8_t *key, size_t keysize, const uint8_t iv[16]) {
assert(16 == keysize || 32 == keysize);
AES_set_key(ctx, key, iv, (16 == keysize) ? AES_MODE_128 : AES_MODE_256);
}
STATIC void aes_final_set_key_impl(AES_CTX_IMPL *ctx, bool encrypt) {
if (!encrypt) {
AES_convert_key(ctx);
}
}
STATIC void aes_process_ecb_impl(AES_CTX_IMPL *ctx, const uint8_t in[16], uint8_t out[16], bool encrypt) {
memcpy(out, in, 16);
// We assume that out (vstr.buf or given output buffer) is uint32_t aligned
uint32_t *p = (uint32_t*)out;
// axTLS likes it weird and complicated with byteswaps
for (int i = 0; i < 4; i++) {
p[i] = MP_HTOBE32(p[i]);
}
if (encrypt) {
AES_encrypt(ctx, p);
} else {
AES_decrypt(ctx, p);
}
for (int i = 0; i < 4; i++) {
p[i] = MP_BE32TOH(p[i]);
}
}
STATIC void aes_process_cbc_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, bool encrypt) {
if (encrypt) {
AES_cbc_encrypt(ctx, in, out, in_len);
} else {
AES_cbc_decrypt(ctx, in, out, in_len);
}
}
#if MICROPY_PY_UCRYPTOLIB_CTR
// axTLS doesn't have CTR support out of the box. This implements the counter part using the ECB primitive.
STATIC void aes_process_ctr_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, struct ctr_params *ctr_params) {
size_t n = ctr_params->offset;
uint8_t *const counter = ctx->iv;
while (in_len--) {
if (n == 0) {
aes_process_ecb_impl(ctx, counter, ctr_params->encrypted_counter, true);
// increment the 128-bit counter
for (int i = 15; i >= 0; --i) {
if (++counter[i] != 0) {
break;
}
}
}
*out++ = *in++ ^ ctr_params->encrypted_counter[n];
n = (n + 1) & 0xf;
}
ctr_params->offset = n;
}
#endif
#endif
#if MICROPY_SSL_MBEDTLS
STATIC void aes_initial_set_key_impl(AES_CTX_IMPL *ctx, const uint8_t *key, size_t keysize, const uint8_t iv[16]) {
ctx->u.init_data.keysize = keysize;
memcpy(ctx->u.init_data.key, key, keysize);
if (NULL != iv) {
memcpy(ctx->iv, iv, sizeof(ctx->iv));
}
}
STATIC void aes_final_set_key_impl(AES_CTX_IMPL *ctx, bool encrypt) {
// first, copy key aside
uint8_t key[32];
uint8_t keysize = ctx->u.init_data.keysize;
memcpy(key, ctx->u.init_data.key, keysize);
// now, override key with the mbedtls context object
mbedtls_aes_init(&ctx->u.mbedtls_ctx);
// setkey call will succeed, we've already checked the keysize earlier.
assert(16 == keysize || 32 == keysize);
if (encrypt) {
mbedtls_aes_setkey_enc(&ctx->u.mbedtls_ctx, key, keysize * 8);
} else {
mbedtls_aes_setkey_dec(&ctx->u.mbedtls_ctx, key, keysize * 8);
}
}
STATIC void aes_process_ecb_impl(AES_CTX_IMPL *ctx, const uint8_t in[16], uint8_t out[16], bool encrypt) {
mbedtls_aes_crypt_ecb(&ctx->u.mbedtls_ctx, encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT, in, out);
}
STATIC void aes_process_cbc_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, bool encrypt) {
mbedtls_aes_crypt_cbc(&ctx->u.mbedtls_ctx, encrypt ? MBEDTLS_AES_ENCRYPT : MBEDTLS_AES_DECRYPT, in_len, ctx->iv, in, out);
}
#if MICROPY_PY_UCRYPTOLIB_CTR
STATIC void aes_process_ctr_impl(AES_CTX_IMPL *ctx, const uint8_t *in, uint8_t *out, size_t in_len, struct ctr_params *ctr_params) {
mbedtls_aes_crypt_ctr(&ctx->u.mbedtls_ctx, in_len, &ctr_params->offset, ctx->iv, ctr_params->encrypted_counter, in, out);
}
#endif
#endif
STATIC mp_obj_t ucryptolib_aes_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
mp_arg_check_num(n_args, n_kw, 2, 3, false);
const mp_int_t block_mode = mp_obj_get_int(args[1]);
switch (block_mode) {
case UCRYPTOLIB_MODE_ECB:
case UCRYPTOLIB_MODE_CBC:
#if MICROPY_PY_UCRYPTOLIB_CTR
case UCRYPTOLIB_MODE_CTR:
#endif
break;
default:
mp_raise_ValueError("mode");
}
mp_obj_aes_t *o = m_new_obj_var(mp_obj_aes_t, struct ctr_params, !!is_ctr_mode(block_mode));
o->base.type = type;
o->block_mode = block_mode;
o->key_type = AES_KEYTYPE_NONE;
mp_buffer_info_t keyinfo;
mp_get_buffer_raise(args[0], &keyinfo, MP_BUFFER_READ);
if (32 != keyinfo.len && 16 != keyinfo.len) {
mp_raise_ValueError("key");
}
mp_buffer_info_t ivinfo;
ivinfo.buf = NULL;
if (n_args > 2 && args[2] != mp_const_none) {
mp_get_buffer_raise(args[2], &ivinfo, MP_BUFFER_READ);
if (16 != ivinfo.len) {
mp_raise_ValueError("IV");
}
} else if (o->block_mode == UCRYPTOLIB_MODE_CBC || is_ctr_mode(o->block_mode)) {
mp_raise_ValueError("IV");
}
if (is_ctr_mode(block_mode)) {
ctr_params_from_aes(o)->offset = 0;
}
aes_initial_set_key_impl(&o->ctx, keyinfo.buf, keyinfo.len, ivinfo.buf);
return MP_OBJ_FROM_PTR(o);
}
STATIC mp_obj_t aes_process(size_t n_args, const mp_obj_t *args, bool encrypt) {
mp_obj_aes_t *self = MP_OBJ_TO_PTR(args[0]);
mp_obj_t in_buf = args[1];
mp_obj_t out_buf = MP_OBJ_NULL;
if (n_args > 2) {
out_buf = args[2];
}
mp_buffer_info_t in_bufinfo;
mp_get_buffer_raise(in_buf, &in_bufinfo, MP_BUFFER_READ);
if (!is_ctr_mode(self->block_mode) && in_bufinfo.len % 16 != 0) {
mp_raise_ValueError("blksize % 16");
}
vstr_t vstr;
mp_buffer_info_t out_bufinfo;
uint8_t *out_buf_ptr;
if (out_buf != MP_OBJ_NULL) {
mp_get_buffer_raise(out_buf, &out_bufinfo, MP_BUFFER_WRITE);
if (out_bufinfo.len < in_bufinfo.len) {
mp_raise_ValueError("output too small");
}
out_buf_ptr = out_bufinfo.buf;
} else {
vstr_init_len(&vstr, in_bufinfo.len);
out_buf_ptr = (uint8_t*)vstr.buf;
}
if (AES_KEYTYPE_NONE == self->key_type) {
// always set key for encryption if CTR mode.
const bool encrypt_mode = encrypt || is_ctr_mode(self->block_mode);
aes_final_set_key_impl(&self->ctx, encrypt_mode);
self->key_type = encrypt ? AES_KEYTYPE_ENC : AES_KEYTYPE_DEC;
} else {
if ((encrypt && self->key_type == AES_KEYTYPE_DEC) ||
(!encrypt && self->key_type == AES_KEYTYPE_ENC)) {
mp_raise_ValueError("can't encrypt & decrypt");
}
}
switch (self->block_mode) {
case UCRYPTOLIB_MODE_ECB: {
uint8_t *in = in_bufinfo.buf, *out = out_buf_ptr;
uint8_t *top = in + in_bufinfo.len;
for (; in < top; in += 16, out += 16) {
aes_process_ecb_impl(&self->ctx, in, out, encrypt);
}
break;
}
case UCRYPTOLIB_MODE_CBC:
aes_process_cbc_impl(&self->ctx, in_bufinfo.buf, out_buf_ptr, in_bufinfo.len, encrypt);
break;
#if MICROPY_PY_UCRYPTOLIB_CTR
case UCRYPTOLIB_MODE_CTR:
aes_process_ctr_impl(&self->ctx, in_bufinfo.buf, out_buf_ptr, in_bufinfo.len,
ctr_params_from_aes(self));
break;
#endif
}
if (out_buf != MP_OBJ_NULL) {
return out_buf;
}
return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr);
}
STATIC mp_obj_t ucryptolib_aes_encrypt(size_t n_args, const mp_obj_t *args) {
return aes_process(n_args, args, true);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ucryptolib_aes_encrypt_obj, 2, 3, ucryptolib_aes_encrypt);
STATIC mp_obj_t ucryptolib_aes_decrypt(size_t n_args, const mp_obj_t *args) {
return aes_process(n_args, args, false);
}
STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(ucryptolib_aes_decrypt_obj, 2, 3, ucryptolib_aes_decrypt);
STATIC const mp_rom_map_elem_t ucryptolib_aes_locals_dict_table[] = {
{ MP_ROM_QSTR(MP_QSTR_encrypt), MP_ROM_PTR(&ucryptolib_aes_encrypt_obj) },
{ MP_ROM_QSTR(MP_QSTR_decrypt), MP_ROM_PTR(&ucryptolib_aes_decrypt_obj) },
};
STATIC MP_DEFINE_CONST_DICT(ucryptolib_aes_locals_dict, ucryptolib_aes_locals_dict_table);
STATIC const mp_obj_type_t ucryptolib_aes_type = {
{ &mp_type_type },
.name = MP_QSTR_aes,
.make_new = ucryptolib_aes_make_new,
.locals_dict = (void*)&ucryptolib_aes_locals_dict,
};
STATIC const mp_rom_map_elem_t mp_module_ucryptolib_globals_table[] = {
{ MP_ROM_QSTR(MP_QSTR___name__), MP_ROM_QSTR(MP_QSTR_ucryptolib) },
{ MP_ROM_QSTR(MP_QSTR_aes), MP_ROM_PTR(&ucryptolib_aes_type) },
#if MICROPY_PY_UCRYPTOLIB_CONSTS
{ MP_ROM_QSTR(MP_QSTR_MODE_ECB), MP_ROM_INT(UCRYPTOLIB_MODE_ECB) },
{ MP_ROM_QSTR(MP_QSTR_MODE_CBC), MP_ROM_INT(UCRYPTOLIB_MODE_CBC) },
#if MICROPY_PY_UCRYPTOLIB_CTR
{ MP_ROM_QSTR(MP_QSTR_MODE_CTR), MP_ROM_INT(UCRYPTOLIB_MODE_CTR) },
#endif
#endif
};
STATIC MP_DEFINE_CONST_DICT(mp_module_ucryptolib_globals, mp_module_ucryptolib_globals_table);
const mp_obj_module_t mp_module_ucryptolib = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t*)&mp_module_ucryptolib_globals,
};
#endif //MICROPY_PY_UCRYPTOLIB