633 lines
18 KiB
C
633 lines
18 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include "py/nlr.h"
|
|
#include "py/lexer.h"
|
|
#include "py/parse.h"
|
|
#include "py/obj.h"
|
|
#include "py/runtime.h"
|
|
#include "py/stackctrl.h"
|
|
#include "py/gc.h"
|
|
#include "py/mphal.h"
|
|
|
|
#include "lib/utils/pyexec.h"
|
|
#include "lib/fatfs/ff.h"
|
|
|
|
#include "systick.h"
|
|
#include "pendsv.h"
|
|
#include "gccollect.h"
|
|
#include "readline.h"
|
|
#include "i2c.h"
|
|
#include "spi.h"
|
|
#include "uart.h"
|
|
#include "timer.h"
|
|
#include "led.h"
|
|
#include "pin.h"
|
|
#include "extint.h"
|
|
#include "usrsw.h"
|
|
#include "usb.h"
|
|
#include "rtc.h"
|
|
#include "storage.h"
|
|
#include "sdcard.h"
|
|
#include "rng.h"
|
|
#include "accel.h"
|
|
#include "servo.h"
|
|
#include "dac.h"
|
|
#include "can.h"
|
|
#include "modnetwork.h"
|
|
|
|
void SystemClock_Config(void);
|
|
|
|
static FATFS fatfs0;
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
static FATFS fatfs1;
|
|
#endif
|
|
|
|
void flash_error(int n) {
|
|
for (int i = 0; i < n; i++) {
|
|
led_state(PYB_LED_R1, 1);
|
|
led_state(PYB_LED_R2, 0);
|
|
HAL_Delay(250);
|
|
led_state(PYB_LED_R1, 0);
|
|
led_state(PYB_LED_R2, 1);
|
|
HAL_Delay(250);
|
|
}
|
|
led_state(PYB_LED_R2, 0);
|
|
}
|
|
|
|
void NORETURN __fatal_error(const char *msg) {
|
|
for (volatile uint delay = 0; delay < 10000000; delay++) {
|
|
}
|
|
led_state(1, 1);
|
|
led_state(2, 1);
|
|
led_state(3, 1);
|
|
led_state(4, 1);
|
|
mp_hal_stdout_tx_strn("\nFATAL ERROR:\n", 14);
|
|
mp_hal_stdout_tx_strn(msg, strlen(msg));
|
|
for (uint i = 0;;) {
|
|
led_toggle(((i++) & 3) + 1);
|
|
for (volatile uint delay = 0; delay < 10000000; delay++) {
|
|
}
|
|
if (i >= 16) {
|
|
// to conserve power
|
|
__WFI();
|
|
}
|
|
}
|
|
}
|
|
|
|
void nlr_jump_fail(void *val) {
|
|
printf("FATAL: uncaught exception %p\n", val);
|
|
__fatal_error("");
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
void MP_WEAK __assert_func(const char *file, int line, const char *func, const char *expr) {
|
|
(void)func;
|
|
printf("Assertion '%s' failed, at file %s:%d\n", expr, file, line);
|
|
__fatal_error("");
|
|
}
|
|
#endif
|
|
|
|
STATIC mp_obj_t pyb_main(mp_uint_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
|
|
static const mp_arg_t allowed_args[] = {
|
|
{ MP_QSTR_opt, MP_ARG_INT, {.u_int = 0} }
|
|
};
|
|
|
|
if (MP_OBJ_IS_STR(pos_args[0])) {
|
|
MP_STATE_PORT(pyb_config_main) = pos_args[0];
|
|
|
|
// parse args
|
|
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
|
|
mp_arg_parse_all(n_args - 1, pos_args + 1, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
|
|
MP_STATE_VM(mp_optimise_value) = args[0].u_int;
|
|
}
|
|
return mp_const_none;
|
|
}
|
|
MP_DEFINE_CONST_FUN_OBJ_KW(pyb_main_obj, 1, pyb_main);
|
|
|
|
static const char fresh_boot_py[] =
|
|
"# boot.py -- run on boot-up\r\n"
|
|
"# can run arbitrary Python, but best to keep it minimal\r\n"
|
|
"\r\n"
|
|
"import machine\r\n"
|
|
"import pyb\r\n"
|
|
"#pyb.main('main.py') # main script to run after this one\r\n"
|
|
"#pyb.usb_mode('CDC+MSC') # act as a serial and a storage device\r\n"
|
|
"#pyb.usb_mode('CDC+HID') # act as a serial device and a mouse\r\n"
|
|
;
|
|
|
|
static const char fresh_main_py[] =
|
|
"# main.py -- put your code here!\r\n"
|
|
;
|
|
|
|
static const char fresh_pybcdc_inf[] =
|
|
#include "genhdr/pybcdc_inf.h"
|
|
;
|
|
|
|
static const char fresh_readme_txt[] =
|
|
"This is a MicroPython board\r\n"
|
|
"\r\n"
|
|
"You can get started right away by writing your Python code in 'main.py'.\r\n"
|
|
"\r\n"
|
|
"For a serial prompt:\r\n"
|
|
" - Windows: you need to go to 'Device manager', right click on the unknown device,\r\n"
|
|
" then update the driver software, using the 'pybcdc.inf' file found on this drive.\r\n"
|
|
" Then use a terminal program like Hyperterminal or putty.\r\n"
|
|
" - Mac OS X: use the command: screen /dev/tty.usbmodem*\r\n"
|
|
" - Linux: use the command: screen /dev/ttyACM0\r\n"
|
|
"\r\n"
|
|
"Please visit http://micropython.org/help/ for further help.\r\n"
|
|
;
|
|
|
|
// we don't make this function static because it needs a lot of stack and we
|
|
// want it to be executed without using stack within main() function
|
|
void init_flash_fs(uint reset_mode) {
|
|
// try to mount the flash
|
|
FRESULT res = f_mount(&fatfs0, "/flash", 1);
|
|
|
|
if (reset_mode == 3 || res == FR_NO_FILESYSTEM) {
|
|
// no filesystem, or asked to reset it, so create a fresh one
|
|
|
|
// LED on to indicate creation of LFS
|
|
led_state(PYB_LED_R2, 1);
|
|
uint32_t start_tick = HAL_GetTick();
|
|
|
|
res = f_mkfs("/flash", 0, 0);
|
|
if (res == FR_OK) {
|
|
// success creating fresh LFS
|
|
} else {
|
|
__fatal_error("could not create LFS");
|
|
}
|
|
|
|
// set label
|
|
f_setlabel("/flash/pybflash");
|
|
|
|
// create empty main.py
|
|
FIL fp;
|
|
f_open(&fp, "/flash/main.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_main_py, sizeof(fresh_main_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// create .inf driver file
|
|
f_open(&fp, "/flash/pybcdc.inf", FA_WRITE | FA_CREATE_ALWAYS);
|
|
f_write(&fp, fresh_pybcdc_inf, sizeof(fresh_pybcdc_inf) - 1 /* don't count null terminator */, &n);
|
|
f_close(&fp);
|
|
|
|
// create readme file
|
|
f_open(&fp, "/flash/README.txt", FA_WRITE | FA_CREATE_ALWAYS);
|
|
f_write(&fp, fresh_readme_txt, sizeof(fresh_readme_txt) - 1 /* don't count null terminator */, &n);
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(start_tick, 200);
|
|
led_state(PYB_LED_R2, 0);
|
|
} else if (res == FR_OK) {
|
|
// mount sucessful
|
|
} else {
|
|
__fatal_error("could not access LFS");
|
|
}
|
|
|
|
// The current directory is used as the boot up directory.
|
|
// It is set to the internal flash filesystem by default.
|
|
f_chdrive("/flash");
|
|
|
|
// Make sure we have a /flash/boot.py. Create it if needed.
|
|
FILINFO fno;
|
|
#if _USE_LFN
|
|
fno.lfname = NULL;
|
|
fno.lfsize = 0;
|
|
#endif
|
|
res = f_stat("/flash/boot.py", &fno);
|
|
if (res == FR_OK) {
|
|
if (fno.fattrib & AM_DIR) {
|
|
// exists as a directory
|
|
// TODO handle this case
|
|
// see http://elm-chan.org/fsw/ff/img/app2.c for a "rm -rf" implementation
|
|
} else {
|
|
// exists as a file, good!
|
|
}
|
|
} else {
|
|
// doesn't exist, create fresh file
|
|
|
|
// LED on to indicate creation of boot.py
|
|
led_state(PYB_LED_R2, 1);
|
|
uint32_t start_tick = HAL_GetTick();
|
|
|
|
FIL fp;
|
|
f_open(&fp, "/flash/boot.py", FA_WRITE | FA_CREATE_ALWAYS);
|
|
UINT n;
|
|
f_write(&fp, fresh_boot_py, sizeof(fresh_boot_py) - 1 /* don't count null terminator */, &n);
|
|
// TODO check we could write n bytes
|
|
f_close(&fp);
|
|
|
|
// keep LED on for at least 200ms
|
|
sys_tick_wait_at_least(start_tick, 200);
|
|
led_state(PYB_LED_R2, 0);
|
|
}
|
|
}
|
|
|
|
STATIC uint update_reset_mode(uint reset_mode) {
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
if (switch_get()) {
|
|
|
|
// The original method used on the pyboard is appropriate if you have 2
|
|
// or more LEDs.
|
|
#if defined(MICROPY_HW_LED2)
|
|
for (uint i = 0; i < 3000; i++) {
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
HAL_Delay(20);
|
|
if (i % 30 == 29) {
|
|
if (++reset_mode > 3) {
|
|
reset_mode = 1;
|
|
}
|
|
led_state(2, reset_mode & 1);
|
|
led_state(3, reset_mode & 2);
|
|
led_state(4, reset_mode & 4);
|
|
}
|
|
}
|
|
// flash the selected reset mode
|
|
for (uint i = 0; i < 6; i++) {
|
|
led_state(2, 0);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
HAL_Delay(50);
|
|
led_state(2, reset_mode & 1);
|
|
led_state(3, reset_mode & 2);
|
|
led_state(4, reset_mode & 4);
|
|
HAL_Delay(50);
|
|
}
|
|
HAL_Delay(400);
|
|
|
|
#elif defined(MICROPY_HW_LED1)
|
|
|
|
// For boards with only a single LED, we'll flash that LED the
|
|
// appropriate number of times, with a pause between each one
|
|
for (uint i = 0; i < 10; i++) {
|
|
led_state(1, 0);
|
|
for (uint j = 0; j < reset_mode; j++) {
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
led_state(1, 1);
|
|
HAL_Delay(100);
|
|
led_state(1, 0);
|
|
HAL_Delay(200);
|
|
}
|
|
HAL_Delay(400);
|
|
if (!switch_get()) {
|
|
break;
|
|
}
|
|
if (++reset_mode > 3) {
|
|
reset_mode = 1;
|
|
}
|
|
}
|
|
// Flash the selected reset mode
|
|
for (uint i = 0; i < 2; i++) {
|
|
for (uint j = 0; j < reset_mode; j++) {
|
|
led_state(1, 1);
|
|
HAL_Delay(100);
|
|
led_state(1, 0);
|
|
HAL_Delay(200);
|
|
}
|
|
HAL_Delay(400);
|
|
}
|
|
#else
|
|
#error Need a reset mode update method
|
|
#endif
|
|
}
|
|
#endif
|
|
return reset_mode;
|
|
}
|
|
|
|
int main(void) {
|
|
// TODO disable JTAG
|
|
|
|
// Stack limit should be less than real stack size, so we have a chance
|
|
// to recover from limit hit. (Limit is measured in bytes.)
|
|
mp_stack_set_limit((char*)&_ram_end - (char*)&_heap_end - 1024);
|
|
|
|
/* STM32F4xx HAL library initialization:
|
|
- Configure the Flash prefetch, instruction and Data caches
|
|
- Configure the Systick to generate an interrupt each 1 msec
|
|
- Set NVIC Group Priority to 4
|
|
- Global MSP (MCU Support Package) initialization
|
|
*/
|
|
HAL_Init();
|
|
|
|
// set the system clock to be HSE
|
|
SystemClock_Config();
|
|
|
|
// enable GPIO clocks
|
|
__GPIOA_CLK_ENABLE();
|
|
__GPIOB_CLK_ENABLE();
|
|
__GPIOC_CLK_ENABLE();
|
|
__GPIOD_CLK_ENABLE();
|
|
|
|
#if defined(__HAL_RCC_DTCMRAMEN_CLK_ENABLE)
|
|
// The STM32F746 doesn't really have CCM memory, but it does have DTCM,
|
|
// which behaves more or less like normal SRAM.
|
|
__HAL_RCC_DTCMRAMEN_CLK_ENABLE();
|
|
#else
|
|
// enable the CCM RAM
|
|
__CCMDATARAMEN_CLK_ENABLE();
|
|
#endif
|
|
|
|
#if defined(MICROPY_BOARD_EARLY_INIT)
|
|
MICROPY_BOARD_EARLY_INIT();
|
|
#endif
|
|
|
|
//TODO - Move the following to a board_init.c file for the NETDUINO
|
|
#if 0
|
|
#if defined(NETDUINO_PLUS_2)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_25MHz;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
|
|
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
|
|
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
|
|
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
// Turn on the power enable for the sdcard (PB1)
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1;
|
|
GPIO_Init(GPIOB, &GPIO_InitStructure);
|
|
GPIO_WriteBit(GPIOB, GPIO_Pin_1, Bit_SET);
|
|
#endif
|
|
|
|
// Turn on the power for the 5V on the expansion header (PB2)
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
|
|
GPIO_Init(GPIOB, &GPIO_InitStructure);
|
|
GPIO_WriteBit(GPIOB, GPIO_Pin_2, Bit_SET);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// basic sub-system init
|
|
pendsv_init();
|
|
timer_tim3_init();
|
|
led_init();
|
|
#if MICROPY_HW_HAS_SWITCH
|
|
switch_init0();
|
|
#endif
|
|
|
|
#if defined(USE_DEVICE_MODE)
|
|
// default to internal flash being the usb medium
|
|
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_FLASH;
|
|
#endif
|
|
|
|
int first_soft_reset = true;
|
|
|
|
soft_reset:
|
|
|
|
// check if user switch held to select the reset mode
|
|
#if defined(MICROPY_HW_LED2)
|
|
led_state(1, 0);
|
|
led_state(2, 1);
|
|
#else
|
|
led_state(1, 1);
|
|
led_state(2, 0);
|
|
#endif
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
uint reset_mode = update_reset_mode(1);
|
|
|
|
#if MICROPY_HW_ENABLE_RTC
|
|
if (first_soft_reset) {
|
|
rtc_init_start();
|
|
}
|
|
#endif
|
|
|
|
// more sub-system init
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
if (first_soft_reset) {
|
|
sdcard_init();
|
|
}
|
|
#endif
|
|
if (first_soft_reset) {
|
|
storage_init();
|
|
}
|
|
|
|
// GC init
|
|
gc_init(&_heap_start, &_heap_end);
|
|
|
|
// Micro Python init
|
|
mp_init();
|
|
mp_obj_list_init(mp_sys_path, 0);
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR_)); // current dir (or base dir of the script)
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_flash_slash_lib));
|
|
mp_obj_list_init(mp_sys_argv, 0);
|
|
|
|
// Initialise low-level sub-systems. Here we need to very basic things like
|
|
// zeroing out memory and resetting any of the sub-systems. Following this
|
|
// we can run Python scripts (eg boot.py), but anything that is configurable
|
|
// by boot.py must be set after boot.py is run.
|
|
|
|
readline_init0();
|
|
pin_init0();
|
|
extint_init0();
|
|
timer_init0();
|
|
uart_init0();
|
|
|
|
// Define MICROPY_HW_UART_REPL to be PYB_UART_6 and define
|
|
// MICROPY_HW_UART_REPL_BAUD in your mpconfigboard.h file if you want a
|
|
// REPL on a hardware UART as well as on USB VCP
|
|
#if defined(MICROPY_HW_UART_REPL)
|
|
{
|
|
mp_obj_t args[2] = {
|
|
MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL),
|
|
MP_OBJ_NEW_SMALL_INT(MICROPY_HW_UART_REPL_BAUD),
|
|
};
|
|
MP_STATE_PORT(pyb_stdio_uart) = pyb_uart_type.make_new((mp_obj_t)&pyb_uart_type, MP_ARRAY_SIZE(args), 0, args);
|
|
}
|
|
#else
|
|
MP_STATE_PORT(pyb_stdio_uart) = NULL;
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_CAN
|
|
can_init0();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_RNG
|
|
rng_init0();
|
|
#endif
|
|
|
|
i2c_init0();
|
|
spi_init0();
|
|
pyb_usb_init0();
|
|
|
|
// Initialise the local flash filesystem.
|
|
// Create it if needed, mount in on /flash, and set it as current dir.
|
|
init_flash_fs(reset_mode);
|
|
|
|
#if MICROPY_HW_HAS_SDCARD
|
|
// if an SD card is present then mount it on /sd/
|
|
if (sdcard_is_present()) {
|
|
FRESULT res = f_mount(&fatfs1, "/sd", 1);
|
|
if (res != FR_OK) {
|
|
printf("[SD] could not mount SD card\n");
|
|
} else {
|
|
// TODO these should go before the /flash entries in the path
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd));
|
|
mp_obj_list_append(mp_sys_path, MP_OBJ_NEW_QSTR(MP_QSTR__slash_sd_slash_lib));
|
|
|
|
if (first_soft_reset) {
|
|
// use SD card as medium for the USB MSD
|
|
#if defined(USE_DEVICE_MODE)
|
|
pyb_usb_storage_medium = PYB_USB_STORAGE_MEDIUM_SDCARD;
|
|
#endif
|
|
}
|
|
|
|
#if defined(USE_DEVICE_MODE)
|
|
// only use SD card as current directory if that's what the USB medium is
|
|
if (pyb_usb_storage_medium == PYB_USB_STORAGE_MEDIUM_SDCARD)
|
|
#endif
|
|
{
|
|
// use SD card as current directory
|
|
f_chdrive("/sd");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// reset config variables; they should be set by boot.py
|
|
MP_STATE_PORT(pyb_config_main) = MP_OBJ_NULL;
|
|
|
|
// run boot.py, if it exists
|
|
// TODO perhaps have pyb.reboot([bootpy]) function to soft-reboot and execute custom boot.py
|
|
if (reset_mode == 1) {
|
|
const char *boot_py = "boot.py";
|
|
FRESULT res = f_stat(boot_py, NULL);
|
|
if (res == FR_OK) {
|
|
int ret = pyexec_file(boot_py);
|
|
if (ret & PYEXEC_FORCED_EXIT) {
|
|
goto soft_reset_exit;
|
|
}
|
|
if (!ret) {
|
|
flash_error(4);
|
|
}
|
|
}
|
|
}
|
|
|
|
// turn boot-up LEDs off
|
|
#if !defined(MICROPY_HW_LED2)
|
|
// If there is only one LED on the board then it's used to signal boot-up
|
|
// and so we turn it off here. Otherwise LED(1) is used to indicate dirty
|
|
// flash cache and so we shouldn't change its state.
|
|
led_state(1, 0);
|
|
#endif
|
|
led_state(2, 0);
|
|
led_state(3, 0);
|
|
led_state(4, 0);
|
|
|
|
// Now we initialise sub-systems that need configuration from boot.py,
|
|
// or whose initialisation can be safely deferred until after running
|
|
// boot.py.
|
|
|
|
#if defined(USE_DEVICE_MODE)
|
|
// init USB device to default setting if it was not already configured
|
|
if (!(pyb_usb_flags & PYB_USB_FLAG_USB_MODE_CALLED)) {
|
|
pyb_usb_dev_init(USBD_VID, USBD_PID_CDC_MSC, USBD_MODE_CDC_MSC, NULL);
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_HAS_MMA7660
|
|
// MMA accel: init and reset
|
|
accel_init();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_SERVO
|
|
// servo
|
|
servo_init();
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_DAC
|
|
// DAC
|
|
dac_init();
|
|
#endif
|
|
|
|
mod_network_init();
|
|
|
|
// At this point everything is fully configured and initialised.
|
|
|
|
// Run the main script from the current directory.
|
|
if (reset_mode == 1 && pyexec_mode_kind == PYEXEC_MODE_FRIENDLY_REPL) {
|
|
const char *main_py;
|
|
if (MP_STATE_PORT(pyb_config_main) == MP_OBJ_NULL) {
|
|
main_py = "main.py";
|
|
} else {
|
|
main_py = mp_obj_str_get_str(MP_STATE_PORT(pyb_config_main));
|
|
}
|
|
FRESULT res = f_stat(main_py, NULL);
|
|
if (res == FR_OK) {
|
|
int ret = pyexec_file(main_py);
|
|
if (ret & PYEXEC_FORCED_EXIT) {
|
|
goto soft_reset_exit;
|
|
}
|
|
if (!ret) {
|
|
flash_error(3);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Main script is finished, so now go into REPL mode.
|
|
// The REPL mode can change, or it can request a soft reset.
|
|
for (;;) {
|
|
if (pyexec_mode_kind == PYEXEC_MODE_RAW_REPL) {
|
|
if (pyexec_raw_repl() != 0) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (pyexec_friendly_repl() != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
soft_reset_exit:
|
|
|
|
// soft reset
|
|
|
|
printf("PYB: sync filesystems\n");
|
|
storage_flush();
|
|
|
|
printf("PYB: soft reboot\n");
|
|
timer_deinit();
|
|
uart_deinit();
|
|
#if MICROPY_HW_ENABLE_CAN
|
|
can_deinit();
|
|
#endif
|
|
|
|
first_soft_reset = false;
|
|
goto soft_reset;
|
|
}
|