771 lines
20 KiB
C
771 lines
20 KiB
C
/*
|
|
* This file is part of the Micro Python project, http://micropython.org/
|
|
*
|
|
* Original template from ST Cube library. See below for header.
|
|
*
|
|
* The MIT License (MIT)
|
|
*
|
|
* Copyright (c) 2013, 2014 Damien P. George
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
/**
|
|
******************************************************************************
|
|
* @file Templates/Src/stm32f4xx_it.c
|
|
* @author MCD Application Team
|
|
* @version V1.0.1
|
|
* @date 26-February-2014
|
|
* @brief Main Interrupt Service Routines.
|
|
* This file provides template for all exceptions handler and
|
|
* peripherals interrupt service routine.
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* <h2><center>© COPYRIGHT(c) 2014 STMicroelectronics</center></h2>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification,
|
|
* are permitted provided that the following conditions are met:
|
|
* 1. Redistributions of source code must retain the above copyright notice,
|
|
* this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
|
* this list of conditions and the following disclaimer in the documentation
|
|
* and/or other materials provided with the distribution.
|
|
* 3. Neither the name of STMicroelectronics nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#include "stm32_it.h"
|
|
#include STM32_HAL_H
|
|
|
|
#include "py/obj.h"
|
|
#include "pendsv.h"
|
|
#include "irq.h"
|
|
#include "pybthread.h"
|
|
#include "extint.h"
|
|
#include "timer.h"
|
|
#include "uart.h"
|
|
#include "storage.h"
|
|
#include "can.h"
|
|
#include "dma.h"
|
|
#include "i2c.h"
|
|
|
|
extern void __fatal_error(const char*);
|
|
extern PCD_HandleTypeDef pcd_fs_handle;
|
|
extern PCD_HandleTypeDef pcd_hs_handle;
|
|
|
|
/******************************************************************************/
|
|
/* Cortex-M4 Processor Exceptions Handlers */
|
|
/******************************************************************************/
|
|
|
|
// Set the following to 1 to get some more information on the Hard Fault
|
|
// More information about decoding the fault registers can be found here:
|
|
// http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0646a/Cihdjcfc.html
|
|
#define REPORT_HARD_FAULT_REGS 0
|
|
|
|
#if REPORT_HARD_FAULT_REGS
|
|
|
|
#include "py/mphal.h"
|
|
|
|
STATIC char *fmt_hex(uint32_t val, char *buf) {
|
|
const char *hexDig = "0123456789abcdef";
|
|
|
|
buf[0] = hexDig[(val >> 28) & 0x0f];
|
|
buf[1] = hexDig[(val >> 24) & 0x0f];
|
|
buf[2] = hexDig[(val >> 20) & 0x0f];
|
|
buf[3] = hexDig[(val >> 16) & 0x0f];
|
|
buf[4] = hexDig[(val >> 12) & 0x0f];
|
|
buf[5] = hexDig[(val >> 8) & 0x0f];
|
|
buf[6] = hexDig[(val >> 4) & 0x0f];
|
|
buf[7] = hexDig[(val >> 0) & 0x0f];
|
|
buf[8] = '\0';
|
|
|
|
return buf;
|
|
}
|
|
|
|
STATIC void print_reg(const char *label, uint32_t val) {
|
|
char hexStr[9];
|
|
|
|
mp_hal_stdout_tx_str(label);
|
|
mp_hal_stdout_tx_str(fmt_hex(val, hexStr));
|
|
mp_hal_stdout_tx_str("\r\n");
|
|
}
|
|
|
|
// The ARMv7M Architecture manual (section B.1.5.6) says that upon entry
|
|
// to an exception, that the registers will be in the following order on the
|
|
// // stack: R0, R1, R2, R3, R12, LR, PC, XPSR
|
|
|
|
typedef struct {
|
|
uint32_t r0, r1, r2, r3, r12, lr, pc, xpsr;
|
|
} ExceptionRegisters_t;
|
|
|
|
void HardFault_C_Handler(ExceptionRegisters_t *regs) {
|
|
print_reg("R0 ", regs->r0);
|
|
print_reg("R1 ", regs->r1);
|
|
print_reg("R2 ", regs->r2);
|
|
print_reg("R3 ", regs->r3);
|
|
print_reg("R12 ", regs->r12);
|
|
print_reg("LR ", regs->lr);
|
|
print_reg("PC ", regs->pc);
|
|
print_reg("XPSR ", regs->xpsr);
|
|
|
|
uint32_t cfsr = SCB->CFSR;
|
|
|
|
print_reg("HFSR ", SCB->HFSR);
|
|
print_reg("CFSR ", cfsr);
|
|
if (cfsr & 0x80) {
|
|
print_reg("MMFAR ", SCB->MMFAR);
|
|
}
|
|
if (cfsr & 0x8000) {
|
|
print_reg("BFAR ", SCB->BFAR);
|
|
}
|
|
/* Go to infinite loop when Hard Fault exception occurs */
|
|
while (1) {
|
|
__fatal_error("HardFault");
|
|
}
|
|
}
|
|
|
|
// Naked functions have no compiler generated gunk, so are the best thing to
|
|
// use for asm functions.
|
|
__attribute__((naked))
|
|
void HardFault_Handler(void) {
|
|
|
|
// From the ARMv7M Architecture Reference Manual, section B.1.5.6
|
|
// on entry to the Exception, the LR register contains, amongst other
|
|
// things, the value of CONTROL.SPSEL. This can be found in bit 3.
|
|
//
|
|
// If CONTROL.SPSEL is 0, then the exception was stacked up using the
|
|
// main stack pointer (aka MSP). If CONTROL.SPSEL is 1, then the exception
|
|
// was stacked up using the process stack pointer (aka PSP).
|
|
|
|
__asm volatile(
|
|
" tst lr, #4 \n" // Test Bit 3 to see which stack pointer we should use.
|
|
" ite eq \n" // Tell the assembler that the nest 2 instructions are if-then-else
|
|
" mrseq r0, msp \n" // Make R0 point to main stack pointer
|
|
" mrsne r0, psp \n" // Make R0 point to process stack pointer
|
|
" b HardFault_C_Handler \n" // Off to C land
|
|
);
|
|
}
|
|
#else
|
|
void HardFault_Handler(void) {
|
|
/* Go to infinite loop when Hard Fault exception occurs */
|
|
while (1) {
|
|
__fatal_error("HardFault");
|
|
}
|
|
}
|
|
#endif // REPORT_HARD_FAULT_REGS
|
|
|
|
/**
|
|
* @brief This function handles NMI exception.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void NMI_Handler(void) {
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles Memory Manage exception.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void MemManage_Handler(void) {
|
|
/* Go to infinite loop when Memory Manage exception occurs */
|
|
while (1) {
|
|
__fatal_error("MemManage");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles Bus Fault exception.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void BusFault_Handler(void) {
|
|
/* Go to infinite loop when Bus Fault exception occurs */
|
|
while (1) {
|
|
__fatal_error("BusFault");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles Usage Fault exception.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void UsageFault_Handler(void) {
|
|
/* Go to infinite loop when Usage Fault exception occurs */
|
|
while (1) {
|
|
__fatal_error("UsageFault");
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles SVCall exception.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void SVC_Handler(void) {
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles Debug Monitor exception.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void DebugMon_Handler(void) {
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles PendSVC exception.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void PendSV_Handler(void) {
|
|
pendsv_isr_handler();
|
|
}
|
|
|
|
/**
|
|
* @brief This function handles SysTick Handler.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void SysTick_Handler(void) {
|
|
// Instead of calling HAL_IncTick we do the increment here of the counter.
|
|
// This is purely for efficiency, since SysTick is called 1000 times per
|
|
// second at the highest interrupt priority.
|
|
// Note: we don't need uwTick to be declared volatile here because this is
|
|
// the only place where it can be modified, and the code is more efficient
|
|
// without the volatile specifier.
|
|
extern uint32_t uwTick;
|
|
uwTick += 1;
|
|
|
|
// Read the systick control regster. This has the side effect of clearing
|
|
// the COUNTFLAG bit, which makes the logic in sys_tick_get_microseconds
|
|
// work properly.
|
|
SysTick->CTRL;
|
|
|
|
// Right now we have the storage and DMA controllers to process during
|
|
// this interrupt and we use custom dispatch handlers. If this needs to
|
|
// be generalised in the future then a dispatch table can be used as
|
|
// follows: ((void(*)(void))(systick_dispatch[uwTick & 0xf]))();
|
|
|
|
if (STORAGE_IDLE_TICK(uwTick)) {
|
|
NVIC->STIR = FLASH_IRQn;
|
|
}
|
|
|
|
if (DMA_IDLE_ENABLED() && DMA_IDLE_TICK(uwTick)) {
|
|
dma_idle_handler(uwTick);
|
|
}
|
|
|
|
#if MICROPY_PY_THREAD
|
|
// signal a thread switch at 4ms=250Hz
|
|
if (pyb_thread_enabled && (uwTick & 0x03) == 0x03) {
|
|
SCB->ICSR = SCB_ICSR_PENDSVSET_Msk;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/******************************************************************************/
|
|
/* STM32F4xx Peripherals Interrupt Handlers */
|
|
/* Add here the Interrupt Handler for the used peripheral(s) (PPP), for the */
|
|
/* available peripheral interrupt handler's name please refer to the startup */
|
|
/* file (startup_stm32f4xx.s). */
|
|
/******************************************************************************/
|
|
|
|
/**
|
|
* @brief This function handles USB-On-The-Go FS global interrupt request.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
#if defined(USE_USB_FS)
|
|
void OTG_FS_IRQHandler(void) {
|
|
IRQ_ENTER(OTG_FS_IRQn);
|
|
HAL_PCD_IRQHandler(&pcd_fs_handle);
|
|
IRQ_EXIT(OTG_FS_IRQn);
|
|
}
|
|
#endif
|
|
#if defined(USE_USB_HS)
|
|
void OTG_HS_IRQHandler(void) {
|
|
IRQ_ENTER(OTG_HS_IRQn);
|
|
HAL_PCD_IRQHandler(&pcd_hs_handle);
|
|
IRQ_EXIT(OTG_HS_IRQn);
|
|
}
|
|
#endif
|
|
|
|
#if defined(USE_USB_FS) || defined(USE_USB_HS)
|
|
/**
|
|
* @brief This function handles USB OTG Common FS/HS Wakeup functions.
|
|
* @param *pcd_handle for FS or HS
|
|
* @retval None
|
|
*/
|
|
STATIC void OTG_CMD_WKUP_Handler(PCD_HandleTypeDef *pcd_handle) {
|
|
|
|
if (pcd_handle->Init.low_power_enable) {
|
|
/* Reset SLEEPDEEP bit of Cortex System Control Register */
|
|
SCB->SCR &= (uint32_t)~((uint32_t)(SCB_SCR_SLEEPDEEP_Msk | SCB_SCR_SLEEPONEXIT_Msk));
|
|
|
|
/* Configures system clock after wake-up from STOP: enable HSE, PLL and select
|
|
PLL as system clock source (HSE and PLL are disabled in STOP mode) */
|
|
|
|
__HAL_RCC_HSE_CONFIG(RCC_HSE_ON);
|
|
|
|
/* Wait till HSE is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_HSERDY) == RESET)
|
|
{}
|
|
|
|
/* Enable the main PLL. */
|
|
__HAL_RCC_PLL_ENABLE();
|
|
|
|
/* Wait till PLL is ready */
|
|
while(__HAL_RCC_GET_FLAG(RCC_FLAG_PLLRDY) == RESET)
|
|
{}
|
|
|
|
/* Select PLL as SYSCLK */
|
|
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, RCC_SYSCLKSOURCE_PLLCLK);
|
|
|
|
while (__HAL_RCC_GET_SYSCLK_SOURCE() != RCC_CFGR_SWS_PLL)
|
|
{}
|
|
|
|
/* ungate PHY clock */
|
|
__HAL_PCD_UNGATE_PHYCLOCK(pcd_handle);
|
|
}
|
|
|
|
}
|
|
#endif
|
|
|
|
#if defined(USE_USB_FS)
|
|
/**
|
|
* @brief This function handles USB OTG FS Wakeup IRQ Handler.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void OTG_FS_WKUP_IRQHandler(void) {
|
|
IRQ_ENTER(OTG_FS_WKUP_IRQn);
|
|
|
|
OTG_CMD_WKUP_Handler(&pcd_fs_handle);
|
|
|
|
/* Clear EXTI pending Bit*/
|
|
__HAL_USB_FS_EXTI_CLEAR_FLAG();
|
|
|
|
IRQ_EXIT(OTG_FS_WKUP_IRQn);
|
|
}
|
|
#endif
|
|
|
|
#if defined(USE_USB_HS)
|
|
/**
|
|
* @brief This function handles USB OTG HS Wakeup IRQ Handler.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void OTG_HS_WKUP_IRQHandler(void) {
|
|
IRQ_ENTER(OTG_HS_WKUP_IRQn);
|
|
|
|
OTG_CMD_WKUP_Handler(&pcd_hs_handle);
|
|
|
|
/* Clear EXTI pending Bit*/
|
|
__HAL_USB_HS_EXTI_CLEAR_FLAG();
|
|
|
|
IRQ_EXIT(OTG_HS_WKUP_IRQn);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* @brief This function handles PPP interrupt request.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
/*void PPP_IRQHandler(void)
|
|
{
|
|
}*/
|
|
|
|
// Handle a flash (erase/program) interrupt.
|
|
void FLASH_IRQHandler(void) {
|
|
IRQ_ENTER(FLASH_IRQn);
|
|
// This calls the real flash IRQ handler, if needed
|
|
/*
|
|
uint32_t flash_cr = FLASH->CR;
|
|
if ((flash_cr & FLASH_IT_EOP) || (flash_cr & FLASH_IT_ERR)) {
|
|
HAL_FLASH_IRQHandler();
|
|
}
|
|
*/
|
|
// This call the storage IRQ handler, to check if the flash cache needs flushing
|
|
storage_irq_handler();
|
|
IRQ_EXIT(FLASH_IRQn);
|
|
}
|
|
|
|
/**
|
|
* @brief These functions handle the EXTI interrupt requests.
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
void EXTI0_IRQHandler(void) {
|
|
IRQ_ENTER(EXTI0_IRQn);
|
|
Handle_EXTI_Irq(0);
|
|
IRQ_EXIT(EXTI0_IRQn);
|
|
}
|
|
|
|
void EXTI1_IRQHandler(void) {
|
|
IRQ_ENTER(EXTI1_IRQn);
|
|
Handle_EXTI_Irq(1);
|
|
IRQ_EXIT(EXTI1_IRQn);
|
|
}
|
|
|
|
void EXTI2_IRQHandler(void) {
|
|
IRQ_ENTER(EXTI2_IRQn);
|
|
Handle_EXTI_Irq(2);
|
|
IRQ_EXIT(EXTI2_IRQn);
|
|
}
|
|
|
|
void EXTI3_IRQHandler(void) {
|
|
IRQ_ENTER(EXTI3_IRQn);
|
|
Handle_EXTI_Irq(3);
|
|
IRQ_EXIT(EXTI3_IRQn);
|
|
}
|
|
|
|
void EXTI4_IRQHandler(void) {
|
|
IRQ_ENTER(EXTI4_IRQn);
|
|
Handle_EXTI_Irq(4);
|
|
IRQ_EXIT(EXTI4_IRQn);
|
|
}
|
|
|
|
void EXTI9_5_IRQHandler(void) {
|
|
IRQ_ENTER(EXTI9_5_IRQn);
|
|
Handle_EXTI_Irq(5);
|
|
Handle_EXTI_Irq(6);
|
|
Handle_EXTI_Irq(7);
|
|
Handle_EXTI_Irq(8);
|
|
Handle_EXTI_Irq(9);
|
|
IRQ_EXIT(EXTI9_5_IRQn);
|
|
}
|
|
|
|
void EXTI15_10_IRQHandler(void) {
|
|
IRQ_ENTER(EXTI15_10_IRQn);
|
|
Handle_EXTI_Irq(10);
|
|
Handle_EXTI_Irq(11);
|
|
Handle_EXTI_Irq(12);
|
|
Handle_EXTI_Irq(13);
|
|
Handle_EXTI_Irq(14);
|
|
Handle_EXTI_Irq(15);
|
|
IRQ_EXIT(EXTI15_10_IRQn);
|
|
}
|
|
|
|
void PVD_IRQHandler(void) {
|
|
IRQ_ENTER(PVD_IRQn);
|
|
Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
|
|
IRQ_EXIT(PVD_IRQn);
|
|
}
|
|
|
|
#if defined(MCU_SERIES_L4)
|
|
void PVD_PVM_IRQHandler(void) {
|
|
IRQ_ENTER(PVD_PVM_IRQn);
|
|
Handle_EXTI_Irq(EXTI_PVD_OUTPUT);
|
|
IRQ_EXIT(PVD_PVM_IRQn);
|
|
}
|
|
#endif
|
|
|
|
void RTC_Alarm_IRQHandler(void) {
|
|
IRQ_ENTER(RTC_Alarm_IRQn);
|
|
Handle_EXTI_Irq(EXTI_RTC_ALARM);
|
|
IRQ_EXIT(RTC_Alarm_IRQn);
|
|
}
|
|
|
|
#if defined(ETH) // The 407 has ETH, the 405 doesn't
|
|
void ETH_WKUP_IRQHandler(void) {
|
|
IRQ_ENTER(ETH_WKUP_IRQn);
|
|
Handle_EXTI_Irq(EXTI_ETH_WAKEUP);
|
|
IRQ_EXIT(ETH_WKUP_IRQn);
|
|
}
|
|
#endif
|
|
|
|
void TAMP_STAMP_IRQHandler(void) {
|
|
IRQ_ENTER(TAMP_STAMP_IRQn);
|
|
Handle_EXTI_Irq(EXTI_RTC_TIMESTAMP);
|
|
IRQ_EXIT(TAMP_STAMP_IRQn);
|
|
}
|
|
|
|
void RTC_WKUP_IRQHandler(void) {
|
|
IRQ_ENTER(RTC_WKUP_IRQn);
|
|
RTC->ISR &= ~(1 << 10); // clear wakeup interrupt flag
|
|
Handle_EXTI_Irq(EXTI_RTC_WAKEUP); // clear EXTI flag and execute optional callback
|
|
IRQ_EXIT(RTC_WKUP_IRQn);
|
|
}
|
|
|
|
void TIM1_BRK_TIM9_IRQHandler(void) {
|
|
IRQ_ENTER(TIM1_BRK_TIM9_IRQn);
|
|
timer_irq_handler(9);
|
|
IRQ_EXIT(TIM1_BRK_TIM9_IRQn);
|
|
}
|
|
|
|
#if defined(MCU_SERIES_L4)
|
|
void TIM1_BRK_TIM15_IRQHandler(void) {
|
|
IRQ_ENTER(TIM1_BRK_TIM15_IRQn);
|
|
timer_irq_handler(15);
|
|
IRQ_EXIT(TIM1_BRK_TIM15_IRQn);
|
|
}
|
|
#endif
|
|
|
|
void TIM1_UP_TIM10_IRQHandler(void) {
|
|
IRQ_ENTER(TIM1_UP_TIM10_IRQn);
|
|
timer_irq_handler(1);
|
|
timer_irq_handler(10);
|
|
IRQ_EXIT(TIM1_UP_TIM10_IRQn);
|
|
}
|
|
|
|
#if defined(MCU_SERIES_L4)
|
|
void TIM1_UP_TIM16_IRQHandler(void) {
|
|
IRQ_ENTER(TIM1_UP_TIM16_IRQn);
|
|
timer_irq_handler(1);
|
|
timer_irq_handler(16);
|
|
IRQ_EXIT(TIM1_UP_TIM16_IRQn);
|
|
}
|
|
#endif
|
|
|
|
void TIM1_TRG_COM_TIM11_IRQHandler(void) {
|
|
IRQ_ENTER(TIM1_TRG_COM_TIM11_IRQn);
|
|
timer_irq_handler(11);
|
|
IRQ_EXIT(TIM1_TRG_COM_TIM11_IRQn);
|
|
}
|
|
|
|
#if defined(MCU_SERIES_L4)
|
|
void TIM1_TRG_COM_TIM17_IRQHandler(void) {
|
|
IRQ_ENTER(TIM1_TRG_COM_TIM17_IRQn);
|
|
timer_irq_handler(17);
|
|
IRQ_EXIT(TIM1_TRG_COM_TIM17_IRQn);
|
|
}
|
|
#endif
|
|
|
|
void TIM1_CC_IRQHandler(void) {
|
|
IRQ_ENTER(TIM1_CC_IRQn);
|
|
timer_irq_handler(1);
|
|
IRQ_EXIT(TIM1_CC_IRQn);
|
|
}
|
|
|
|
void TIM2_IRQHandler(void) {
|
|
IRQ_ENTER(TIM2_IRQn);
|
|
timer_irq_handler(2);
|
|
IRQ_EXIT(TIM2_IRQn);
|
|
}
|
|
|
|
void TIM3_IRQHandler(void) {
|
|
IRQ_ENTER(TIM3_IRQn);
|
|
timer_irq_handler(3);
|
|
IRQ_EXIT(TIM3_IRQn);
|
|
}
|
|
|
|
void TIM4_IRQHandler(void) {
|
|
IRQ_ENTER(TIM4_IRQn);
|
|
timer_irq_handler(4);
|
|
IRQ_EXIT(TIM4_IRQn);
|
|
}
|
|
|
|
void TIM5_IRQHandler(void) {
|
|
IRQ_ENTER(TIM5_IRQn);
|
|
timer_irq_handler(5);
|
|
HAL_TIM_IRQHandler(&TIM5_Handle);
|
|
IRQ_EXIT(TIM5_IRQn);
|
|
}
|
|
|
|
#if defined(TIM6) // STM32F401 doesn't have TIM6
|
|
void TIM6_DAC_IRQHandler(void) {
|
|
IRQ_ENTER(TIM6_DAC_IRQn);
|
|
timer_irq_handler(6);
|
|
IRQ_EXIT(TIM6_DAC_IRQn);
|
|
}
|
|
#endif
|
|
|
|
#if defined(TIM7) // STM32F401 doesn't have TIM7
|
|
void TIM7_IRQHandler(void) {
|
|
IRQ_ENTER(TIM7_IRQn);
|
|
timer_irq_handler(7);
|
|
IRQ_EXIT(TIM7_IRQn);
|
|
}
|
|
#endif
|
|
|
|
#if defined(TIM8) // STM32F401 doesn't have TIM8
|
|
void TIM8_BRK_TIM12_IRQHandler(void) {
|
|
IRQ_ENTER(TIM8_BRK_TIM12_IRQn);
|
|
timer_irq_handler(12);
|
|
IRQ_EXIT(TIM8_BRK_TIM12_IRQn);
|
|
}
|
|
|
|
void TIM8_UP_TIM13_IRQHandler(void) {
|
|
IRQ_ENTER(TIM8_UP_TIM13_IRQn);
|
|
timer_irq_handler(8);
|
|
timer_irq_handler(13);
|
|
IRQ_EXIT(TIM8_UP_TIM13_IRQn);
|
|
}
|
|
|
|
#if defined(MCU_SERIES_L4)
|
|
void TIM8_UP_IRQHandler(void) {
|
|
IRQ_ENTER(TIM8_UP_IRQn);
|
|
timer_irq_handler(8);
|
|
IRQ_EXIT(TIM8_UP_IRQn);
|
|
}
|
|
#endif
|
|
|
|
void TIM8_CC_IRQHandler(void) {
|
|
IRQ_ENTER(TIM8_CC_IRQn);
|
|
timer_irq_handler(8);
|
|
IRQ_EXIT(TIM8_CC_IRQn);
|
|
}
|
|
|
|
void TIM8_TRG_COM_TIM14_IRQHandler(void) {
|
|
IRQ_ENTER(TIM8_TRG_COM_TIM14_IRQn);
|
|
timer_irq_handler(14);
|
|
IRQ_EXIT(TIM8_TRG_COM_TIM14_IRQn);
|
|
}
|
|
#endif
|
|
|
|
// UART/USART IRQ handlers
|
|
void USART1_IRQHandler(void) {
|
|
IRQ_ENTER(USART1_IRQn);
|
|
uart_irq_handler(1);
|
|
IRQ_EXIT(USART1_IRQn);
|
|
}
|
|
|
|
void USART2_IRQHandler(void) {
|
|
IRQ_ENTER(USART2_IRQn);
|
|
uart_irq_handler(2);
|
|
IRQ_EXIT(USART2_IRQn);
|
|
}
|
|
|
|
void USART3_IRQHandler(void) {
|
|
IRQ_ENTER(USART3_IRQn);
|
|
uart_irq_handler(3);
|
|
IRQ_EXIT(USART3_IRQn);
|
|
}
|
|
|
|
void UART4_IRQHandler(void) {
|
|
IRQ_ENTER(UART4_IRQn);
|
|
uart_irq_handler(4);
|
|
IRQ_EXIT(UART4_IRQn);
|
|
}
|
|
|
|
void UART5_IRQHandler(void) {
|
|
IRQ_ENTER(UART5_IRQn);
|
|
uart_irq_handler(5);
|
|
IRQ_EXIT(UART5_IRQn);
|
|
}
|
|
|
|
void USART6_IRQHandler(void) {
|
|
IRQ_ENTER(USART6_IRQn);
|
|
uart_irq_handler(6);
|
|
IRQ_EXIT(USART6_IRQn);
|
|
}
|
|
|
|
#if defined(MICROPY_HW_UART7_TX)
|
|
void UART7_IRQHandler(void) {
|
|
IRQ_ENTER(UART7_IRQn);
|
|
uart_irq_handler(7);
|
|
IRQ_EXIT(UART7_IRQn);
|
|
}
|
|
#endif
|
|
|
|
#if defined(MICROPY_HW_UART8_TX)
|
|
void UART8_IRQHandler(void) {
|
|
IRQ_ENTER(UART8_IRQn);
|
|
uart_irq_handler(8);
|
|
IRQ_EXIT(UART8_IRQn);
|
|
}
|
|
#endif
|
|
|
|
#if MICROPY_HW_ENABLE_CAN
|
|
void CAN1_RX0_IRQHandler(void) {
|
|
IRQ_ENTER(CAN1_RX0_IRQn);
|
|
can_rx_irq_handler(PYB_CAN_1, CAN_FIFO0);
|
|
IRQ_EXIT(CAN1_RX0_IRQn);
|
|
}
|
|
|
|
void CAN1_RX1_IRQHandler(void) {
|
|
IRQ_ENTER(CAN1_RX1_IRQn);
|
|
can_rx_irq_handler(PYB_CAN_1, CAN_FIFO1);
|
|
IRQ_EXIT(CAN1_RX1_IRQn);
|
|
}
|
|
|
|
void CAN2_RX0_IRQHandler(void) {
|
|
IRQ_ENTER(CAN2_RX0_IRQn);
|
|
can_rx_irq_handler(PYB_CAN_2, CAN_FIFO0);
|
|
IRQ_EXIT(CAN2_RX0_IRQn);
|
|
}
|
|
|
|
void CAN2_RX1_IRQHandler(void) {
|
|
IRQ_ENTER(CAN2_RX1_IRQn);
|
|
can_rx_irq_handler(PYB_CAN_2, CAN_FIFO1);
|
|
IRQ_EXIT(CAN2_RX1_IRQn);
|
|
}
|
|
#endif // MICROPY_HW_ENABLE_CAN
|
|
|
|
#if defined(MICROPY_HW_I2C1_SCL)
|
|
void I2C1_EV_IRQHandler(void) {
|
|
IRQ_ENTER(I2C1_EV_IRQn);
|
|
i2c_ev_irq_handler(1);
|
|
IRQ_EXIT(I2C1_EV_IRQn);
|
|
}
|
|
|
|
void I2C1_ER_IRQHandler(void) {
|
|
IRQ_ENTER(I2C1_ER_IRQn);
|
|
i2c_er_irq_handler(1);
|
|
IRQ_EXIT(I2C1_ER_IRQn);
|
|
}
|
|
#endif // defined(MICROPY_HW_I2C1_SCL)
|
|
|
|
#if defined(MICROPY_HW_I2C2_SCL)
|
|
void I2C2_EV_IRQHandler(void) {
|
|
IRQ_ENTER(I2C2_EV_IRQn);
|
|
i2c_ev_irq_handler(2);
|
|
IRQ_EXIT(I2C2_EV_IRQn);
|
|
}
|
|
|
|
void I2C2_ER_IRQHandler(void) {
|
|
IRQ_ENTER(I2C2_ER_IRQn);
|
|
i2c_er_irq_handler(2);
|
|
IRQ_EXIT(I2C2_ER_IRQn);
|
|
}
|
|
#endif // defined(MICROPY_HW_I2C2_SCL)
|
|
|
|
#if defined(MICROPY_HW_I2C3_SCL)
|
|
void I2C3_EV_IRQHandler(void) {
|
|
IRQ_ENTER(I2C3_EV_IRQn);
|
|
i2c_ev_irq_handler(3);
|
|
IRQ_EXIT(I2C3_EV_IRQn);
|
|
}
|
|
|
|
void I2C3_ER_IRQHandler(void) {
|
|
IRQ_ENTER(I2C3_ER_IRQn);
|
|
i2c_er_irq_handler(3);
|
|
IRQ_EXIT(I2C3_ER_IRQn);
|
|
}
|
|
#endif // defined(MICROPY_HW_I2C3_SCL)
|