micropython/ports/rp2/machine_i2s.c

1150 lines
42 KiB
C

/*
* This file is part of the MicroPython project, http://micropython.org/
*
* The MIT License (MIT)
*
* Copyright (c) 2021 Mike Teachman
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include "py/obj.h"
#include "py/runtime.h"
#include "py/mphal.h"
#include "py/misc.h"
#include "py/stream.h"
#include "py/objstr.h"
#include "modmachine.h"
#include "hardware/pio.h"
#include "hardware/clocks.h"
#include "hardware/gpio.h"
#include "hardware/dma.h"
#include "hardware/irq.h"
// The I2S class has 3 modes of operation:
//
// Mode1: Blocking
// - readinto() and write() methods block until the supplied buffer is filled (read) or emptied (write)
// - this is the default mode of operation
//
// Mode2: Non-Blocking
// - readinto() and write() methods return immediately
// - buffer filling and emptying happens asynchronously to the main MicroPython task
// - a callback function is called when the supplied buffer has been filled (read) or emptied (write)
// - non-blocking mode is enabled when a callback is set with the irq() method
// - the DMA IRQ handler is used to implement the asynchronous background operations
//
// Mode3: Uasyncio
// - implements the stream protocol
// - uasyncio mode is enabled when the ioctl() function is called
// - the state of the internal ring buffer is used to detect that I2S samples can be read or written
//
// The samples contained in the app buffer supplied for the readinto() and write() methods have the following convention:
// Mono: little endian format
// Stereo: little endian format, left channel first
//
// I2S terms:
// "frame": consists of two audio samples (Left audio sample + Right audio sample)
//
// Misc:
// - for Mono configuration:
// - readinto method: samples are gathered from the L channel only
// - write method: every sample is output to both the L and R channels
// - for readinto method the I2S hardware is read using 8-byte frames
// (this is standard for almost all I2S hardware, such as MEMS microphones)
// - the PIO is used to drive the I2S bus signals
// - all sample data transfers use non-blocking DMA
// - the DMA controller is configured with 2 DMA channels in chained mode
#define MAX_I2S_RP2 (2)
// The DMA buffer size was empirically determined. It is a tradeoff between:
// 1. memory use (smaller buffer size desirable to reduce memory footprint)
// 2. interrupt frequency (larger buffer size desirable to reduce interrupt frequency)
#define SIZEOF_DMA_BUFFER_IN_BYTES (256)
#define SIZEOF_HALF_DMA_BUFFER_IN_BYTES (SIZEOF_DMA_BUFFER_IN_BYTES / 2)
#define I2S_NUM_DMA_CHANNELS (2)
// For non-blocking mode, to avoid underflow/overflow, sample data is written/read to/from the ring buffer at a rate faster
// than the DMA transfer rate
#define NON_BLOCKING_RATE_MULTIPLIER (4)
#define SIZEOF_NON_BLOCKING_COPY_IN_BYTES (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * NON_BLOCKING_RATE_MULTIPLIER)
#define NUM_I2S_USER_FORMATS (4)
#define I2S_RX_FRAME_SIZE_IN_BYTES (8)
#define SAMPLES_PER_FRAME (2)
#define PIO_INSTRUCTIONS_PER_BIT (2)
typedef enum {
RX,
TX
} i2s_mode_t;
typedef enum {
MONO,
STEREO
} format_t;
typedef enum {
BLOCKING,
NON_BLOCKING,
UASYNCIO
} io_mode_t;
typedef enum {
GP_INPUT = 0,
GP_OUTPUT = 1
} gpio_dir_t;
typedef struct _ring_buf_t {
uint8_t *buffer;
size_t head;
size_t tail;
size_t size;
} ring_buf_t;
typedef struct _non_blocking_descriptor_t {
mp_buffer_info_t appbuf;
uint32_t index;
bool copy_in_progress;
} non_blocking_descriptor_t;
typedef struct _machine_i2s_obj_t {
mp_obj_base_t base;
uint8_t i2s_id;
mp_hal_pin_obj_t sck;
mp_hal_pin_obj_t ws;
mp_hal_pin_obj_t sd;
i2s_mode_t mode;
int8_t bits;
format_t format;
int32_t rate;
int32_t ibuf;
mp_obj_t callback_for_non_blocking;
io_mode_t io_mode;
PIO pio;
uint8_t sm;
const pio_program_t *pio_program;
uint prog_offset;
int dma_channel[I2S_NUM_DMA_CHANNELS];
uint8_t dma_buffer[SIZEOF_DMA_BUFFER_IN_BYTES];
ring_buf_t ring_buffer;
uint8_t *ring_buffer_storage;
non_blocking_descriptor_t non_blocking_descriptor;
} machine_i2s_obj_t;
// The frame map is used with the readinto() method to transform the audio sample data coming
// from DMA memory (32-bit stereo) to the format specified
// in the I2S constructor. e.g. 16-bit mono
STATIC const int8_t i2s_frame_map[NUM_I2S_USER_FORMATS][I2S_RX_FRAME_SIZE_IN_BYTES] = {
{-1, -1, 0, 1, -1, -1, -1, -1 }, // Mono, 16-bits
{ 0, 1, 2, 3, -1, -1, -1, -1 }, // Mono, 32-bits
{-1, -1, 0, 1, -1, -1, 2, 3 }, // Stereo, 16-bits
{ 0, 1, 2, 3, 4, 5, 6, 7 }, // Stereo, 32-bits
};
STATIC const PIO pio_instances[NUM_PIOS] = {pio0, pio1};
// PIO program for 16-bit write
// set(x, 14) .side(0b01)
// label('left_channel')
// out(pins, 1) .side(0b00)
// jmp(x_dec, "left_channel") .side(0b01)
// out(pins, 1) .side(0b10)
// set(x, 14) .side(0b11)
// label('right_channel')
// out(pins, 1) .side(0b10)
// jmp(x_dec, "right_channel") .side(0b11)
// out(pins, 1) .side(0b00)
STATIC const uint16_t pio_instructions_write_16[] = {59438, 24577, 2113, 28673, 63534, 28673, 6213, 24577};
STATIC const pio_program_t pio_write_16 = {
pio_instructions_write_16,
sizeof(pio_instructions_write_16) / sizeof(uint16_t),
-1
};
// PIO program for 32-bit write
// set(x, 30) .side(0b01)
// label('left_channel')
// out(pins, 1) .side(0b00)
// jmp(x_dec, "left_channel") .side(0b01)
// out(pins, 1) .side(0b10)
// set(x, 30) .side(0b11)
// label('right_channel')
// out(pins, 1) .side(0b10)
// jmp(x_dec, "right_channel") .side(0b11)
// out(pins, 1) .side(0b00)
STATIC const uint16_t pio_instructions_write_32[] = {59454, 24577, 2113, 28673, 63550, 28673, 6213, 24577};
STATIC const pio_program_t pio_write_32 = {
pio_instructions_write_32,
sizeof(pio_instructions_write_32) / sizeof(uint16_t),
-1
};
// PIO program for 32-bit read
// set(x, 30) .side(0b00)
// label('left_channel')
// in_(pins, 1) .side(0b01)
// jmp(x_dec, "left_channel") .side(0b00)
// in_(pins, 1) .side(0b11)
// set(x, 30) .side(0b10)
// label('right_channel')
// in_(pins, 1) .side(0b11)
// jmp(x_dec, "right_channel") .side(0b10)
// in_(pins, 1) .side(0b01)
STATIC const uint16_t pio_instructions_read_32[] = {57406, 18433, 65, 22529, 61502, 22529, 4165, 18433};
STATIC const pio_program_t pio_read_32 = {
pio_instructions_read_32,
sizeof(pio_instructions_read_32) / sizeof(uint16_t),
-1
};
STATIC uint8_t dma_get_bits(i2s_mode_t mode, int8_t bits);
STATIC void dma_irq0_handler(void);
STATIC void dma_irq1_handler(void);
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in);
void machine_i2s_init0(void) {
for (uint8_t i = 0; i < MAX_I2S_RP2; i++) {
MP_STATE_PORT(machine_i2s_obj[i]) = NULL;
}
}
// Ring Buffer
// Thread safe when used with these constraints:
// - Single Producer, Single Consumer
// - Sequential atomic operations
// One byte of capacity is used to detect buffer empty/full
STATIC void ringbuf_init(ring_buf_t *rbuf, uint8_t *buffer, size_t size) {
rbuf->buffer = buffer;
rbuf->size = size;
rbuf->head = 0;
rbuf->tail = 0;
}
STATIC bool ringbuf_push(ring_buf_t *rbuf, uint8_t data) {
size_t next_tail = (rbuf->tail + 1) % rbuf->size;
if (next_tail != rbuf->head) {
rbuf->buffer[rbuf->tail] = data;
rbuf->tail = next_tail;
return true;
}
// full
return false;
}
STATIC bool ringbuf_pop(ring_buf_t *rbuf, uint8_t *data) {
if (rbuf->head == rbuf->tail) {
// empty
return false;
}
*data = rbuf->buffer[rbuf->head];
rbuf->head = (rbuf->head + 1) % rbuf->size;
return true;
}
STATIC bool ringbuf_is_empty(ring_buf_t *rbuf) {
return rbuf->head == rbuf->tail;
}
STATIC bool ringbuf_is_full(ring_buf_t *rbuf) {
return ((rbuf->tail + 1) % rbuf->size) == rbuf->head;
}
STATIC size_t ringbuf_available_data(ring_buf_t *rbuf) {
return (rbuf->tail - rbuf->head + rbuf->size) % rbuf->size;
}
STATIC size_t ringbuf_available_space(ring_buf_t *rbuf) {
return rbuf->size - ringbuf_available_data(rbuf) - 1;
}
STATIC int8_t get_frame_mapping_index(int8_t bits, format_t format) {
if (format == MONO) {
if (bits == 16) {
return 0;
} else { // 32 bits
return 1;
}
} else { // STEREO
if (bits == 16) {
return 2;
} else { // 32 bits
return 3;
}
}
}
STATIC uint32_t fill_appbuf_from_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
// copy audio samples from the ring buffer to the app buffer
// loop, copying samples until the app buffer is filled
// For uasyncio mode, the loop will make an early exit if the ring buffer becomes empty
// Example:
// a MicroPython I2S object is configured for 16-bit mono (2 bytes per audio sample).
// For every frame coming from the ring buffer (8 bytes), 2 bytes are "cherry picked" and
// copied to the supplied app buffer.
// Thus, for every 1 byte copied to the app buffer, 4 bytes are read from the ring buffer.
// If a 8kB app buffer is supplied, 32kB of audio samples is read from the ring buffer.
uint32_t num_bytes_copied_to_appbuf = 0;
uint8_t *app_p = (uint8_t *)appbuf->buf;
uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1);
uint32_t num_bytes_needed_from_ringbuf = appbuf->len * (I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
uint8_t discard_byte;
while (num_bytes_needed_from_ringbuf) {
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
int8_t r_to_a_mapping = i2s_frame_map[f_index][i];
if (r_to_a_mapping != -1) {
if (self->io_mode == BLOCKING) {
// poll the ringbuf until a sample becomes available, copy into appbuf using the mapping transform
while (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) {
;
}
num_bytes_copied_to_appbuf++;
} else if (self->io_mode == UASYNCIO) {
if (ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping) == false) {
// ring buffer is empty, exit
goto exit;
} else {
num_bytes_copied_to_appbuf++;
}
} else {
return 0; // should never get here (non-blocking mode does not use this function)
}
} else { // r_a_mapping == -1
// discard unused byte from ring buffer
if (self->io_mode == BLOCKING) {
// poll the ringbuf until a sample becomes available
while (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) {
;
}
} else if (self->io_mode == UASYNCIO) {
if (ringbuf_pop(&self->ring_buffer, &discard_byte) == false) {
// ring buffer is empty, exit
goto exit;
}
} else {
return 0; // should never get here (non-blocking mode does not use this function)
}
}
num_bytes_needed_from_ringbuf--;
}
app_p += appbuf_sample_size_in_bytes;
}
exit:
return num_bytes_copied_to_appbuf;
}
// function is used in IRQ context
STATIC void fill_appbuf_from_ringbuf_non_blocking(machine_i2s_obj_t *self) {
// attempt to copy a block of audio samples from the ring buffer to the supplied app buffer.
// audio samples will be formatted as part of the copy operation
uint32_t num_bytes_copied_to_appbuf = 0;
uint8_t *app_p = &(((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index]);
uint8_t appbuf_sample_size_in_bytes = (self->bits == 16? 2 : 4) * (self->format == STEREO ? 2: 1);
uint32_t num_bytes_remaining_to_copy_to_appbuf = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index;
uint32_t num_bytes_remaining_to_copy_from_ring_buffer = num_bytes_remaining_to_copy_to_appbuf *
(I2S_RX_FRAME_SIZE_IN_BYTES / appbuf_sample_size_in_bytes);
uint32_t num_bytes_needed_from_ringbuf = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy_from_ring_buffer);
uint8_t discard_byte;
if (ringbuf_available_data(&self->ring_buffer) >= num_bytes_needed_from_ringbuf) {
while (num_bytes_needed_from_ringbuf) {
uint8_t f_index = get_frame_mapping_index(self->bits, self->format);
for (uint8_t i = 0; i < I2S_RX_FRAME_SIZE_IN_BYTES; i++) {
int8_t r_to_a_mapping = i2s_frame_map[f_index][i];
if (r_to_a_mapping != -1) {
ringbuf_pop(&self->ring_buffer, app_p + r_to_a_mapping);
num_bytes_copied_to_appbuf++;
} else { // r_a_mapping == -1
// discard unused byte from ring buffer
ringbuf_pop(&self->ring_buffer, &discard_byte);
}
num_bytes_needed_from_ringbuf--;
}
app_p += appbuf_sample_size_in_bytes;
}
self->non_blocking_descriptor.index += num_bytes_copied_to_appbuf;
if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) {
self->non_blocking_descriptor.copy_in_progress = false;
mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self));
}
}
}
STATIC uint32_t copy_appbuf_to_ringbuf(machine_i2s_obj_t *self, mp_buffer_info_t *appbuf) {
// copy audio samples from the app buffer to the ring buffer
// loop, reading samples until the app buffer is emptied
// for uasyncio mode, the loop will make an early exit if the ring buffer becomes full
uint32_t a_index = 0;
while (a_index < appbuf->len) {
if (self->io_mode == BLOCKING) {
// copy a byte to the ringbuf when space becomes available
while (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) {
;
}
a_index++;
} else if (self->io_mode == UASYNCIO) {
if (ringbuf_push(&self->ring_buffer, ((uint8_t *)appbuf->buf)[a_index]) == false) {
// ring buffer is full, exit
break;
} else {
a_index++;
}
} else {
return 0; // should never get here (non-blocking mode does not use this function)
}
}
return a_index;
}
// function is used in IRQ context
STATIC void copy_appbuf_to_ringbuf_non_blocking(machine_i2s_obj_t *self) {
// copy audio samples from app buffer into ring buffer
uint32_t num_bytes_remaining_to_copy = self->non_blocking_descriptor.appbuf.len - self->non_blocking_descriptor.index;
uint32_t num_bytes_to_copy = MIN(SIZEOF_NON_BLOCKING_COPY_IN_BYTES, num_bytes_remaining_to_copy);
if (ringbuf_available_space(&self->ring_buffer) >= num_bytes_to_copy) {
for (uint32_t i = 0; i < num_bytes_to_copy; i++) {
ringbuf_push(&self->ring_buffer,
((uint8_t *)self->non_blocking_descriptor.appbuf.buf)[self->non_blocking_descriptor.index + i]);
}
self->non_blocking_descriptor.index += num_bytes_to_copy;
if (self->non_blocking_descriptor.index >= self->non_blocking_descriptor.appbuf.len) {
self->non_blocking_descriptor.copy_in_progress = false;
mp_sched_schedule(self->callback_for_non_blocking, MP_OBJ_FROM_PTR(self));
}
}
}
// function is used in IRQ context
STATIC void empty_dma(machine_i2s_obj_t *self, uint8_t *dma_buffer_p) {
// when space exists, copy samples into ring buffer
if (ringbuf_available_space(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
ringbuf_push(&self->ring_buffer, dma_buffer_p[i]);
}
}
}
// function is used in IRQ context
STATIC void feed_dma(machine_i2s_obj_t *self, uint8_t *dma_buffer_p) {
// when data exists, copy samples from ring buffer
if (ringbuf_available_data(&self->ring_buffer) >= SIZEOF_HALF_DMA_BUFFER_IN_BYTES) {
// copy a block of samples from the ring buffer to the dma buffer.
// STM32 HAL API has a stereo I2S implementation, but not mono
// mono format is implemented by duplicating each sample into both L and R channels.
if ((self->format == MONO) && (self->bits == 16)) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 4; i++) {
for (uint8_t b = 0; b < sizeof(uint16_t); b++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 4 + b]);
dma_buffer_p[i * 4 + b + 2] = dma_buffer_p[i * 4 + b]; // duplicated mono sample
}
}
} else if ((self->format == MONO) && (self->bits == 32)) {
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES / 8; i++) {
for (uint8_t b = 0; b < sizeof(uint32_t); b++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i * 8 + b]);
dma_buffer_p[i * 8 + b + 4] = dma_buffer_p[i * 8 + b]; // duplicated mono sample
}
}
} else { // STEREO, both 16-bit and 32-bit
for (uint32_t i = 0; i < SIZEOF_HALF_DMA_BUFFER_IN_BYTES; i++) {
ringbuf_pop(&self->ring_buffer, &dma_buffer_p[i]);
}
}
} else {
// underflow. clear buffer to transmit "silence" on the I2S bus
memset(dma_buffer_p, 0, SIZEOF_HALF_DMA_BUFFER_IN_BYTES);
}
}
STATIC void irq_configure(machine_i2s_obj_t *self) {
if (self->i2s_id == 0) {
irq_set_exclusive_handler(DMA_IRQ_0, dma_irq0_handler);
irq_set_enabled(DMA_IRQ_0, true);
} else {
irq_set_exclusive_handler(DMA_IRQ_1, dma_irq1_handler);
irq_set_enabled(DMA_IRQ_1, true);
}
}
STATIC void irq_deinit(machine_i2s_obj_t *self) {
if (self->i2s_id == 0) {
irq_set_enabled(DMA_IRQ_0, false);
irq_remove_handler(DMA_IRQ_0, dma_irq0_handler);
} else {
irq_set_enabled(DMA_IRQ_1, false);
irq_remove_handler(DMA_IRQ_1, dma_irq1_handler);
}
}
STATIC void pio_configure(machine_i2s_obj_t *self) {
if (self->mode == TX) {
if (self->bits == 16) {
self->pio_program = &pio_write_16;
} else {
self->pio_program = &pio_write_32;
}
} else { // RX
self->pio_program = &pio_read_32;
}
// find a PIO with a free state machine and adequate program space
PIO candidate_pio;
bool is_free_sm;
bool can_add_program;
for (uint8_t p = 0; p < NUM_PIOS; p++) {
candidate_pio = pio_instances[p];
is_free_sm = false;
can_add_program = false;
for (uint8_t sm = 0; sm < NUM_PIO_STATE_MACHINES; sm++) {
if (!pio_sm_is_claimed(candidate_pio, sm)) {
is_free_sm = true;
break;
}
}
if (pio_can_add_program(candidate_pio, self->pio_program)) {
can_add_program = true;
}
if (is_free_sm && can_add_program) {
break;
}
}
if (!is_free_sm) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("no free state machines"));
}
if (!can_add_program) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("not enough PIO program space"));
}
self->pio = candidate_pio;
self->sm = pio_claim_unused_sm(self->pio, false);
self->prog_offset = pio_add_program(self->pio, self->pio_program);
pio_sm_init(self->pio, self->sm, self->prog_offset, NULL);
pio_sm_config config = pio_get_default_sm_config();
float pio_freq = self->rate *
SAMPLES_PER_FRAME *
dma_get_bits(self->mode, self->bits) *
PIO_INSTRUCTIONS_PER_BIT;
float clkdiv = clock_get_hz(clk_sys) / pio_freq;
sm_config_set_clkdiv(&config, clkdiv);
if (self->mode == TX) {
sm_config_set_out_pins(&config, self->sd, 1);
sm_config_set_out_shift(&config, false, true, dma_get_bits(self->mode, self->bits));
sm_config_set_fifo_join(&config, PIO_FIFO_JOIN_TX); // double TX FIFO size
} else { // RX
sm_config_set_in_pins(&config, self->sd);
sm_config_set_in_shift(&config, false, true, dma_get_bits(self->mode, self->bits));
sm_config_set_fifo_join(&config, PIO_FIFO_JOIN_RX); // double RX FIFO size
}
sm_config_set_sideset(&config, 2, false, false);
sm_config_set_sideset_pins(&config, self->sck);
sm_config_set_wrap(&config, self->prog_offset, self->prog_offset + self->pio_program->length - 1);
pio_sm_set_config(self->pio, self->sm, &config);
}
STATIC void pio_deinit(machine_i2s_obj_t *self) {
if (self->pio) {
pio_sm_set_enabled(self->pio, self->sm, false);
pio_sm_unclaim(self->pio, self->sm);
pio_remove_program(self->pio, self->pio_program, self->prog_offset);
}
}
STATIC void gpio_init_i2s(PIO pio, uint8_t sm, mp_hal_pin_obj_t pin_num, uint8_t pin_val, gpio_dir_t pin_dir) {
uint32_t pinmask = 1 << pin_num;
pio_sm_set_pins_with_mask(pio, sm, pin_val << pin_num, pinmask);
pio_sm_set_pindirs_with_mask(pio, sm, pin_dir << pin_num, pinmask);
pio_gpio_init(pio, pin_num);
}
STATIC void gpio_configure(machine_i2s_obj_t *self) {
gpio_init_i2s(self->pio, self->sm, self->sck, 0, GP_OUTPUT);
gpio_init_i2s(self->pio, self->sm, self->ws, 0, GP_OUTPUT);
if (self->mode == TX) {
gpio_init_i2s(self->pio, self->sm, self->sd, 0, GP_OUTPUT);
} else { // RX
gpio_init_i2s(self->pio, self->sm, self->sd, 0, GP_INPUT);
}
}
STATIC uint8_t dma_get_bits(i2s_mode_t mode, int8_t bits) {
if (mode == TX) {
return bits;
} else { // RX
// always read 32 bit words for I2S e.g. I2S MEMS microphones
return 32;
}
}
// determine which DMA channel is associated to this IRQ
STATIC uint dma_map_irq_to_channel(uint irq_index) {
for (uint ch = 0; ch < NUM_DMA_CHANNELS; ch++) {
if ((dma_irqn_get_channel_status(irq_index, ch))) {
return ch;
}
}
// This should never happen
return -1;
}
// note: first DMA channel is mapped to the top half of buffer, second is mapped to the bottom half
STATIC uint8_t *dma_get_buffer(machine_i2s_obj_t *i2s_obj, uint channel) {
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
if (i2s_obj->dma_channel[ch] == channel) {
return i2s_obj->dma_buffer + (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * ch);
}
}
// This should never happen
return NULL;
}
STATIC void dma_configure(machine_i2s_obj_t *self) {
uint8_t num_free_dma_channels = 0;
for (uint8_t ch = 0; ch < NUM_DMA_CHANNELS; ch++) {
if (!dma_channel_is_claimed(ch)) {
num_free_dma_channels++;
}
}
if (num_free_dma_channels < I2S_NUM_DMA_CHANNELS) {
mp_raise_msg(&mp_type_OSError, MP_ERROR_TEXT("cannot claim 2 DMA channels"));
}
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
self->dma_channel[ch] = dma_claim_unused_channel(false);
}
// The DMA channels are chained together. The first DMA channel is used to access
// the top half of the DMA buffer. The second DMA channel accesses the bottom half of the DMA buffer.
// With chaining, when one DMA channel has completed a data transfer, the other
// DMA channel automatically starts a new data transfer.
enum dma_channel_transfer_size dma_size = (dma_get_bits(self->mode, self->bits) == 16) ? DMA_SIZE_16 : DMA_SIZE_32;
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
dma_channel_config dma_config = dma_channel_get_default_config(self->dma_channel[ch]);
channel_config_set_transfer_data_size(&dma_config, dma_size);
channel_config_set_chain_to(&dma_config, self->dma_channel[(ch + 1) % I2S_NUM_DMA_CHANNELS]);
uint8_t *dma_buffer = self->dma_buffer + (SIZEOF_HALF_DMA_BUFFER_IN_BYTES * ch);
if (self->mode == TX) {
channel_config_set_dreq(&dma_config, pio_get_dreq(self->pio, self->sm, true));
channel_config_set_read_increment(&dma_config, true);
channel_config_set_write_increment(&dma_config, false);
dma_channel_configure(self->dma_channel[ch],
&dma_config,
(void *)&self->pio->txf[self->sm], // dest = PIO TX FIFO
dma_buffer, // src = DMA buffer
SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (dma_get_bits(self->mode, self->bits) / 8),
false);
} else { // RX
channel_config_set_dreq(&dma_config, pio_get_dreq(self->pio, self->sm, false));
channel_config_set_read_increment(&dma_config, false);
channel_config_set_write_increment(&dma_config, true);
dma_channel_configure(self->dma_channel[ch],
&dma_config,
dma_buffer, // dest = DMA buffer
(void *)&self->pio->rxf[self->sm], // src = PIO RX FIFO
SIZEOF_HALF_DMA_BUFFER_IN_BYTES / (dma_get_bits(self->mode, self->bits) / 8),
false);
}
}
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
dma_irqn_acknowledge_channel(self->i2s_id, self->dma_channel[ch]); // clear pending. e.g. from SPI
dma_irqn_set_channel_enabled(self->i2s_id, self->dma_channel[ch], true);
}
}
STATIC void dma_deinit(machine_i2s_obj_t *self) {
for (uint8_t ch = 0; ch < I2S_NUM_DMA_CHANNELS; ch++) {
int channel = self->dma_channel[ch];
// unchain the channel to prevent triggering a transfer in the chained-to channel
dma_channel_config dma_config = dma_get_channel_config(channel);
channel_config_set_chain_to(&dma_config, channel);
dma_channel_set_config(channel, &dma_config, false);
dma_irqn_set_channel_enabled(self->i2s_id, channel, false);
dma_channel_abort(channel); // in case a transfer is in flight
dma_channel_unclaim(channel);
}
}
STATIC void dma_irq_handler(uint8_t irq_index) {
int dma_channel = dma_map_irq_to_channel(irq_index);
if (dma_channel == -1) {
// This should never happen
return;
}
machine_i2s_obj_t *self = MP_STATE_PORT(machine_i2s_obj[irq_index]);
if (self == NULL) {
// This should never happen
return;
}
uint8_t *dma_buffer = dma_get_buffer(self, dma_channel);
if (dma_buffer == NULL) {
// This should never happen
return;
}
if (self->mode == TX) {
// for non-blocking operation handle the write() method requests.
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
copy_appbuf_to_ringbuf_non_blocking(self);
}
feed_dma(self, dma_buffer);
dma_irqn_acknowledge_channel(irq_index, dma_channel);
dma_channel_set_read_addr(dma_channel, dma_buffer, false);
} else { // RX
empty_dma(self, dma_buffer);
dma_irqn_acknowledge_channel(irq_index, dma_channel);
dma_channel_set_write_addr(dma_channel, dma_buffer, false);
// for non-blocking operation handle the readinto() method requests.
if ((self->io_mode == NON_BLOCKING) && (self->non_blocking_descriptor.copy_in_progress)) {
fill_appbuf_from_ringbuf_non_blocking(self);
}
}
}
STATIC void dma_irq0_handler(void) {
dma_irq_handler(0);
}
STATIC void dma_irq1_handler(void) {
dma_irq_handler(1);
}
STATIC void machine_i2s_init_helper(machine_i2s_obj_t *self, size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum {
ARG_sck,
ARG_ws,
ARG_sd,
ARG_mode,
ARG_bits,
ARG_format,
ARG_rate,
ARG_ibuf,
};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_sck, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_ws, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_sd, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_mode, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_bits, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_format, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_rate, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_ibuf, MP_ARG_KW_ONLY | MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = -1} },
};
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_pos_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
//
// ---- Check validity of arguments ----
//
// are Pins valid?
mp_hal_pin_obj_t sck = args[ARG_sck].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sck].u_obj);
mp_hal_pin_obj_t ws = args[ARG_ws].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_ws].u_obj);
mp_hal_pin_obj_t sd = args[ARG_sd].u_obj == MP_OBJ_NULL ? -1 : mp_hal_get_pin_obj(args[ARG_sd].u_obj);
// does WS pin follow SCK pin?
// note: SCK and WS are implemented as PIO sideset pins. Sideset pins must be sequential.
if (ws != (sck + 1)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid ws (must be sck+1)"));
}
// is Mode valid?
i2s_mode_t i2s_mode = args[ARG_mode].u_int;
if ((i2s_mode != RX) &&
(i2s_mode != TX)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid mode"));
}
// is Bits valid?
int8_t i2s_bits = args[ARG_bits].u_int;
if ((i2s_bits != 16) &&
(i2s_bits != 32)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
}
// is Format valid?
format_t i2s_format = args[ARG_format].u_int;
if ((i2s_format != MONO) &&
(i2s_format != STEREO)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid format"));
}
// is Rate valid?
// Not checked
// is Ibuf valid?
int32_t ring_buffer_len = args[ARG_ibuf].u_int;
if (ring_buffer_len > 0) {
self->ring_buffer_storage = m_new(uint8_t, ring_buffer_len);
;
ringbuf_init(&self->ring_buffer, self->ring_buffer_storage, ring_buffer_len);
} else {
mp_raise_ValueError(MP_ERROR_TEXT("invalid ibuf"));
}
self->sck = sck;
self->ws = ws;
self->sd = sd;
self->mode = i2s_mode;
self->bits = i2s_bits;
self->format = i2s_format;
self->rate = args[ARG_rate].u_int;
self->ibuf = ring_buffer_len;
self->callback_for_non_blocking = MP_OBJ_NULL;
self->non_blocking_descriptor.copy_in_progress = false;
self->io_mode = BLOCKING;
irq_configure(self);
pio_configure(self);
gpio_configure(self);
dma_configure(self);
pio_sm_set_enabled(self->pio, self->sm, true);
dma_channel_start(self->dma_channel[0]);
}
STATIC void machine_i2s_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_printf(print, "I2S(id=%u,\n"
"sck="MP_HAL_PIN_FMT ",\n"
"ws="MP_HAL_PIN_FMT ",\n"
"sd="MP_HAL_PIN_FMT ",\n"
"mode=%u,\n"
"bits=%u, format=%u,\n"
"rate=%d, ibuf=%d)",
self->i2s_id,
mp_hal_pin_name(self->sck),
mp_hal_pin_name(self->ws),
mp_hal_pin_name(self->sd),
self->mode,
self->bits, self->format,
self->rate, self->ibuf
);
}
STATIC mp_obj_t machine_i2s_make_new(const mp_obj_type_t *type, size_t n_pos_args, size_t n_kw_args, const mp_obj_t *args) {
mp_arg_check_num(n_pos_args, n_kw_args, 1, MP_OBJ_FUN_ARGS_MAX, true);
uint8_t i2s_id = mp_obj_get_int(args[0]);
if (i2s_id >= MAX_I2S_RP2) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid id"));
}
machine_i2s_obj_t *self;
if (MP_STATE_PORT(machine_i2s_obj[i2s_id]) == NULL) {
self = mp_obj_malloc(machine_i2s_obj_t, &machine_i2s_type);
MP_STATE_PORT(machine_i2s_obj[i2s_id]) = self;
self->i2s_id = i2s_id;
} else {
self = MP_STATE_PORT(machine_i2s_obj[i2s_id]);
machine_i2s_deinit(MP_OBJ_FROM_PTR(self));
}
mp_map_t kw_args;
mp_map_init_fixed_table(&kw_args, n_kw_args, args + n_pos_args);
machine_i2s_init_helper(self, n_pos_args - 1, args + 1, &kw_args);
return MP_OBJ_FROM_PTR(self);
}
STATIC mp_obj_t machine_i2s_init(size_t n_pos_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
machine_i2s_deinit(MP_OBJ_FROM_PTR(self));
machine_i2s_init_helper(self, n_pos_args - 1, pos_args + 1, kw_args);
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_init_obj, 1, machine_i2s_init);
STATIC mp_obj_t machine_i2s_deinit(mp_obj_t self_in) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
// use self->pio as in indication that I2S object has already been de-initialized
if (self->pio != NULL) {
pio_deinit(self);
dma_deinit(self);
irq_deinit(self);
m_free(self->ring_buffer_storage);
self->pio = NULL; // flag object as de-initialized
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_1(machine_i2s_deinit_obj, machine_i2s_deinit);
STATIC mp_obj_t machine_i2s_irq(mp_obj_t self_in, mp_obj_t handler) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (handler != mp_const_none && !mp_obj_is_callable(handler)) {
mp_raise_ValueError(MP_ERROR_TEXT("invalid callback"));
}
if (handler != mp_const_none) {
self->io_mode = NON_BLOCKING;
} else {
self->io_mode = BLOCKING;
}
self->callback_for_non_blocking = handler;
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_2(machine_i2s_irq_obj, machine_i2s_irq);
// Shift() is typically used as a volume control.
// shift=1 increases volume by 6dB, shift=-1 decreases volume by 6dB
STATIC mp_obj_t machine_i2s_shift(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
enum { ARG_buf, ARG_bits, ARG_shift};
static const mp_arg_t allowed_args[] = {
{ MP_QSTR_buf, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_obj = MP_OBJ_NULL} },
{ MP_QSTR_bits, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
{ MP_QSTR_shift, MP_ARG_REQUIRED | MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = -1} },
};
// parse args
mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
mp_buffer_info_t bufinfo;
mp_get_buffer_raise(args[ARG_buf].u_obj, &bufinfo, MP_BUFFER_RW);
int16_t *buf_16 = bufinfo.buf;
int32_t *buf_32 = bufinfo.buf;
uint8_t bits = args[ARG_bits].u_int;
int8_t shift = args[ARG_shift].u_int;
uint32_t num_audio_samples;
switch (bits) {
case 16:
num_audio_samples = bufinfo.len / sizeof(uint16_t);
break;
case 32:
num_audio_samples = bufinfo.len / sizeof(uint32_t);
break;
default:
mp_raise_ValueError(MP_ERROR_TEXT("invalid bits"));
break;
}
for (uint32_t i = 0; i < num_audio_samples; i++) {
switch (bits) {
case 16:
if (shift >= 0) {
buf_16[i] = buf_16[i] << shift;
} else {
buf_16[i] = buf_16[i] >> abs(shift);
}
break;
case 32:
if (shift >= 0) {
buf_32[i] = buf_32[i] << shift;
} else {
buf_32[i] = buf_32[i] >> abs(shift);
}
break;
}
}
return mp_const_none;
}
STATIC MP_DEFINE_CONST_FUN_OBJ_KW(machine_i2s_shift_fun_obj, 0, machine_i2s_shift);
STATIC MP_DEFINE_CONST_STATICMETHOD_OBJ(machine_i2s_shift_obj, MP_ROM_PTR(&machine_i2s_shift_fun_obj));
STATIC const mp_rom_map_elem_t machine_i2s_locals_dict_table[] = {
// Methods
{ MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&machine_i2s_init_obj) },
{ MP_ROM_QSTR(MP_QSTR_readinto), MP_ROM_PTR(&mp_stream_readinto_obj) },
{ MP_ROM_QSTR(MP_QSTR_write), MP_ROM_PTR(&mp_stream_write_obj) },
{ MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&machine_i2s_deinit_obj) },
{ MP_ROM_QSTR(MP_QSTR_irq), MP_ROM_PTR(&machine_i2s_irq_obj) },
// Static method
{ MP_ROM_QSTR(MP_QSTR_shift), MP_ROM_PTR(&machine_i2s_shift_obj) },
// Constants
{ MP_ROM_QSTR(MP_QSTR_RX), MP_ROM_INT(RX) },
{ MP_ROM_QSTR(MP_QSTR_TX), MP_ROM_INT(TX) },
{ MP_ROM_QSTR(MP_QSTR_STEREO), MP_ROM_INT(STEREO) },
{ MP_ROM_QSTR(MP_QSTR_MONO), MP_ROM_INT(MONO) },
};
MP_DEFINE_CONST_DICT(machine_i2s_locals_dict, machine_i2s_locals_dict_table);
STATIC mp_uint_t machine_i2s_stream_read(mp_obj_t self_in, void *buf_in, mp_uint_t size, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->mode != RX) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
uint8_t appbuf_sample_size_in_bytes = (self->bits / 8) * (self->format == STEREO ? 2: 1);
if (size % appbuf_sample_size_in_bytes != 0) {
*errcode = MP_EINVAL;
return MP_STREAM_ERROR;
}
if (size == 0) {
return 0;
}
if (self->io_mode == NON_BLOCKING) {
self->non_blocking_descriptor.appbuf.buf = (void *)buf_in;
self->non_blocking_descriptor.appbuf.len = size;
self->non_blocking_descriptor.index = 0;
self->non_blocking_descriptor.copy_in_progress = true;
return size;
} else { // blocking or uasyncio mode
mp_buffer_info_t appbuf;
appbuf.buf = (void *)buf_in;
appbuf.len = size;
uint32_t num_bytes_read = fill_appbuf_from_ringbuf(self, &appbuf);
return num_bytes_read;
}
}
STATIC mp_uint_t machine_i2s_stream_write(mp_obj_t self_in, const void *buf_in, mp_uint_t size, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
if (self->mode != TX) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
if (size == 0) {
return 0;
}
if (self->io_mode == NON_BLOCKING) {
self->non_blocking_descriptor.appbuf.buf = (void *)buf_in;
self->non_blocking_descriptor.appbuf.len = size;
self->non_blocking_descriptor.index = 0;
self->non_blocking_descriptor.copy_in_progress = true;
return size;
} else { // blocking or uasyncio mode
mp_buffer_info_t appbuf;
appbuf.buf = (void *)buf_in;
appbuf.len = size;
uint32_t num_bytes_written = copy_appbuf_to_ringbuf(self, &appbuf);
return num_bytes_written;
}
}
STATIC mp_uint_t machine_i2s_ioctl(mp_obj_t self_in, mp_uint_t request, uintptr_t arg, int *errcode) {
machine_i2s_obj_t *self = MP_OBJ_TO_PTR(self_in);
mp_uint_t ret;
uintptr_t flags = arg;
self->io_mode = UASYNCIO; // a call to ioctl() is an indication that uasyncio is being used
if (request == MP_STREAM_POLL) {
ret = 0;
if (flags & MP_STREAM_POLL_RD) {
if (self->mode != RX) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
if (!ringbuf_is_empty(&self->ring_buffer)) {
ret |= MP_STREAM_POLL_RD;
}
}
if (flags & MP_STREAM_POLL_WR) {
if (self->mode != TX) {
*errcode = MP_EPERM;
return MP_STREAM_ERROR;
}
if (!ringbuf_is_full(&self->ring_buffer)) {
ret |= MP_STREAM_POLL_WR;
}
}
} else {
*errcode = MP_EINVAL;
ret = MP_STREAM_ERROR;
}
return ret;
}
STATIC const mp_stream_p_t i2s_stream_p = {
.read = machine_i2s_stream_read,
.write = machine_i2s_stream_write,
.ioctl = machine_i2s_ioctl,
.is_text = false,
};
const mp_obj_type_t machine_i2s_type = {
{ &mp_type_type },
.name = MP_QSTR_I2S,
.print = machine_i2s_print,
.getiter = mp_identity_getiter,
.iternext = mp_stream_unbuffered_iter,
.protocol = &i2s_stream_p,
.make_new = machine_i2s_make_new,
.locals_dict = (mp_obj_dict_t *)&machine_i2s_locals_dict,
};