1150 lines
42 KiB
C
1150 lines
42 KiB
C
// in principle, rt_xxx functions are called only by vm/native/viper and make assumptions about args
|
|
// mp_xxx functions are safer and can be called by anyone
|
|
// note that rt_assign_xxx are called only from emit*, and maybe we can rename them to reflect this
|
|
|
|
#include <stdint.h>
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
|
|
#include "nlr.h"
|
|
#include "misc.h"
|
|
#include "mpconfig.h"
|
|
#include "qstr.h"
|
|
#include "obj.h"
|
|
#include "parsenum.h"
|
|
#include "runtime0.h"
|
|
#include "runtime.h"
|
|
#include "map.h"
|
|
#include "builtin.h"
|
|
#include "objarray.h"
|
|
#include "bc.h"
|
|
|
|
#if 0 // print debugging info
|
|
#define DEBUG_PRINT (1)
|
|
#define WRITE_CODE (1)
|
|
#define DEBUG_printf DEBUG_printf
|
|
#define DEBUG_OP_printf(...) DEBUG_printf(__VA_ARGS__)
|
|
#else // don't print debugging info
|
|
#define DEBUG_printf(...) (void)0
|
|
#define DEBUG_OP_printf(...) (void)0
|
|
#endif
|
|
|
|
// locals and globals need to be pointers because they can be the same in outer module scope
|
|
STATIC mp_map_t *map_locals;
|
|
STATIC mp_map_t *map_globals;
|
|
STATIC mp_map_t map_builtins;
|
|
STATIC mp_map_t map_loaded_modules; // TODO: expose as sys.modules
|
|
|
|
typedef enum {
|
|
MP_CODE_NONE,
|
|
MP_CODE_BYTE,
|
|
MP_CODE_NATIVE,
|
|
MP_CODE_INLINE_ASM,
|
|
} mp_code_kind_t;
|
|
|
|
typedef struct _mp_code_t {
|
|
mp_code_kind_t kind : 8;
|
|
uint scope_flags : 8;
|
|
uint n_args : 16;
|
|
uint n_state : 16;
|
|
union {
|
|
struct {
|
|
byte *code;
|
|
uint len;
|
|
} u_byte;
|
|
struct {
|
|
mp_fun_t fun;
|
|
} u_native;
|
|
struct {
|
|
void *fun;
|
|
} u_inline_asm;
|
|
};
|
|
qstr *arg_names;
|
|
} mp_code_t;
|
|
|
|
STATIC uint next_unique_code_id;
|
|
STATIC machine_uint_t unique_codes_alloc = 0;
|
|
STATIC mp_code_t *unique_codes = NULL;
|
|
|
|
#ifdef WRITE_CODE
|
|
FILE *fp_write_code = NULL;
|
|
#endif
|
|
|
|
// builtins
|
|
// we put this table in ROM because it's always needed and takes up quite a bit of room in RAM
|
|
// in fact, it uses less ROM here in table form than the equivalent in code form initialising a dynamic mp_map_t object in RAM
|
|
// at the moment it's a linear table, but we could convert it to a const mp_map_t table with a simple preprocessing script
|
|
// if we wanted to allow dynamic modification of the builtins, we could provide an mp_map_t object which is searched before this one
|
|
|
|
typedef struct _mp_builtin_elem_t {
|
|
qstr qstr;
|
|
mp_obj_t fun;
|
|
} mp_builtin_elem_t;
|
|
|
|
STATIC const mp_builtin_elem_t builtin_table[] = {
|
|
// built-in core functions
|
|
{ MP_QSTR___build_class__, (mp_obj_t)&mp_builtin___build_class___obj },
|
|
{ MP_QSTR___import__, (mp_obj_t)&mp_builtin___import___obj },
|
|
{ MP_QSTR___repl_print__, (mp_obj_t)&mp_builtin___repl_print___obj },
|
|
|
|
// built-in types
|
|
{ MP_QSTR_bool, (mp_obj_t)&bool_type },
|
|
#if MICROPY_ENABLE_FLOAT
|
|
{ MP_QSTR_complex, (mp_obj_t)&mp_type_complex },
|
|
#endif
|
|
{ MP_QSTR_dict, (mp_obj_t)&dict_type },
|
|
{ MP_QSTR_enumerate, (mp_obj_t)&enumerate_type },
|
|
{ MP_QSTR_filter, (mp_obj_t)&filter_type },
|
|
#if MICROPY_ENABLE_FLOAT
|
|
{ MP_QSTR_float, (mp_obj_t)&mp_type_float },
|
|
#endif
|
|
{ MP_QSTR_int, (mp_obj_t)&int_type },
|
|
{ MP_QSTR_list, (mp_obj_t)&list_type },
|
|
{ MP_QSTR_map, (mp_obj_t)&map_type },
|
|
{ MP_QSTR_set, (mp_obj_t)&set_type },
|
|
{ MP_QSTR_super, (mp_obj_t)&super_type },
|
|
{ MP_QSTR_tuple, (mp_obj_t)&tuple_type },
|
|
{ MP_QSTR_type, (mp_obj_t)&mp_type_type },
|
|
{ MP_QSTR_zip, (mp_obj_t)&zip_type },
|
|
|
|
{ MP_QSTR_classmethod, (mp_obj_t)&mp_type_classmethod },
|
|
{ MP_QSTR_staticmethod, (mp_obj_t)&mp_type_staticmethod },
|
|
|
|
// built-in user functions
|
|
{ MP_QSTR_abs, (mp_obj_t)&mp_builtin_abs_obj },
|
|
{ MP_QSTR_all, (mp_obj_t)&mp_builtin_all_obj },
|
|
{ MP_QSTR_any, (mp_obj_t)&mp_builtin_any_obj },
|
|
{ MP_QSTR_bytes, (mp_obj_t)&mp_builtin_bytes_obj },
|
|
{ MP_QSTR_callable, (mp_obj_t)&mp_builtin_callable_obj },
|
|
{ MP_QSTR_chr, (mp_obj_t)&mp_builtin_chr_obj },
|
|
{ MP_QSTR_dir, (mp_obj_t)&mp_builtin_dir_obj },
|
|
{ MP_QSTR_divmod, (mp_obj_t)&mp_builtin_divmod_obj },
|
|
{ MP_QSTR_eval, (mp_obj_t)&mp_builtin_eval_obj },
|
|
{ MP_QSTR_exec, (mp_obj_t)&mp_builtin_exec_obj },
|
|
{ MP_QSTR_hash, (mp_obj_t)&mp_builtin_hash_obj },
|
|
{ MP_QSTR_id, (mp_obj_t)&mp_builtin_id_obj },
|
|
{ MP_QSTR_isinstance, (mp_obj_t)&mp_builtin_isinstance_obj },
|
|
{ MP_QSTR_issubclass, (mp_obj_t)&mp_builtin_issubclass_obj },
|
|
{ MP_QSTR_iter, (mp_obj_t)&mp_builtin_iter_obj },
|
|
{ MP_QSTR_len, (mp_obj_t)&mp_builtin_len_obj },
|
|
{ MP_QSTR_max, (mp_obj_t)&mp_builtin_max_obj },
|
|
{ MP_QSTR_min, (mp_obj_t)&mp_builtin_min_obj },
|
|
{ MP_QSTR_next, (mp_obj_t)&mp_builtin_next_obj },
|
|
{ MP_QSTR_ord, (mp_obj_t)&mp_builtin_ord_obj },
|
|
{ MP_QSTR_pow, (mp_obj_t)&mp_builtin_pow_obj },
|
|
{ MP_QSTR_print, (mp_obj_t)&mp_builtin_print_obj },
|
|
{ MP_QSTR_range, (mp_obj_t)&mp_builtin_range_obj },
|
|
{ MP_QSTR_repr, (mp_obj_t)&mp_builtin_repr_obj },
|
|
{ MP_QSTR_sorted, (mp_obj_t)&mp_builtin_sorted_obj },
|
|
{ MP_QSTR_sum, (mp_obj_t)&mp_builtin_sum_obj },
|
|
{ MP_QSTR_str, (mp_obj_t)&mp_builtin_str_obj },
|
|
{ MP_QSTR_bytearray, (mp_obj_t)&mp_builtin_bytearray_obj },
|
|
|
|
// built-in exceptions
|
|
{ MP_QSTR_BaseException, (mp_obj_t)&mp_type_BaseException },
|
|
{ MP_QSTR_AssertionError, (mp_obj_t)&mp_type_AssertionError },
|
|
{ MP_QSTR_AttributeError, (mp_obj_t)&mp_type_AttributeError },
|
|
{ MP_QSTR_ImportError, (mp_obj_t)&mp_type_ImportError },
|
|
{ MP_QSTR_IndentationError, (mp_obj_t)&mp_type_IndentationError },
|
|
{ MP_QSTR_IndexError, (mp_obj_t)&mp_type_IndexError },
|
|
{ MP_QSTR_KeyError, (mp_obj_t)&mp_type_KeyError },
|
|
{ MP_QSTR_NameError, (mp_obj_t)&mp_type_NameError },
|
|
{ MP_QSTR_SyntaxError, (mp_obj_t)&mp_type_SyntaxError },
|
|
{ MP_QSTR_TypeError, (mp_obj_t)&mp_type_TypeError },
|
|
{ MP_QSTR_ValueError, (mp_obj_t)&mp_type_ValueError },
|
|
// Somehow CPython managed to have OverflowError not inherit from ValueError ;-/
|
|
// TODO: For MICROPY_CPYTHON_COMPAT==0 use ValueError to avoid exc proliferation
|
|
{ MP_QSTR_OverflowError, (mp_obj_t)&mp_type_OverflowError },
|
|
{ MP_QSTR_OSError, (mp_obj_t)&mp_type_OSError },
|
|
{ MP_QSTR_NotImplementedError, (mp_obj_t)&mp_type_NotImplementedError },
|
|
{ MP_QSTR_StopIteration, (mp_obj_t)&mp_type_StopIteration },
|
|
|
|
// Extra builtins as defined by a port
|
|
MICROPY_EXTRA_BUILTINS
|
|
|
|
{ MP_QSTR_, MP_OBJ_NULL }, // end of list sentinel
|
|
};
|
|
|
|
// a good optimising compiler will inline this if necessary
|
|
STATIC void mp_map_add_qstr(mp_map_t *map, qstr qstr, mp_obj_t value) {
|
|
mp_map_lookup(map, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = value;
|
|
}
|
|
|
|
void rt_init(void) {
|
|
// locals = globals for outer module (see Objects/frameobject.c/PyFrame_New())
|
|
map_locals = map_globals = mp_map_new(1);
|
|
mp_map_add_qstr(map_globals, MP_QSTR___name__, MP_OBJ_NEW_QSTR(MP_QSTR___main__));
|
|
|
|
// init built-in hash table
|
|
mp_map_init(&map_builtins, 3);
|
|
|
|
// init loaded modules table
|
|
mp_map_init(&map_loaded_modules, 3);
|
|
|
|
// built-in objects
|
|
mp_map_add_qstr(&map_builtins, MP_QSTR_Ellipsis, mp_const_ellipsis);
|
|
|
|
mp_obj_t m_array = mp_obj_new_module(MP_QSTR_array);
|
|
rt_store_attr(m_array, MP_QSTR_array, (mp_obj_t)&array_type);
|
|
|
|
mp_obj_t m_collections = mp_obj_new_module(MP_QSTR_collections);
|
|
rt_store_attr(m_collections, MP_QSTR_namedtuple, (mp_obj_t)&mp_namedtuple_obj);
|
|
|
|
#if MICROPY_CPYTHON_COMPAT
|
|
// Precreate sys module, so "import sys" didn't throw exceptions.
|
|
mp_obj_t m_sys = mp_obj_new_module(MP_QSTR_sys);
|
|
// Avoid warning of unused var
|
|
(void)m_sys;
|
|
#endif
|
|
// init sys.path
|
|
// for efficiency, left to platform-specific startup code
|
|
//sys_path = mp_obj_new_list(0, NULL);
|
|
//rt_store_attr(m_sys, MP_QSTR_path, sys_path);
|
|
|
|
// we pre-import the micropython module
|
|
// probably shouldn't do this, so we are compatible with CPython
|
|
rt_store_name(MP_QSTR_micropython, (mp_obj_t)&mp_module_micropython);
|
|
|
|
// TODO: wastes one mp_code_t structure in mem
|
|
next_unique_code_id = 1; // 0 indicates "no code"
|
|
unique_codes_alloc = 0;
|
|
unique_codes = NULL;
|
|
|
|
#ifdef WRITE_CODE
|
|
fp_write_code = fopen("out-code", "wb");
|
|
#endif
|
|
}
|
|
|
|
void rt_deinit(void) {
|
|
m_del(mp_code_t, unique_codes, unique_codes_alloc);
|
|
mp_map_free(map_globals);
|
|
mp_map_deinit(&map_loaded_modules);
|
|
mp_map_deinit(&map_builtins);
|
|
#ifdef WRITE_CODE
|
|
if (fp_write_code != NULL) {
|
|
fclose(fp_write_code);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
uint rt_get_unique_code_id(void) {
|
|
return next_unique_code_id++;
|
|
}
|
|
|
|
STATIC void alloc_unique_codes(void) {
|
|
if (next_unique_code_id > unique_codes_alloc) {
|
|
DEBUG_printf("allocate more unique codes: " UINT_FMT " -> %u\n", unique_codes_alloc, next_unique_code_id);
|
|
// increase size of unique_codes table
|
|
unique_codes = m_renew(mp_code_t, unique_codes, unique_codes_alloc, next_unique_code_id);
|
|
for (uint i = unique_codes_alloc; i < next_unique_code_id; i++) {
|
|
unique_codes[i].kind = MP_CODE_NONE;
|
|
}
|
|
unique_codes_alloc = next_unique_code_id;
|
|
}
|
|
}
|
|
|
|
void rt_assign_byte_code(uint unique_code_id, byte *code, uint len, int n_args, int n_locals, int n_stack, uint scope_flags, qstr *arg_names) {
|
|
alloc_unique_codes();
|
|
|
|
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
|
|
unique_codes[unique_code_id].kind = MP_CODE_BYTE;
|
|
unique_codes[unique_code_id].scope_flags = scope_flags;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_state = n_locals + n_stack;
|
|
unique_codes[unique_code_id].u_byte.code = code;
|
|
unique_codes[unique_code_id].u_byte.len = len;
|
|
unique_codes[unique_code_id].arg_names = arg_names;
|
|
|
|
//printf("byte code: %d bytes\n", len);
|
|
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf("assign byte code: id=%d code=%p len=%u n_args=%d n_locals=%d n_stack=%d\n", unique_code_id, code, len, n_args, n_locals, n_stack);
|
|
for (int i = 0; i < 128 && i < len; i++) {
|
|
if (i > 0 && i % 16 == 0) {
|
|
DEBUG_printf("\n");
|
|
}
|
|
DEBUG_printf(" %02x", code[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
#if MICROPY_DEBUG_PRINTERS
|
|
mp_byte_code_print(code, len);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void rt_assign_native_code(uint unique_code_id, void *fun, uint len, int n_args) {
|
|
alloc_unique_codes();
|
|
|
|
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
|
|
unique_codes[unique_code_id].kind = MP_CODE_NATIVE;
|
|
unique_codes[unique_code_id].scope_flags = 0;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_state = 0;
|
|
unique_codes[unique_code_id].u_native.fun = fun;
|
|
|
|
//printf("native code: %d bytes\n", len);
|
|
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf("assign native code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
|
|
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
|
|
for (int i = 0; i < 128 && i < len; i++) {
|
|
if (i > 0 && i % 16 == 0) {
|
|
DEBUG_printf("\n");
|
|
}
|
|
DEBUG_printf(" %02x", fun_data[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
|
|
#ifdef WRITE_CODE
|
|
if (fp_write_code != NULL) {
|
|
fwrite(fun_data, len, 1, fp_write_code);
|
|
fflush(fp_write_code);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void rt_assign_inline_asm_code(uint unique_code_id, void *fun, uint len, int n_args) {
|
|
alloc_unique_codes();
|
|
|
|
assert(1 <= unique_code_id && unique_code_id < next_unique_code_id && unique_codes[unique_code_id].kind == MP_CODE_NONE);
|
|
unique_codes[unique_code_id].kind = MP_CODE_INLINE_ASM;
|
|
unique_codes[unique_code_id].scope_flags = 0;
|
|
unique_codes[unique_code_id].n_args = n_args;
|
|
unique_codes[unique_code_id].n_state = 0;
|
|
unique_codes[unique_code_id].u_inline_asm.fun = fun;
|
|
|
|
#ifdef DEBUG_PRINT
|
|
DEBUG_printf("assign inline asm code: id=%d fun=%p len=%u n_args=%d\n", unique_code_id, fun, len, n_args);
|
|
byte *fun_data = (byte*)(((machine_uint_t)fun) & (~1)); // need to clear lower bit in case it's thumb code
|
|
for (int i = 0; i < 128 && i < len; i++) {
|
|
if (i > 0 && i % 16 == 0) {
|
|
DEBUG_printf("\n");
|
|
}
|
|
DEBUG_printf(" %02x", fun_data[i]);
|
|
}
|
|
DEBUG_printf("\n");
|
|
|
|
#ifdef WRITE_CODE
|
|
if (fp_write_code != NULL) {
|
|
fwrite(fun_data, len, 1, fp_write_code);
|
|
}
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
int rt_is_true(mp_obj_t arg) {
|
|
DEBUG_OP_printf("is true %p\n", arg);
|
|
if (arg == mp_const_false) {
|
|
return 0;
|
|
} else if (arg == mp_const_true) {
|
|
return 1;
|
|
} else if (arg == mp_const_none) {
|
|
return 0;
|
|
} else if (MP_OBJ_IS_SMALL_INT(arg)) {
|
|
if (MP_OBJ_SMALL_INT_VALUE(arg) == 0) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
} else {
|
|
mp_obj_type_t *type = mp_obj_get_type(arg);
|
|
if (type->unary_op != NULL) {
|
|
mp_obj_t result = type->unary_op(RT_UNARY_OP_BOOL, arg);
|
|
if (result != MP_OBJ_NULL) {
|
|
return result == mp_const_true;
|
|
}
|
|
}
|
|
|
|
mp_obj_t len = mp_obj_len_maybe(arg);
|
|
if (len != MP_OBJ_NULL) {
|
|
// obj has a length, truth determined if len != 0
|
|
return len != MP_OBJ_NEW_SMALL_INT(0);
|
|
} else {
|
|
// any other obj is true per Python semantics
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_list_append(mp_obj_t self_in, mp_obj_t arg) {
|
|
return mp_obj_list_append(self_in, arg);
|
|
}
|
|
|
|
mp_obj_t rt_load_const_dec(qstr qstr) {
|
|
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
|
|
uint len;
|
|
const byte* data = qstr_data(qstr, &len);
|
|
return mp_parse_num_decimal((const char*)data, len);
|
|
}
|
|
|
|
mp_obj_t rt_load_const_str(qstr qstr) {
|
|
DEBUG_OP_printf("load '%s'\n", qstr_str(qstr));
|
|
return MP_OBJ_NEW_QSTR(qstr);
|
|
}
|
|
|
|
mp_obj_t rt_load_const_bytes(qstr qstr) {
|
|
DEBUG_OP_printf("load b'%s'\n", qstr_str(qstr));
|
|
uint len;
|
|
const byte *data = qstr_data(qstr, &len);
|
|
return mp_obj_new_bytes(data, len);
|
|
}
|
|
|
|
mp_obj_t rt_load_name(qstr qstr) {
|
|
// logic: search locals, globals, builtins
|
|
DEBUG_OP_printf("load name %s\n", qstr_str(qstr));
|
|
mp_map_elem_t *elem = mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
|
|
if (elem != NULL) {
|
|
return elem->value;
|
|
} else {
|
|
return rt_load_global(qstr);
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_load_global(qstr qstr) {
|
|
// logic: search globals, builtins
|
|
DEBUG_OP_printf("load global %s\n", qstr_str(qstr));
|
|
mp_map_elem_t *elem = mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP);
|
|
if (elem == NULL) {
|
|
for (const mp_builtin_elem_t *e = &builtin_table[0]; e->qstr != MP_QSTR_; e++) {
|
|
if (e->qstr == qstr) {
|
|
return e->fun;
|
|
}
|
|
}
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_NameError, "name '%s' is not defined", qstr_str(qstr)));
|
|
}
|
|
}
|
|
return elem->value;
|
|
}
|
|
|
|
mp_obj_t rt_load_build_class(void) {
|
|
DEBUG_OP_printf("load_build_class\n");
|
|
mp_map_elem_t *elem = mp_map_lookup(&map_builtins, MP_OBJ_NEW_QSTR(MP_QSTR___build_class__), MP_MAP_LOOKUP);
|
|
if (elem != NULL) {
|
|
return elem->value;
|
|
} else {
|
|
return (mp_obj_t)&mp_builtin___build_class___obj;
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_get_cell(mp_obj_t cell) {
|
|
return mp_obj_cell_get(cell);
|
|
}
|
|
|
|
void rt_set_cell(mp_obj_t cell, mp_obj_t val) {
|
|
mp_obj_cell_set(cell, val);
|
|
}
|
|
|
|
void rt_store_name(qstr qstr, mp_obj_t obj) {
|
|
DEBUG_OP_printf("store name %s <- %p\n", qstr_str(qstr), obj);
|
|
mp_map_lookup(map_locals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj;
|
|
}
|
|
|
|
void rt_store_global(qstr qstr, mp_obj_t obj) {
|
|
DEBUG_OP_printf("store global %s <- %p\n", qstr_str(qstr), obj);
|
|
mp_map_lookup(map_globals, MP_OBJ_NEW_QSTR(qstr), MP_MAP_LOOKUP_ADD_IF_NOT_FOUND)->value = obj;
|
|
}
|
|
|
|
mp_obj_t rt_unary_op(int op, mp_obj_t arg) {
|
|
DEBUG_OP_printf("unary %d %p\n", op, arg);
|
|
|
|
if (MP_OBJ_IS_SMALL_INT(arg)) {
|
|
mp_small_int_t val = MP_OBJ_SMALL_INT_VALUE(arg);
|
|
switch (op) {
|
|
case RT_UNARY_OP_BOOL:
|
|
return MP_BOOL(val != 0);
|
|
case RT_UNARY_OP_POSITIVE:
|
|
return arg;
|
|
case RT_UNARY_OP_NEGATIVE:
|
|
// check for overflow
|
|
if (val == MP_SMALL_INT_MIN) {
|
|
return mp_obj_new_int(-val);
|
|
} else {
|
|
return MP_OBJ_NEW_SMALL_INT(-val);
|
|
}
|
|
case RT_UNARY_OP_INVERT:
|
|
return MP_OBJ_NEW_SMALL_INT(~val);
|
|
default:
|
|
assert(0);
|
|
return arg;
|
|
}
|
|
} else {
|
|
mp_obj_type_t *type = mp_obj_get_type(arg);
|
|
if (type->unary_op != NULL) {
|
|
mp_obj_t result = type->unary_op(op, arg);
|
|
if (result != NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
// TODO specify in error message what the operator is
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "bad operand type for unary operator: '%s'", mp_obj_get_type_str(arg)));
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_binary_op(int op, mp_obj_t lhs, mp_obj_t rhs) {
|
|
DEBUG_OP_printf("binary %d %p %p\n", op, lhs, rhs);
|
|
|
|
// TODO correctly distinguish inplace operators for mutable objects
|
|
// lookup logic that CPython uses for +=:
|
|
// check for implemented +=
|
|
// then check for implemented +
|
|
// then check for implemented seq.inplace_concat
|
|
// then check for implemented seq.concat
|
|
// then fail
|
|
// note that list does not implement + or +=, so that inplace_concat is reached first for +=
|
|
|
|
// deal with is
|
|
if (op == RT_BINARY_OP_IS) {
|
|
return MP_BOOL(lhs == rhs);
|
|
}
|
|
|
|
// deal with == and != for all types
|
|
if (op == RT_BINARY_OP_EQUAL || op == RT_BINARY_OP_NOT_EQUAL) {
|
|
if (mp_obj_equal(lhs, rhs)) {
|
|
if (op == RT_BINARY_OP_EQUAL) {
|
|
return mp_const_true;
|
|
} else {
|
|
return mp_const_false;
|
|
}
|
|
} else {
|
|
if (op == RT_BINARY_OP_EQUAL) {
|
|
return mp_const_false;
|
|
} else {
|
|
return mp_const_true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// deal with exception_match for all types
|
|
if (op == RT_BINARY_OP_EXCEPTION_MATCH) {
|
|
// rhs must be issubclass(rhs, BaseException)
|
|
if (mp_obj_is_exception_type(rhs)) {
|
|
// if lhs is an instance of an exception, then extract and use its type
|
|
if (mp_obj_is_exception_instance(lhs)) {
|
|
lhs = mp_obj_get_type(lhs);
|
|
}
|
|
if (mp_obj_is_subclass_fast(lhs, rhs)) {
|
|
return mp_const_true;
|
|
} else {
|
|
return mp_const_false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (MP_OBJ_IS_SMALL_INT(lhs)) {
|
|
mp_small_int_t lhs_val = MP_OBJ_SMALL_INT_VALUE(lhs);
|
|
if (MP_OBJ_IS_SMALL_INT(rhs)) {
|
|
mp_small_int_t rhs_val = MP_OBJ_SMALL_INT_VALUE(rhs);
|
|
// This is a binary operation: lhs_val op rhs_val
|
|
// We need to be careful to handle overflow; see CERT INT32-C
|
|
// Operations that can overflow:
|
|
// + result always fits in machine_int_t, then handled by SMALL_INT check
|
|
// - result always fits in machine_int_t, then handled by SMALL_INT check
|
|
// * checked explicitly
|
|
// / if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
|
|
// % if lhs=MIN and rhs=-1; result always fits in machine_int_t, then handled by SMALL_INT check
|
|
// << checked explicitly
|
|
switch (op) {
|
|
case RT_BINARY_OP_OR:
|
|
case RT_BINARY_OP_INPLACE_OR: lhs_val |= rhs_val; break;
|
|
case RT_BINARY_OP_XOR:
|
|
case RT_BINARY_OP_INPLACE_XOR: lhs_val ^= rhs_val; break;
|
|
case RT_BINARY_OP_AND:
|
|
case RT_BINARY_OP_INPLACE_AND: lhs_val &= rhs_val; break;
|
|
case RT_BINARY_OP_LSHIFT:
|
|
case RT_BINARY_OP_INPLACE_LSHIFT: {
|
|
if (rhs_val < 0) {
|
|
// negative shift not allowed
|
|
nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
|
|
} else if (rhs_val >= BITS_PER_WORD || lhs_val > (MP_SMALL_INT_MAX >> rhs_val) || lhs_val < (MP_SMALL_INT_MIN >> rhs_val)) {
|
|
// left-shift will overflow, so use higher precision integer
|
|
lhs = mp_obj_new_int_from_ll(lhs_val);
|
|
goto generic_binary_op;
|
|
} else {
|
|
// use standard precision
|
|
lhs_val <<= rhs_val;
|
|
}
|
|
break;
|
|
}
|
|
case RT_BINARY_OP_RSHIFT:
|
|
case RT_BINARY_OP_INPLACE_RSHIFT:
|
|
if (rhs_val < 0) {
|
|
// negative shift not allowed
|
|
nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative shift count"));
|
|
} else {
|
|
// standard precision is enough for right-shift
|
|
lhs_val >>= rhs_val;
|
|
}
|
|
break;
|
|
case RT_BINARY_OP_ADD:
|
|
case RT_BINARY_OP_INPLACE_ADD: lhs_val += rhs_val; break;
|
|
case RT_BINARY_OP_SUBTRACT:
|
|
case RT_BINARY_OP_INPLACE_SUBTRACT: lhs_val -= rhs_val; break;
|
|
case RT_BINARY_OP_MULTIPLY:
|
|
case RT_BINARY_OP_INPLACE_MULTIPLY: {
|
|
|
|
// If long long type exists and is larger than machine_int_t, then
|
|
// we can use the following code to perform overflow-checked multiplication.
|
|
// Otherwise (eg in x64 case) we must use the branching code below.
|
|
#if 0
|
|
// compute result using long long precision
|
|
long long res = (long long)lhs_val * (long long)rhs_val;
|
|
if (res > MP_SMALL_INT_MAX || res < MP_SMALL_INT_MIN) {
|
|
// result overflowed SMALL_INT, so return higher precision integer
|
|
return mp_obj_new_int_from_ll(res);
|
|
} else {
|
|
// use standard precision
|
|
lhs_val = (mp_small_int_t)res;
|
|
}
|
|
#endif
|
|
|
|
if (lhs_val > 0) { // lhs_val is positive
|
|
if (rhs_val > 0) { // lhs_val and rhs_val are positive
|
|
if (lhs_val > (MP_SMALL_INT_MAX / rhs_val)) {
|
|
goto mul_overflow;
|
|
}
|
|
} else { // lhs_val positive, rhs_val nonpositive
|
|
if (rhs_val < (MP_SMALL_INT_MIN / lhs_val)) {
|
|
goto mul_overflow;
|
|
}
|
|
} // lhs_val positive, rhs_val nonpositive
|
|
} else { // lhs_val is nonpositive
|
|
if (rhs_val > 0) { // lhs_val is nonpositive, rhs_val is positive
|
|
if (lhs_val < (MP_SMALL_INT_MIN / rhs_val)) {
|
|
goto mul_overflow;
|
|
}
|
|
} else { // lhs_val and rhs_val are nonpositive
|
|
if (lhs_val != 0 && rhs_val < (MP_SMALL_INT_MAX / lhs_val)) {
|
|
goto mul_overflow;
|
|
}
|
|
} // End if lhs_val and rhs_val are nonpositive
|
|
} // End if lhs_val is nonpositive
|
|
|
|
// use standard precision
|
|
return MP_OBJ_NEW_SMALL_INT(lhs_val * rhs_val);
|
|
|
|
mul_overflow:
|
|
// use higher precision
|
|
lhs = mp_obj_new_int_from_ll(lhs_val);
|
|
goto generic_binary_op;
|
|
|
|
break;
|
|
}
|
|
case RT_BINARY_OP_FLOOR_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_FLOOR_DIVIDE: lhs_val /= rhs_val; break;
|
|
#if MICROPY_ENABLE_FLOAT
|
|
case RT_BINARY_OP_TRUE_DIVIDE:
|
|
case RT_BINARY_OP_INPLACE_TRUE_DIVIDE: return mp_obj_new_float((mp_float_t)lhs_val / (mp_float_t)rhs_val);
|
|
#endif
|
|
|
|
// TODO implement modulo as specified by Python
|
|
case RT_BINARY_OP_MODULO:
|
|
case RT_BINARY_OP_INPLACE_MODULO: lhs_val %= rhs_val; break;
|
|
|
|
case RT_BINARY_OP_POWER:
|
|
case RT_BINARY_OP_INPLACE_POWER:
|
|
if (rhs_val < 0) {
|
|
#if MICROPY_ENABLE_FLOAT
|
|
lhs = mp_obj_new_float(lhs_val);
|
|
goto generic_binary_op;
|
|
#else
|
|
nlr_jump(mp_obj_new_exception_msg(&mp_type_ValueError, "negative power with no float support"));
|
|
#endif
|
|
} else {
|
|
// TODO check for overflow
|
|
machine_int_t ans = 1;
|
|
while (rhs_val > 0) {
|
|
if (rhs_val & 1) {
|
|
ans *= lhs_val;
|
|
}
|
|
lhs_val *= lhs_val;
|
|
rhs_val /= 2;
|
|
}
|
|
lhs_val = ans;
|
|
}
|
|
break;
|
|
case RT_BINARY_OP_LESS: return MP_BOOL(lhs_val < rhs_val); break;
|
|
case RT_BINARY_OP_MORE: return MP_BOOL(lhs_val > rhs_val); break;
|
|
case RT_BINARY_OP_LESS_EQUAL: return MP_BOOL(lhs_val <= rhs_val); break;
|
|
case RT_BINARY_OP_MORE_EQUAL: return MP_BOOL(lhs_val >= rhs_val); break;
|
|
|
|
default: assert(0);
|
|
}
|
|
// TODO: We just should make mp_obj_new_int() inline and use that
|
|
if (MP_OBJ_FITS_SMALL_INT(lhs_val)) {
|
|
return MP_OBJ_NEW_SMALL_INT(lhs_val);
|
|
} else {
|
|
return mp_obj_new_int(lhs_val);
|
|
}
|
|
#if MICROPY_ENABLE_FLOAT
|
|
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_float)) {
|
|
return mp_obj_float_binary_op(op, lhs_val, rhs);
|
|
} else if (MP_OBJ_IS_TYPE(rhs, &mp_type_complex)) {
|
|
return mp_obj_complex_binary_op(op, lhs_val, 0, rhs);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* deal with `in`
|
|
*
|
|
* NOTE `a in b` is `b.__contains__(a)`, hence why the generic dispatch
|
|
* needs to go below with swapped arguments
|
|
*/
|
|
if (op == RT_BINARY_OP_IN) {
|
|
mp_obj_type_t *type = mp_obj_get_type(rhs);
|
|
if (type->binary_op != NULL) {
|
|
mp_obj_t res = type->binary_op(op, rhs, lhs);
|
|
if (res != MP_OBJ_NULL) {
|
|
return res;
|
|
}
|
|
}
|
|
if (type->getiter != NULL) {
|
|
/* second attempt, walk the iterator */
|
|
mp_obj_t next = NULL;
|
|
mp_obj_t iter = rt_getiter(rhs);
|
|
while ((next = rt_iternext(iter)) != mp_const_stop_iteration) {
|
|
if (mp_obj_equal(next, lhs)) {
|
|
return mp_const_true;
|
|
}
|
|
}
|
|
return mp_const_false;
|
|
}
|
|
|
|
nlr_jump(mp_obj_new_exception_msg_varg(
|
|
&mp_type_TypeError, "'%s' object is not iterable",
|
|
mp_obj_get_type_str(rhs)));
|
|
return mp_const_none;
|
|
}
|
|
|
|
// generic binary_op supplied by type
|
|
mp_obj_type_t *type;
|
|
generic_binary_op:
|
|
type = mp_obj_get_type(lhs);
|
|
if (type->binary_op != NULL) {
|
|
mp_obj_t result = type->binary_op(op, lhs, rhs);
|
|
if (result != MP_OBJ_NULL) {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
// TODO implement dispatch for reverse binary ops
|
|
|
|
// TODO specify in error message what the operator is
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError,
|
|
"unsupported operand types for binary operator: '%s', '%s'",
|
|
mp_obj_get_type_str(lhs), mp_obj_get_type_str(rhs)));
|
|
return mp_const_none;
|
|
}
|
|
|
|
mp_obj_t rt_make_function_from_id(int unique_code_id, mp_obj_t def_args) {
|
|
DEBUG_OP_printf("make_function_from_id %d\n", unique_code_id);
|
|
if (unique_code_id < 1 || unique_code_id >= next_unique_code_id) {
|
|
// illegal code id
|
|
return mp_const_none;
|
|
}
|
|
|
|
// make the function, depending on the code kind
|
|
mp_code_t *c = &unique_codes[unique_code_id];
|
|
mp_obj_t fun;
|
|
switch (c->kind) {
|
|
case MP_CODE_BYTE:
|
|
fun = mp_obj_new_fun_bc(c->scope_flags, c->arg_names, c->n_args, def_args, c->n_state, c->u_byte.code);
|
|
break;
|
|
case MP_CODE_NATIVE:
|
|
fun = rt_make_function_n(c->n_args, c->u_native.fun);
|
|
break;
|
|
case MP_CODE_INLINE_ASM:
|
|
fun = mp_obj_new_fun_asm(c->n_args, c->u_inline_asm.fun);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
fun = mp_const_none;
|
|
}
|
|
|
|
// check for generator functions and if so wrap in generator object
|
|
if ((c->scope_flags & MP_SCOPE_FLAG_GENERATOR) != 0) {
|
|
fun = mp_obj_new_gen_wrap(fun);
|
|
}
|
|
|
|
return fun;
|
|
}
|
|
|
|
mp_obj_t rt_make_closure_from_id(int unique_code_id, mp_obj_t closure_tuple) {
|
|
DEBUG_OP_printf("make_closure_from_id %d\n", unique_code_id);
|
|
// make function object
|
|
mp_obj_t ffun = rt_make_function_from_id(unique_code_id, MP_OBJ_NULL);
|
|
// wrap function in closure object
|
|
return mp_obj_new_closure(ffun, closure_tuple);
|
|
}
|
|
|
|
mp_obj_t rt_call_function_0(mp_obj_t fun) {
|
|
return rt_call_function_n_kw(fun, 0, 0, NULL);
|
|
}
|
|
|
|
mp_obj_t rt_call_function_1(mp_obj_t fun, mp_obj_t arg) {
|
|
return rt_call_function_n_kw(fun, 1, 0, &arg);
|
|
}
|
|
|
|
mp_obj_t rt_call_function_2(mp_obj_t fun, mp_obj_t arg1, mp_obj_t arg2) {
|
|
mp_obj_t args[2];
|
|
args[0] = arg1;
|
|
args[1] = arg2;
|
|
return rt_call_function_n_kw(fun, 2, 0, args);
|
|
}
|
|
|
|
// wrapper that accepts n_args and n_kw in one argument
|
|
// native emitter can only pass at most 3 arguments to a function
|
|
mp_obj_t rt_call_function_n_kw_for_native(mp_obj_t fun_in, uint n_args_kw, const mp_obj_t *args) {
|
|
return rt_call_function_n_kw(fun_in, n_args_kw & 0xff, (n_args_kw >> 8) & 0xff, args);
|
|
}
|
|
|
|
// args contains, eg: arg0 arg1 key0 value0 key1 value1
|
|
mp_obj_t rt_call_function_n_kw(mp_obj_t fun_in, uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
// TODO improve this: fun object can specify its type and we parse here the arguments,
|
|
// passing to the function arrays of fixed and keyword arguments
|
|
|
|
DEBUG_OP_printf("calling function %p(n_args=%d, n_kw=%d, args=%p)\n", fun_in, n_args, n_kw, args);
|
|
|
|
// get the type
|
|
mp_obj_type_t *type = mp_obj_get_type(fun_in);
|
|
|
|
// do the call
|
|
if (type->call != NULL) {
|
|
return type->call(fun_in, n_args, n_kw, args);
|
|
} else {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not callable", mp_obj_get_type_str(fun_in)));
|
|
}
|
|
}
|
|
|
|
// args contains: fun self/NULL arg(0) ... arg(n_args-2) arg(n_args-1) kw_key(0) kw_val(0) ... kw_key(n_kw-1) kw_val(n_kw-1)
|
|
// if n_args==0 and n_kw==0 then there are only fun and self/NULL
|
|
mp_obj_t rt_call_method_n_kw(uint n_args, uint n_kw, const mp_obj_t *args) {
|
|
DEBUG_OP_printf("call method (fun=%p, self=%p, n_args=%u, n_kw=%u, args=%p)\n", args[0], args[1], n_args, n_kw, args);
|
|
int adjust = (args[1] == NULL) ? 0 : 1;
|
|
return rt_call_function_n_kw(args[0], n_args + adjust, n_kw, args + 2 - adjust);
|
|
}
|
|
|
|
mp_obj_t rt_build_tuple(int n_args, mp_obj_t *items) {
|
|
return mp_obj_new_tuple(n_args, items);
|
|
}
|
|
|
|
mp_obj_t rt_build_list(int n_args, mp_obj_t *items) {
|
|
return mp_obj_new_list(n_args, items);
|
|
}
|
|
|
|
mp_obj_t rt_build_set(int n_args, mp_obj_t *items) {
|
|
return mp_obj_new_set(n_args, items);
|
|
}
|
|
|
|
mp_obj_t rt_store_set(mp_obj_t set, mp_obj_t item) {
|
|
mp_obj_set_store(set, item);
|
|
return set;
|
|
}
|
|
|
|
// unpacked items are stored in reverse order into the array pointed to by items
|
|
void rt_unpack_sequence(mp_obj_t seq_in, uint num, mp_obj_t *items) {
|
|
uint seq_len;
|
|
if (MP_OBJ_IS_TYPE(seq_in, &tuple_type) || MP_OBJ_IS_TYPE(seq_in, &list_type)) {
|
|
mp_obj_t *seq_items;
|
|
if (MP_OBJ_IS_TYPE(seq_in, &tuple_type)) {
|
|
mp_obj_tuple_get(seq_in, &seq_len, &seq_items);
|
|
} else {
|
|
mp_obj_list_get(seq_in, &seq_len, &seq_items);
|
|
}
|
|
if (seq_len < num) {
|
|
goto too_short;
|
|
} else if (seq_len > num) {
|
|
goto too_long;
|
|
}
|
|
for (uint i = 0; i < num; i++) {
|
|
items[i] = seq_items[num - 1 - i];
|
|
}
|
|
} else {
|
|
mp_obj_t iterable = rt_getiter(seq_in);
|
|
|
|
for (seq_len = 0; seq_len < num; seq_len++) {
|
|
mp_obj_t el = rt_iternext(iterable);
|
|
if (el == mp_const_stop_iteration) {
|
|
goto too_short;
|
|
}
|
|
items[num - 1 - seq_len] = el;
|
|
}
|
|
if (rt_iternext(iterable) != mp_const_stop_iteration) {
|
|
goto too_long;
|
|
}
|
|
}
|
|
return;
|
|
|
|
too_short:
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "need more than %d values to unpack", seq_len));
|
|
too_long:
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_ValueError, "too many values to unpack (expected %d)", num));
|
|
}
|
|
|
|
mp_obj_t rt_build_map(int n_args) {
|
|
return mp_obj_new_dict(n_args);
|
|
}
|
|
|
|
mp_obj_t rt_store_map(mp_obj_t map, mp_obj_t key, mp_obj_t value) {
|
|
// map should always be a dict
|
|
return mp_obj_dict_store(map, key, value);
|
|
}
|
|
|
|
mp_obj_t rt_load_attr(mp_obj_t base, qstr attr) {
|
|
DEBUG_OP_printf("load attr %p.%s\n", base, qstr_str(attr));
|
|
// use load_method
|
|
mp_obj_t dest[2];
|
|
rt_load_method(base, attr, dest);
|
|
if (dest[1] == MP_OBJ_NULL) {
|
|
// load_method returned just a normal attribute
|
|
return dest[0];
|
|
} else {
|
|
// load_method returned a method, so build a bound method object
|
|
return mp_obj_new_bound_meth(dest[0], dest[1]);
|
|
}
|
|
}
|
|
|
|
// no attribute found, returns: dest[0] == MP_OBJ_NULL, dest[1] == MP_OBJ_NULL
|
|
// normal attribute found, returns: dest[0] == <attribute>, dest[1] == MP_OBJ_NULL
|
|
// method attribute found, returns: dest[0] == <method>, dest[1] == <self>
|
|
STATIC void rt_load_method_maybe(mp_obj_t base, qstr attr, mp_obj_t *dest) {
|
|
// clear output to indicate no attribute/method found yet
|
|
dest[0] = MP_OBJ_NULL;
|
|
dest[1] = MP_OBJ_NULL;
|
|
|
|
// get the type
|
|
mp_obj_type_t *type = mp_obj_get_type(base);
|
|
|
|
// if this type can do its own load, then call it
|
|
if (type->load_attr != NULL) {
|
|
type->load_attr(base, attr, dest);
|
|
}
|
|
|
|
// if nothing found yet, look for built-in and generic names
|
|
if (dest[0] == MP_OBJ_NULL) {
|
|
if (attr == MP_QSTR___class__) {
|
|
// a.__class__ is equivalent to type(a)
|
|
dest[0] = type;
|
|
} else if (attr == MP_QSTR___next__ && type->iternext != NULL) {
|
|
dest[0] = (mp_obj_t)&mp_builtin_next_obj;
|
|
dest[1] = base;
|
|
} else if (type->load_attr == NULL) {
|
|
// generic method lookup if type didn't provide a specific one
|
|
// this is a lookup in the object (ie not class or type)
|
|
const mp_method_t *meth = type->methods;
|
|
if (meth != NULL) {
|
|
for (; meth->name != NULL; meth++) {
|
|
if (strcmp(meth->name, qstr_str(attr)) == 0) {
|
|
// check if the methods are functions, static or class methods
|
|
// see http://docs.python.org/3.3/howto/descriptor.html
|
|
if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_staticmethod)) {
|
|
// return just the function
|
|
dest[0] = ((mp_obj_static_class_method_t*)meth->fun)->fun;
|
|
} else if (MP_OBJ_IS_TYPE(meth->fun, &mp_type_classmethod)) {
|
|
// return a bound method, with self being the type of this object
|
|
dest[0] = ((mp_obj_static_class_method_t*)meth->fun)->fun;
|
|
dest[1] = mp_obj_get_type(base);
|
|
} else {
|
|
// return a bound method, with self being this object
|
|
dest[0] = (mp_obj_t)meth->fun;
|
|
dest[1] = base;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void rt_load_method(mp_obj_t base, qstr attr, mp_obj_t *dest) {
|
|
DEBUG_OP_printf("load method %p.%s\n", base, qstr_str(attr));
|
|
|
|
rt_load_method_maybe(base, attr, dest);
|
|
|
|
if (dest[0] == MP_OBJ_NULL) {
|
|
// no attribute/method called attr
|
|
// following CPython, we give a more detailed error message for type objects
|
|
if (MP_OBJ_IS_TYPE(base, &mp_type_type)) {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "type object '%s' has no attribute '%s'", ((mp_obj_type_t*)base)->name, qstr_str(attr)));
|
|
} else {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void rt_store_attr(mp_obj_t base, qstr attr, mp_obj_t value) {
|
|
DEBUG_OP_printf("store attr %p.%s <- %p\n", base, qstr_str(attr), value);
|
|
mp_obj_type_t *type = mp_obj_get_type(base);
|
|
if (type->store_attr != NULL) {
|
|
if (type->store_attr(base, attr, value)) {
|
|
return;
|
|
}
|
|
}
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_AttributeError, "'%s' object has no attribute '%s'", mp_obj_get_type_str(base), qstr_str(attr)));
|
|
}
|
|
|
|
void rt_store_subscr(mp_obj_t base, mp_obj_t index, mp_obj_t value) {
|
|
DEBUG_OP_printf("store subscr %p[%p] <- %p\n", base, index, value);
|
|
if (MP_OBJ_IS_TYPE(base, &list_type)) {
|
|
// list store
|
|
mp_obj_list_store(base, index, value);
|
|
} else if (MP_OBJ_IS_TYPE(base, &dict_type)) {
|
|
// dict store
|
|
mp_obj_dict_store(base, index, value);
|
|
} else {
|
|
mp_obj_type_t *type = mp_obj_get_type(base);
|
|
if (type->store_item != NULL) {
|
|
bool r = type->store_item(base, index, value);
|
|
if (r) {
|
|
return;
|
|
}
|
|
// TODO: call base classes here?
|
|
}
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object does not support item assignment", mp_obj_get_type_str(base)));
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_getiter(mp_obj_t o_in) {
|
|
mp_obj_type_t *type = mp_obj_get_type(o_in);
|
|
if (type->getiter != NULL) {
|
|
return type->getiter(o_in);
|
|
} else {
|
|
// check for __getitem__ method
|
|
mp_obj_t dest[2];
|
|
rt_load_method_maybe(o_in, MP_QSTR___getitem__, dest);
|
|
if (dest[0] != MP_OBJ_NULL) {
|
|
// __getitem__ exists, create an iterator
|
|
return mp_obj_new_getitem_iter(dest);
|
|
} else {
|
|
// object not iterable
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not iterable", mp_obj_get_type_str(o_in)));
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_iternext(mp_obj_t o_in) {
|
|
mp_obj_type_t *type = mp_obj_get_type(o_in);
|
|
if (type->iternext != NULL) {
|
|
return type->iternext(o_in);
|
|
} else {
|
|
nlr_jump(mp_obj_new_exception_msg_varg(&mp_type_TypeError, "'%s' object is not an iterator", mp_obj_get_type_str(o_in)));
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_make_raise_obj(mp_obj_t o) {
|
|
DEBUG_printf("raise %p\n", o);
|
|
if (mp_obj_is_exception_type(o)) {
|
|
// o is an exception type (it is derived from BaseException (or is BaseException))
|
|
// create and return a new exception instance by calling o
|
|
// TODO could have an option to disable traceback, then builtin exceptions (eg TypeError)
|
|
// could have const instances in ROM which we return here instead
|
|
return rt_call_function_n_kw(o, 0, 0, NULL);
|
|
} else if (mp_obj_is_exception_instance(o)) {
|
|
// o is an instance of an exception, so use it as the exception
|
|
return o;
|
|
} else {
|
|
// o cannot be used as an exception, so return a type error (which will be raised by the caller)
|
|
return mp_obj_new_exception_msg(&mp_type_TypeError, "exceptions must derive from BaseException");
|
|
}
|
|
}
|
|
|
|
mp_obj_t rt_import_name(qstr name, mp_obj_t fromlist, mp_obj_t level) {
|
|
DEBUG_printf("import name %s\n", qstr_str(name));
|
|
|
|
// build args array
|
|
mp_obj_t args[5];
|
|
args[0] = MP_OBJ_NEW_QSTR(name);
|
|
args[1] = mp_const_none; // TODO should be globals
|
|
args[2] = mp_const_none; // TODO should be locals
|
|
args[3] = fromlist;
|
|
args[4] = level; // must be 0; we don't yet support other values
|
|
|
|
// TODO lookup __import__ and call that instead of going straight to builtin implementation
|
|
return mp_builtin___import__(5, args);
|
|
}
|
|
|
|
mp_obj_t rt_import_from(mp_obj_t module, qstr name) {
|
|
DEBUG_printf("import from %p %s\n", module, qstr_str(name));
|
|
|
|
mp_obj_t x = rt_load_attr(module, name);
|
|
/* TODO convert AttributeError to ImportError
|
|
if (fail) {
|
|
(ImportError, "cannot import name %s", qstr_str(name), NULL)
|
|
}
|
|
*/
|
|
return x;
|
|
}
|
|
|
|
void rt_import_all(mp_obj_t module) {
|
|
DEBUG_printf("import all %p\n", module);
|
|
|
|
mp_map_t *map = mp_obj_module_get_globals(module);
|
|
for (uint i = 0; i < map->alloc; i++) {
|
|
if (map->table[i].key != MP_OBJ_NULL) {
|
|
rt_store_name(MP_OBJ_QSTR_VALUE(map->table[i].key), map->table[i].value);
|
|
}
|
|
}
|
|
}
|
|
|
|
mp_map_t *rt_locals_get(void) {
|
|
return map_locals;
|
|
}
|
|
|
|
void rt_locals_set(mp_map_t *m) {
|
|
DEBUG_OP_printf("rt_locals_set(%p)\n", m);
|
|
map_locals = m;
|
|
}
|
|
|
|
mp_map_t *rt_globals_get(void) {
|
|
return map_globals;
|
|
}
|
|
|
|
void rt_globals_set(mp_map_t *m) {
|
|
DEBUG_OP_printf("rt_globals_set(%p)\n", m);
|
|
map_globals = m;
|
|
}
|
|
|
|
mp_map_t *rt_loaded_modules_get(void) {
|
|
return &map_loaded_modules;
|
|
}
|
|
|
|
// these must correspond to the respective enum
|
|
void *const rt_fun_table[RT_F_NUMBER_OF] = {
|
|
rt_load_const_dec,
|
|
rt_load_const_str,
|
|
rt_load_name,
|
|
rt_load_global,
|
|
rt_load_build_class,
|
|
rt_load_attr,
|
|
rt_load_method,
|
|
rt_store_name,
|
|
rt_store_attr,
|
|
rt_store_subscr,
|
|
rt_is_true,
|
|
rt_unary_op,
|
|
rt_binary_op,
|
|
rt_build_tuple,
|
|
rt_build_list,
|
|
rt_list_append,
|
|
rt_build_map,
|
|
rt_store_map,
|
|
rt_build_set,
|
|
rt_store_set,
|
|
rt_make_function_from_id,
|
|
rt_call_function_n_kw_for_native,
|
|
rt_call_method_n_kw,
|
|
rt_getiter,
|
|
rt_iternext,
|
|
};
|
|
|
|
/*
|
|
void rt_f_vector(rt_fun_kind_t fun_kind) {
|
|
(rt_f_table[fun_kind])();
|
|
}
|
|
*/
|